Actual source code: ex1.c

  1: /*
  2:        Formatted test for TS routines.

  4:           Solves U_t = U_xx 
  5:      F(t,u) = (u_i+1 - 2u_i + u_i-1)/h^2
  6:        using several different schemes. 
  7: */

  9: /* Usage: 
 10:    ./ex1 -nox -ts_type beuler -ts_view 
 11:    ./ex1 -nox -linear_constant_matrix -ts_type beuler -pc_type lu
 12:    ./ex1 -nox -linear_variable_matrix -ts_type beuler
 13: */

 15: static char help[] = "Solves 1D heat equation.\n\n";

 17:  #include petscda.h
 18:  #include petscsys.h
 19:  #include petscts.h

 21: #define PETSC_NEAR(a,b,c) (!(PetscAbsReal((a)-(b)) > (c)*PetscMax(PetscAbsReal(a),PetscAbsReal(b))))

 23: typedef struct {
 24:   Vec         global,local,localwork,solution;    /* location for local work (with ghost points) vector */
 25:   DA          da;                    /* manages ghost point communication */
 26:   PetscViewer viewer1,viewer2;
 27:   PetscInt    M;                     /* total number of grid points */
 28:   PetscReal   h;                     /* mesh width h = 1/(M-1) */
 29:   PetscReal   norm_2,norm_max;
 30:   PetscTruth  nox;                   /* indicates problem is to be run without graphics */
 31: } AppCtx;


 41: #define linear_no_matrix        0
 42: #define linear_constant_matrix  1
 43: #define linear_variable_matrix  2
 44: #define nonlinear_no_jacobian   3
 45: #define nonlinear_jacobian      4

 49: int main(int argc,char **argv)
 50: {
 52:   PetscInt       maxsteps = 100,steps,m;
 53:   PetscMPIInt    size;
 54:   PetscInt       problem = linear_no_matrix;
 55:   PetscTruth     flg;
 56:   AppCtx         appctx;
 57:   PetscReal      dt,ftime,maxtime=100.;
 58:   TS             ts;
 59:   Mat            A=0,Alhs=0;
 60:   MatStructure   A_structure;
 61:   TSProblemType  tsproblem = TS_LINEAR;
 62:   PetscDraw      draw;
 63:   PetscViewer    viewer;
 64:   char           tsinfo[120];
 65: 
 66:   PetscInitialize(&argc,&argv,(char*)0,help);
 67:   MPI_Comm_size(PETSC_COMM_WORLD,&size);

 69:   appctx.M = 60;
 70:   PetscOptionsGetInt(PETSC_NULL,"-M",&appctx.M,PETSC_NULL);
 71:   PetscOptionsGetInt(PETSC_NULL,"-time",&maxsteps,PETSC_NULL);
 72: 
 73:   PetscOptionsHasName(PETSC_NULL,"-nox",&appctx.nox);
 74:   appctx.norm_2 = 0.0; appctx.norm_max = 0.0;

 76:   /* Set up the ghost point communication pattern */
 77:   DACreate1d(PETSC_COMM_WORLD,DA_NONPERIODIC,appctx.M,1,1,PETSC_NULL,&appctx.da);
 78:   DACreateGlobalVector(appctx.da,&appctx.global);
 79:   VecGetLocalSize(appctx.global,&m);
 80:   DACreateLocalVector(appctx.da,&appctx.local);

 82:   /* Set up display to show wave graph */
 83:   PetscViewerDrawOpen(PETSC_COMM_WORLD,0,"",80,380,400,160,&appctx.viewer1);
 84:   PetscViewerDrawGetDraw(appctx.viewer1,0,&draw);
 85:   PetscDrawSetDoubleBuffer(draw);
 86:   PetscViewerDrawOpen(PETSC_COMM_WORLD,0,"",80,0,400,160,&appctx.viewer2);
 87:   PetscViewerDrawGetDraw(appctx.viewer2,0,&draw);
 88:   PetscDrawSetDoubleBuffer(draw);

