Actual source code: snesj.c
1: #define PETSCSNES_DLL
3: #include include/private/snesimpl.h
7: /*@C
8: SNESDefaultComputeJacobian - Computes the Jacobian using finite differences.
10: Collective on SNES
12: Input Parameters:
13: + x1 - compute Jacobian at this point
14: - ctx - application's function context, as set with SNESSetFunction()
16: Output Parameters:
17: + J - Jacobian matrix (not altered in this routine)
18: . B - newly computed Jacobian matrix to use with preconditioner (generally the same as J)
19: - flag - flag indicating whether the matrix sparsity structure has changed
21: Options Database Key:
22: + -snes_fd - Activates SNESDefaultComputeJacobian()
23: . -snes_test_err - Square root of function error tolerance, default square root of machine
24: epsilon (1.e-8 in double, 3.e-4 in single)
25: - -mat_fd_type - Either wp or ds (see MATSNESMF_WP or MATSNESMF_DS)
27: Notes:
28: This routine is slow and expensive, and is not currently optimized
29: to take advantage of sparsity in the problem. Although
30: SNESDefaultComputeJacobian() is not recommended for general use
31: in large-scale applications, It can be useful in checking the
32: correctness of a user-provided Jacobian.
34: An alternative routine that uses coloring to exploit matrix sparsity is
35: SNESDefaultComputeJacobianColor().
37: Level: intermediate
39: .keywords: SNES, finite differences, Jacobian
41: .seealso: SNESSetJacobian(), SNESDefaultComputeJacobianColor(), MatCreateSNESMF()
42: @*/
43: PetscErrorCode SNESDefaultComputeJacobian(SNES snes,Vec x1,Mat *J,Mat *B,MatStructure *flag,void *ctx)
44: {
45: Vec j1a,j2a,x2;
47: PetscInt i,N,start,end,j,value;
48: PetscScalar dx,*y,scale,*xx,wscale;
49: PetscReal amax,epsilon = PETSC_SQRT_MACHINE_EPSILON;
50: PetscReal dx_min = 1.e-16,dx_par = 1.e-1,unorm;
51: MPI_Comm comm;
52: PetscErrorCode (*eval_fct)(SNES,Vec,Vec)=0;
53: PetscTruth assembled,use_wp = PETSC_TRUE,flg;
54: const char *list[2] = {"ds","wp"};
57: PetscOptionsGetReal(snes->prefix,"-snes_test_err",&epsilon,0);
58: eval_fct = SNESComputeFunction;
60: PetscObjectGetComm((PetscObject)x1,&comm);
61: MatAssembled(*B,&assembled);
62: if (assembled) {
63: MatZeroEntries(*B);
64: }
65: if (!snes->nvwork) {
66: VecDuplicateVecs(x1,3,&snes->vwork);
67: snes->nvwork = 3;
68: PetscLogObjectParents(snes,3,snes->vwork);
69: }
70: j1a = snes->vwork[0]; j2a = snes->vwork[1]; x2 = snes->vwork[2];
72: VecGetSize(x1,&N);
73: VecGetOwnershipRange(x1,&start,&end);
74: (*eval_fct)(snes,x1,j1a);
76: PetscOptionsEList("-mat_fd_type","Algorithm to compute difference parameter","SNESDefaultComputeJacobian",list,2,"wp",&value,&flg);
77: if (flg && !value) {
78: use_wp = PETSC_FALSE;
79: }
80: if (use_wp) {
81: VecNorm(x1,NORM_2,&unorm);
82: }
83: /* Compute Jacobian approximation, 1 column at a time.
84: x1 = current iterate, j1a = F(x1)
85: x2 = perturbed iterate, j2a = F(x2)
86: */
87: for (i=0; i<N; i++) {
88: VecCopy(x1,x2);
89: if (i>= start && i<end) {
90: VecGetArray(x1,&xx);
91: if (use_wp) {
92: dx = 1.0 + unorm;
93: } else {
94: dx = xx[i-start];
95: }
96: VecRestoreArray(x1,&xx);
97: #if !defined(PETSC_USE_COMPLEX)
98: if (dx < dx_min && dx >= 0.0) dx = dx_par;
99: else if (dx < 0.0 && dx > -dx_min) dx = -dx_par;
100: #else
101: if (PetscAbsScalar(dx) < dx_min && PetscRealPart(dx) >= 0.0) dx = dx_par;
102: else if (PetscRealPart(dx) < 0.0 && PetscAbsScalar(dx) < dx_min) dx = -dx_par;
103: #endif
104: dx *= epsilon;
105: wscale = 1.0/dx;
106: VecSetValues(x2,1,&i,&dx,ADD_VALUES);
107: } else {
108: wscale = 0.0;
109: }
110: (*eval_fct)(snes,x2,j2a);
111: VecAXPY(j2a,-1.0,j1a);
112: /* Communicate scale to all processors */
113: MPI_Allreduce(&wscale,&scale,1,MPIU_SCALAR,PetscSum_Op,comm);
114: VecScale(j2a,scale);
115: VecNorm(j2a,NORM_INFINITY,&amax); amax *= 1.e-14;
116: VecGetArray(j2a,&y);
117: for (j=start; j<end; j++) {
118: if (PetscAbsScalar(y[j-start]) > amax) {
119: MatSetValues(*B,1,&j,1,&i,y+j-start,INSERT_VALUES);
120: }
121: }
122: VecRestoreArray(j2a,&y);
123: }
124: MatAssemblyBegin(*B,MAT_FINAL_ASSEMBLY);
125: MatAssemblyEnd(*B,MAT_FINAL_ASSEMBLY);
126: if (*B != *J) {
127: MatAssemblyBegin(*J,MAT_FINAL_ASSEMBLY);
128: MatAssemblyEnd(*J,MAT_FINAL_ASSEMBLY);
129: }
130: *flag = DIFFERENT_NONZERO_PATTERN;
131: return(0);
132: }