! ! Solves the time dependent Bratu problem using pseudo-timestepping ! ! Concepts: TS^pseudo-timestepping ! Concepts: pseudo-timestepping ! Concepts: nonlinear problems ! Processors: 1 ! ! This code demonstrates how one may solve a nonlinear problem ! with pseudo-timestepping. In this simple example, the pseudo-timestep ! is the same for all grid points, i.e., this is equivalent to using ! the backward Euler method with a variable timestep. ! ! Note: This example does not require pseudo-timestepping since it ! is an easy nonlinear problem, but it is included to demonstrate how ! the pseudo-timestepping may be done. ! ! See snes/examples/tutorials/ex4.c[ex4f.F] and ! snes/examples/tutorials/ex5.c[ex5f.F] where the problem is described ! and solved using the method of Newton alone. ! ! Include "petscts.h" to use the PETSc timestepping routines, ! "petsc.h" for basic PETSc operation, ! "petscmat.h" for matrix operations, ! "petscpc.h" for preconditions, and ! "petscvec.h" for vector operations. ! !23456789012345678901234567890123456789012345678901234567890123456789012 program main implicit none #include "finclude/petsc.h" #include "finclude/petscvec.h" #include "finclude/petscmat.h" #include "finclude/petscpc.h" #include "finclude/petscts.h" ! ! Create an application context to contain data needed by the ! application-provided call-back routines, FormJacobian() and ! FormFunction(). We use a double precision array with three ! entries indexed by param, lmx, lmy. ! double precision user(3) PetscInt param,lmx,lmy,i5 parameter (param = 1,lmx = 2,lmy = 3) ! ! User-defined routines ! external FormJacobian,FormFunction ! ! Data for problem ! TS ts Vec x,r Mat J PetscInt its,N,i1000 PetscTruth flg PetscErrorCode ierr double precision param_max,param_min,dt,tmax,zero double precision ftime i5 = 5 param_max = 6.81 param_min = 0 call PetscInitialize(PETSC_NULL_CHARACTER,ierr) user(lmx) = 4 user(lmy) = 4 user(param) = 6.0 ! ! Allow user to set the grid dimensions and nonlinearity parameter at run-time ! call PetscOptionsGetReal(PETSC_NULL_CHARACTER,'-mx',user(lmx), & & flg,ierr) call PetscOptionsGetInt(PETSC_NULL_CHARACTER,'-my',user(lmy), & & flg,ierr) call PetscOptionsGetReal(PETSC_NULL_CHARACTER,'-param', & & user(param),flg,ierr) if (user(param) .ge. param_max .or. & & user(param) .le. param_min) then print*,'Parameter is out of range' endif if (user(lmx) .gt. user(lmy)) then dt = .5/user(lmx) else dt = .5/user(lmy) endif call PetscOptionsGetReal(PETSC_NULL_CHARACTER,'-dt',dt,flg,ierr) N = int(user(lmx)*user(lmy)) ! ! Create vectors to hold the solution and function value ! call VecCreateSeq(PETSC_COMM_SELF,N,x,ierr) call VecDuplicate(x,r,ierr) ! ! Create matrix to hold Jacobian. Preallocate 5 nonzeros per row ! in the sparse matrix. Note that this is not the optimal strategy see ! the Performance chapter of the users manual for information on ! preallocating memory in sparse matrices. ! i5 = 5 call MatCreateSeqAIJ(PETSC_COMM_SELF,N,N,i5,PETSC_NULL_INTEGER, & & J,ierr) ! ! Create timestepper context ! call TSCreate(PETSC_COMM_WORLD,ts,ierr) call TSSetProblemType(ts,TS_NONLINEAR,ierr) ! ! Tell the timestepper context where to compute solutions ! call TSSetSolution(ts,x,ierr) ! ! Provide the call-back for the nonlinear function we are ! evaluating. Thus whenever the timestepping routines need the ! function they will call this routine. Note the final argument ! is the application context used by the call-back functions. ! call TSSetRHSFunction(ts,FormFunction,user,ierr) ! ! Set the Jacobian matrix and the function used to compute ! Jacobians. ! call TSSetRHSJacobian(ts,J,J,FormJacobian,user,ierr) ! ! For the initial guess for the problem ! call FormInitialGuess(x,user,ierr) ! ! This indicates that we are using pseudo timestepping to ! find a steady state solution to the nonlinear problem. ! call TSSetType(ts,TS_PSEUDO,ierr) ! ! Set the initial time to start at (this is arbitrary for ! steady state problems and the initial timestep given above ! zero = 0.0 call TSSetInitialTimeStep(ts,zero,dt,ierr) ! ! Set a large number of timesteps and final duration time ! to insure convergence to steady state. ! i1000 = 1000 tmax = 1.e12 call TSSetDuration(ts,i1000,tmax,ierr) ! ! Set any additional options from the options database. This ! includes all options for the nonlinear and linear solvers used ! internally the the timestepping routines. ! call TSSetFromOptions(ts,ierr) call TSSetUp(ts,ierr) ! ! Perform the solve. This is where the timestepping takes place. ! call TSStep(ts,its,ftime,ierr) write(6,100) its,ftime 100 format('Number of pseudo time-steps ',i5,' final time ',1pe8.2) ! ! Free the data structures constructed above ! call VecDestroy(x,ierr) call VecDestroy(r,ierr) call MatDestroy(J,ierr) call TSDestroy(ts,ierr) call PetscFinalize(ierr) end ! ! -------------------- Form initial approximation ----------------- ! subroutine FormInitialGuess(X,user,ierr) implicit none #include "finclude/petsc.h" #include "finclude/petscvec.h" #include "finclude/petscmat.h" #include "finclude/petscpc.h" #include "finclude/petscts.h" Vec X double precision user(3) PetscInt i,j,row,mx,my PetscErrorCode ierr PetscOffset xidx double precision one,lambda double precision temp1,temp,hx,hy PetscScalar xx(1) PetscInt param,lmx,lmy parameter (param = 1,lmx = 2,lmy = 3) one = 1.0 mx = int(user(lmx)) my = int(user(lmy)) lambda = user(param) hy = one / (my-1) hx = one / (mx-1) call VecGetArray(X,xx,xidx,ierr) temp1 = lambda/(lambda + one) do 10, j=1,my temp = dble(min(j-1,my-j))*hy do 20 i=1,mx row = i + (j-1)*mx if (i .eq. 1 .or. j .eq. 1 .or. & & i .eq. mx .or. j .eq. my) then xx(row+xidx) = 0.0 else xx(row+xidx) = & & temp1*sqrt(min(dble(min(i-1,mx-i))*hx,temp)) endif 20 continue 10 continue call VecRestoreArray(X,xx,xidx,ierr) return end ! ! -------------------- Evaluate Function F(x) --------------------- ! subroutine FormFunction(ts,t,X,F,user,ierr) implicit none #include "finclude/petsc.h" #include "finclude/petscvec.h" #include "finclude/petscmat.h" #include "finclude/petscpc.h" #include "finclude/petscts.h" TS ts double precision t Vec X,F double precision user(3) PetscErrorCode ierr PetscInt i,j,row,mx,my PetscOffset xidx,fidx double precision two,lambda double precision hx,hy,hxdhy,hydhx PetscScalar ut,ub,ul,ur,u PetscScalar uxx,uyy,sc PetscScalar xx(1),ff(1) PetscInt param,lmx,lmy parameter (param = 1,lmx = 2,lmy = 3) two = 2.0 mx = int(user(lmx)) my = int(user(lmy)) lambda = user(param) hx = 1.0 / dble(mx-1) hy = 1.0 / dble(my-1) sc = hx*hy hxdhy = hx/hy hydhx = hy/hx call VecGetArray(X,xx,xidx,ierr) call VecGetArray(F,ff,fidx,ierr) do 10 j=1,my do 20 i=1,mx row = i + (j-1)*mx if (i .eq. 1 .or. j .eq. 1 .or. & & i .eq. mx .or. j .eq. my) then ff(row+fidx) = xx(row+xidx) else u = xx(row + xidx) ub = xx(row - mx + xidx) ul = xx(row - 1 + xidx) ut = xx(row + mx + xidx) ur = xx(row + 1 + xidx) uxx = (-ur + two*u - ul)*hydhx uyy = (-ut + two*u - ub)*hxdhy ff(row+fidx) = -uxx - uyy + sc*lambda*exp(u) u = -uxx - uyy + sc*lambda*exp(u) endif 20 continue 10 continue call VecRestoreArray(X,xx,xidx,ierr) call VecRestoreArray(F,ff,fidx,ierr) return end ! ! -------------------- Evaluate Jacobian of F(x) -------------------- ! subroutine FormJacobian(ts,ctime,X,JJ,B,flag,user,ierr) implicit none #include "finclude/petsc.h" #include "finclude/petscvec.h" #include "finclude/petscmat.h" #include "finclude/petscpc.h" #include "finclude/petscts.h" TS ts Vec X Mat JJ,B MatStructure flag double precision user(3),ctime PetscErrorCode ierr Mat jac PetscOffset xidx PetscInt i,j,row(1),mx,my PetscInt col(5),i1,i5 PetscScalar two,one,lambda PetscScalar v(5),sc,xx(1) double precision hx,hy,hxdhy,hydhx PetscInt param,lmx,lmy parameter (param = 1,lmx = 2,lmy = 3) i1 = 1 i5 = 5 jac = B two = 2.0 one = 1.0 mx = int(user(lmx)) my = int(user(lmy)) lambda = user(param) hx = 1.0 / dble(mx-1) hy = 1.0 / dble(my-1) sc = hx*hy hxdhy = hx/hy hydhx = hy/hx call VecGetArray(X,xx,xidx,ierr) do 10 j=1,my do 20 i=1,mx ! ! When inserting into PETSc matrices, indices start at 0 ! row(1) = i - 1 + (j-1)*mx if (i .eq. 1 .or. j .eq. 1 .or. & & i .eq. mx .or. j .eq. my) then call MatSetValues(jac,i1,row,i1,row,one,INSERT_VALUES,ierr) else v(1) = hxdhy col(1) = row(1) - mx v(2) = hydhx col(2) = row(1) - 1 v(3) = -two*(hydhx+hxdhy)+sc*lambda*exp(xx(row(1)+1+xidx)) col(3) = row(1) v(4) = hydhx col(4) = row(1) + 1 v(5) = hxdhy col(5) = row(1) + mx call MatSetValues(jac,i1,row,i5,col,v,INSERT_VALUES,ierr) endif 20 continue 10 continue call MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY,ierr) call MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY,ierr) call VecRestoreArray(X,xx,xidx,ierr) flag = SAME_NONZERO_PATTERN return end