 90:   /* make work array for evaluating right hand side function */
 91:   VecDuplicate(appctx.local,&appctx.localwork);

 93:   /* make work array for storing exact solution */
 94:   VecDuplicate(appctx.global,&appctx.solution);

 96:   appctx.h = 1.0/(appctx.M-1.0);

 98:   /* set initial conditions */
 99:   Initial(appctx.global,&appctx);
100: 
101:   /*
102:      This example is written to allow one to easily test parts 
103:     of TS, we do not expect users to generally need to use more
104:     then a single TSProblemType
105:   */
106:   PetscOptionsHasName(PETSC_NULL,"-linear_no_matrix",&flg);
107:   if (flg) {
108:     tsproblem = TS_LINEAR;
109:     problem   = linear_no_matrix;
110:   }
111:   PetscOptionsHasName(PETSC_NULL,"-linear_constant_matrix",&flg);
112:   if (flg) {
113:     tsproblem = TS_LINEAR;
114:     problem   = linear_constant_matrix;
115:   }
116:   PetscOptionsHasName(PETSC_NULL,"-linear_variable_matrix",&flg);
117:   if (flg) {
118:     tsproblem = TS_LINEAR;
119:     problem   = linear_variable_matrix;
120:   }
121:   PetscOptionsHasName(PETSC_NULL,"-nonlinear_no_jacobian",&flg);
122:   if (flg) {
123:     tsproblem = TS_NONLINEAR;
124:     problem   = nonlinear_no_jacobian;
125:   }
126:   PetscOptionsHasName(PETSC_NULL,"-nonlinear_jacobian",&flg);
127:   if (flg) {
128:     tsproblem = TS_NONLINEAR;
129:     problem   = nonlinear_jacobian;
130:   }
131: 
132:   /* make timestep context */
133:   TSCreate(PETSC_COMM_WORLD,&ts);
134:   TSSetProblemType(ts,tsproblem);
135:   PetscOptionsHasName(PETSC_NULL,"-monitor",&flg);
136:   if (flg) {
137:     TSMonitorSet(ts,Monitor,&appctx,PETSC_NULL);
138:   }

140:   dt = appctx.h*appctx.h/2.01;

142:   if (problem == linear_no_matrix) {
143:     /*
144:          The user provides the RHS as a Shell matrix.
145:     */
146:     MatCreateShell(PETSC_COMM_WORLD,m,m,PETSC_DECIDE,PETSC_DECIDE,&appctx,&A);
147:     MatShellSetOperation(A,MATOP_MULT,(void(*)(void))RHSMatrixFree);
148:     TSSetMatrices(ts,A,PETSC_NULL,PETSC_NULL,PETSC_NULL,DIFFERENT_NONZERO_PATTERN,&appctx);
149:   } else if (problem == linear_constant_matrix) {
150:     /*
151:          The user provides the RHS as a constant matrix
152:     */
153:     MatCreate(PETSC_COMM_WORLD,&A);
154:     MatSetSizes(A,m,m,PETSC_DECIDE,PETSC_DECIDE);
155:     MatSetFromOptions(A);
156:     RHSMatrixHeat(ts,0.0,&A,&A,&A_structure,&appctx); /* A is assembled here */

158:     MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&Alhs);
159:     MatZeroEntries(Alhs);
160:     MatShift(Alhs,1.0);
161:     TSSetMatrices(ts,A,PETSC_NULL,Alhs,PETSC_NULL,DIFFERENT_NONZERO_PATTERN,&appctx);
162:   } else if (problem == linear_variable_matrix) {
163:     /*
164:          The user provides the RHS as a time dependent matrix
165:     */
166:     MatCreate(PETSC_COMM_WORLD,&A);
167:     MatSetSizes(A,m,m,PETSC_DECIDE,PETSC_DECIDE);
168:     MatSetFromOptions(A);
169:     RHSMatrixHeat(ts,0.0,&A,&A,&A_structure,&appctx);

171:     MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&Alhs);
172:     MatZeroEntries(Alhs);
173:     MatShift(Alhs,1.0);
174:     LHSMatrixHeat(ts,0.0,&Alhs,&Alhs,&A_structure,&appctx);
175:     TSSetMatrices(ts,A,RHSMatrixHeat,Alhs,LHSMatrixHeat,DIFFERENT_NONZERO_PATTERN,&appctx);
176:   } else if (problem == nonlinear_no_jacobian) {
177:     /*
178:          The user provides the RHS and a Shell Jacobian
179:     */
180:     TSSetRHSFunction(ts,RHSFunctionHeat,&appctx);
181:     MatCreateShell(PETSC_COMM_WORLD,m,m,PETSC_DECIDE,PETSC_DECIDE,&appctx,&A);
182:     MatShellSetOperation(A,MATOP_MULT,(void(*)(void))RHSMatrixFree);
183:     TSSetRHSJacobian(ts,A,A,PETSC_NULL,&appctx);
184:   } else if (problem == nonlinear_jacobian) {
185:     /*
186:          The user provides the RHS and Jacobian
187:     */
188:     TSSetRHSFunction(ts,RHSFunctionHeat,&appctx);
189:     MatCreate(PETSC_COMM_WORLD,&A);
190:     MatSetSizes(A,m,m,PETSC_DECIDE,PETSC_DECIDE);
191:     MatSetFromOptions(A);
192:     RHSMatrixHeat(ts,0.0,&A,&A,&A_structure,&appctx);
193:     TSSetRHSJacobian(ts,A,A,RHSJacobianHeat,&appctx);
194:   }
195:   TSSetFromOptions(ts);

197:   TSSetInitialTimeStep(ts,0.0,dt);
198:   TSSetDuration(ts,maxsteps,maxtime);
199:   TSSetSolution(ts,appctx.global);

201:   TSSetUp(ts);
202:   TSStep(ts,&steps,&ftime);
203:   PetscViewerStringOpen(PETSC_COMM_WORLD,tsinfo,120,&viewer);
204:   if (size == 1){ /* TSView() crashes for non euler methods with np>1 ? */
205:     TSView(ts,viewer);
206:   }

208:   PetscOptionsHasName(PETSC_NULL,"-testinfo",&flg);
209:   if (flg) {
210:     PetscTruth iseuler;
211:     PetscTypeCompare((PetscObject)ts,"euler",&iseuler);
212:     if (iseuler) {
213:       if (!PETSC_NEAR(appctx.norm_2/steps,0.00257244,1.e-4)) {
214:         fprintf(stdout,"Error in Euler method: 2-norm %G expecting: 0.00257244\n",appctx.norm_2/steps);
215:       }
216:     } else {
217:       PetscPrintf(PETSC_COMM_WORLD,"%D Procs; Avg. error 2-norm %G; max-norm %G; %s\n",
218:                 size,appctx.norm_2/steps,appctx.norm_max/steps,tsinfo);
219:     }
220:   }

222:   PetscViewerDestroy(viewer);
223:   TSDestroy(ts);
224:   PetscViewerDestroy(appctx.viewer1);
225:   PetscViewerDestroy(appctx.viewer2);
226:   VecDestroy(appctx.localwork);
227:   VecDestroy(appctx.solution);
228:   VecDestroy(appctx.local);
229:   VecDestroy(appctx.global);
230:   DADestroy(appctx.da);
231:   if (A) {ierr= MatDestroy(A);}
232:   if (Alhs) {ierr= MatDestroy(Alhs);}

234:   PetscFinalize();
235:   return 0;
236: }

238: /* -------------------------------------------------------------------*/
239: /*
240:   Set initial condition: u(t=0) = sin(6*pi*x) + 3*sin(2*pi*x)
241: */
244: PetscErrorCode Initial(Vec global,void *ctx)
245: {
246:   AppCtx         *appctx = (AppCtx*) ctx;
247:   PetscScalar    *localptr,h = appctx->h;
248:   PetscInt       i,mybase,myend;

252:   /* determine starting point of each processor */
253:   VecGetOwnershipRange(global,&mybase,&myend);

255:   /* Initialize the array */
256:   VecGetArray(global,&localptr);
257:   for (i=mybase; i<myend; i++) {
258:     localptr[i-mybase] = PetscSinScalar(PETSC_PI*i*6.*h) + 3.*PetscSinScalar(PETSC_PI*i*2.*h);
259:   }
260:   VecRestoreArray(global,&localptr);
261:   return(0);
262: }

266: /*
267:    Exact solution: 
268:      u = sin(6*pi*x)*exp(-36*pi*pi*t) + 3*sin(2*pi*x)*exp(-4*pi*pi*t)
269: */
270: PetscErrorCode Solution(PetscReal t,Vec solution,void *ctx)
271: {
272:   AppCtx *       appctx = (AppCtx*) ctx;
273:   PetscScalar    *localptr,h = appctx->h,ex1,ex2,sc1,sc2;
274:   PetscInt       i,mybase,myend;

278:   /* determine starting point of each processor */
279:   VecGetOwnershipRange(solution,&mybase,&myend);

281:   ex1 = exp(-36.*PETSC_PI*PETSC_PI*t);
282:   ex2 = exp(-4.*PETSC_PI*PETSC_PI*t);
283:   sc1 = PETSC_PI*6.*h;
284:   sc2 = PETSC_PI*2.*h;
285:   VecGetArray(solution,&localptr);
286:   for (i=mybase; i<myend; i++) {
287:     localptr[i-mybase] = PetscSinScalar(sc1*(PetscReal)i)*ex1 + 3.*PetscSinScalar(sc2*(PetscReal)i)*ex2;
288:   }
289:   VecRestoreArray(solution,&localptr);
290:   return(0);
291: }

293: /*
294:   step   - iteration number
295:   ltime  - current time
296:   global - current iterate
297:  */
300: PetscErrorCode Monitor(TS ts,PetscInt step,PetscReal ltime,Vec global,void *ctx)
301: {
302:   AppCtx         *appctx = (AppCtx*) ctx;
304:   PetscReal      norm_2,norm_max;
305:   MPI_Comm       comm;

308:   PetscObjectGetComm((PetscObject)ts,&comm);
309:   if (!appctx->nox) {
310:     VecView(global,appctx->viewer2); /* show wave graph */
311:   }
312:   Solution(ltime,appctx->solution,ctx); /* get true solution at current time */
313:   VecAXPY(appctx->solution,-1.0,global);
314:   VecNorm(appctx->solution,NORM_2,&norm_2);
315:   norm_2 = sqrt(appctx->h)*norm_2;
316:   VecNorm(appctx->solution,NORM_MAX,&norm_max);
317:   PetscPrintf(comm,"timestep %D time %G norm of error %.5f %.5f\n",step,ltime,norm_2,norm_max);

319:   appctx->norm_2   += norm_2;
320:   appctx->norm_max += norm_max;
321:   if (!appctx->nox) {
322:     VecView(appctx->solution,appctx->viewer1);
323:   }
324:   return(0);
325: }

327: /* -----------------------------------------------------------------------*/
330: PetscErrorCode RHSMatrixFree(Mat mat,Vec x,Vec y)
331: {
332:   PetscErrorCode  ierr;
333:   void            *ctx;

336:   MatShellGetContext(mat,(void **)&ctx);
337:   RHSFunctionHeat(0,0.0,x,y,ctx);
338:   return(0);
339: }

343: PetscErrorCode RHSFunctionHeat(TS ts,PetscReal t,Vec globalin,Vec globalout,void *ctx)
344: {
345:   AppCtx         *appctx = (AppCtx*) ctx;
346:   DA             da = appctx->da;
347:   Vec            local = appctx->local,localwork = appctx->localwork;
349:   PetscInt       i,localsize;
350:   PetscScalar    *copyptr,*localptr,sc;

353:   /*Extract local array */
354:   DAGlobalToLocalBegin(da,globalin,INSERT_VALUES,local);
355:   DAGlobalToLocalEnd(da,globalin,INSERT_VALUES,local);
356:   VecGetArray(local,&localptr);

358:   /* Extract work vector */
359:   VecGetArray(localwork,&copyptr);

361:   /* Update Locally - Make array of new values */
362:   /* Note: For the first and last entry I copy the value */
363:   /* if this is an interior node it is irrelevant */
364:   sc = 1.0/(appctx->h*appctx->h);
365:   VecGetLocalSize(local,&localsize);
366:   copyptr[0] = localptr[0];
367:   for (i=1; i<localsize-1; i++) {
368:     copyptr[i] = sc * (localptr[i+1] + localptr[i-1] - 2.0*localptr[i]);
369:   }
370:   copyptr[localsize-1] = localptr[localsize-1];
371:   VecRestoreArray(local,&localptr);
372:   VecRestoreArray(localwork,&copyptr);

374:   /* Local to Global */
375:   DALocalToGlobal(da,localwork,INSERT_VALUES,globalout);
376:   return(0);
377: }

379: /* ---------------------------------------------------------------------*/
382: PetscErrorCode RHSMatrixHeat(TS ts,PetscReal t,Mat *AA,Mat *BB,MatStructure *str,void *ctx)
383: {
384:   Mat            A = *AA;
385:   AppCtx         *appctx = (AppCtx*) ctx;
387:   PetscInt       i,mstart,mend,idx[3];
388:   PetscMPIInt    size,rank;
389:   PetscScalar    v[3],stwo = -2./(appctx->h*appctx->h),sone = -.5*stwo;

392:   *str = SAME_NONZERO_PATTERN;
393: 
394:   MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
395:   MPI_Comm_size(PETSC_COMM_WORLD,&size);

397:   MatGetOwnershipRange(A,&mstart,&mend);
398:   if (mstart == 0) {
399:     v[0] = 1.0;
400:     MatSetValues(A,1,&mstart,1,&mstart,v,INSERT_VALUES);
401:     mstart++;
402:   }
403:   if (mend == appctx->M) {
404:     mend--;
405:     v[0] = 1.0;
406:     MatSetValues(A,1,&mend,1,&mend,v,INSERT_VALUES);
407:   }

409:   /*
410:      Construct matrice one row at a time
411:   */
412:   v[0] = sone; v[1] = stwo; v[2] = sone;
413:   for (i=mstart; i<mend; i++) {
414:     idx[0] = i-1; idx[1] = i; idx[2] = i+1;
415:     MatSetValues(A,1,&i,3,idx,v,INSERT_VALUES);
416:   }

418:   MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
419:   MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
420:   return(0);
421: }

425: PetscErrorCode RHSJacobianHeat(TS ts,PetscReal t,Vec x,Mat *AA,Mat *BB,MatStructure *str,void *ctx)
426: {
428:   RHSMatrixHeat(ts,t,AA,BB,str,ctx);
429:   return(0);
430: }

432: /* A = indentity matrix */
435: PetscErrorCode LHSMatrixHeat(TS ts,PetscReal t,Mat *AA,Mat *BB,MatStructure *str,void *ctx)
436: {
438:   Mat            A = *AA;

441:   *str = SAME_NONZERO_PATTERN;
442:   MatZeroEntries(A);
443:   MatShift(A,1.0);
444:   return(0);
445: }