Actual source code: ex4.c

  2: /* Program usage:  mpirun -np <procs> ex4 [-help] [all PETSc options] */

  4: static char help[] ="Solves a simple time-dependent linear PDE (the heat equation).\n\
  5: Input parameters include:\n\
  6:   -m <points>, where <points> = number of grid points\n\
  7:   -time_dependent_rhs : Treat the problem as having a time-dependent right-hand side\n\
  8:   -debug              : Activate debugging printouts\n\
  9:   -nox                : Deactivate x-window graphics\n\n";

 11: /*
 12:    Concepts: TS^time-dependent linear problems
 13:    Concepts: TS^heat equation
 14:    Concepts: TS^diffusion equation
 15:    Processors: n
 16: */

 18: /* ------------------------------------------------------------------------

 20:    This program solves the one-dimensional heat equation (also called the
 21:    diffusion equation),
 22:        u_t = u_xx, 
 23:    on the domain 0 <= x <= 1, with the boundary conditions
 24:        u(t,0) = 0, u(t,1) = 0,
 25:    and the initial condition
 26:        u(0,x) = sin(6*pi*x) + 3*sin(2*pi*x).
 27:    This is a linear, second-order, parabolic equation.

 29:    We discretize the right-hand side using finite differences with
 30:    uniform grid spacing h:
 31:        u_xx = (u_{i+1} - 2u_{i} + u_{i-1})/(h^2)
 32:    We then demonstrate time evolution using the various TS methods by
 33:    running the program via
 34:        mpirun -np <procs> ex3 -ts_type <timestepping solver>

 36:    We compare the approximate solution with the exact solution, given by
 37:        u_exact(x,t) = exp(-36*pi*pi*t) * sin(6*pi*x) +
 38:                       3*exp(-4*pi*pi*t) * sin(2*pi*x)

 40:    Notes:
 41:    This code demonstrates the TS solver interface to two variants of 
 42:    linear problems, u_t = f(u,t), namely
 43:      - time-dependent f:   f(u,t) is a function of t
 44:      - time-independent f: f(u,t) is simply f(u)

 46:     The uniprocessor version of this code is ts/examples/tutorials/ex3.c

 48:   ------------------------------------------------------------------------- */

 50: /* 
 51:    Include "petscda.h" so that we can use distributed arrays (DAs) to manage
 52:    the parallel grid.  Include "petscts.h" so that we can use TS solvers.  
 53:    Note that this file automatically includes:
 54:      petsc.h       - base PETSc routines   petscvec.h  - vectors
 55:      petscsys.h    - system routines       petscmat.h  - matrices
 56:      petscis.h     - index sets            petscksp.h  - Krylov subspace methods
 57:      petscviewer.h - viewers               petscpc.h   - preconditioners
 58:      petscksp.h   - linear solvers        petscsnes.h - nonlinear solvers
 59: */

 61:  #include petscda.h
 62:  #include petscts.h

 64: /* 
 65:    User-defined application context - contains data needed by the 
 66:    application-provided call-back routines.
 67: */
 68: typedef struct {
 69:   MPI_Comm    comm;              /* communicator */
 70:   DA          da;                /* distributed array data structure */
 71:   Vec         localwork;         /* local ghosted work vector */
 72:   Vec         u_local;           /* local ghosted approximate solution vector */
 73:   Vec         solution;          /* global exact solution vector */
 74:   PetscInt    m;                 /* total number of grid points */
 75:   PetscReal   h;                 /* mesh width h = 1/(m-1) */
 76:   PetscTruth  debug;             /* flag (1 indicates activation of debugging printouts) */
 77:   PetscViewer viewer1,viewer2;  /* viewers for the solution and error */
 78:   PetscReal   norm_2,norm_max;  /* error norms */
 79: } AppCtx;

 81: /* 
 82:    User-defined routines
 83: */

 91: int main(int argc,char **argv)
 92: {
 93:   AppCtx         appctx;                 /* user-defined application context */
 94:   TS             ts;                     /* timestepping context */
 95:   Mat            A;                      /* matrix data structure */
 96:   Vec            u;                      /* approximate solution vector */
 97:   PetscReal      time_total_max = 100.0; /* default max total time */
 98:   PetscInt       time_steps_max = 100;   /* default max timesteps */
 99:   PetscDraw      draw;                   /* drawing context */
101:   PetscInt       steps,m;
102:   PetscMPIInt    size;
103:   PetscReal      dt,ftime;
104:   PetscTruth     flg;

106:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
107:      Initialize program and set problem parameters
108:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
109: 
110:   PetscInitialize(&argc,&argv,(char*)0,help);
111:   appctx.comm = PETSC_COMM_WORLD;

113:   m    = 60;
114:   PetscOptionsGetInt(PETSC_NULL,"-m",&m,PETSC_NULL);
115:   PetscOptionsHasName(PETSC_NULL,"-debug",&appctx.debug);
116:   appctx.m        = m;
117:   appctx.h        = 1.0/(m-1.0);
118:   appctx.norm_2   = 0.0;
119:   appctx.norm_max = 0.0;
120:   MPI_Comm_size(PETSC_COMM_WORLD,&size);
121:   PetscPrintf(PETSC_COMM_WORLD,"Solving a linear TS problem, number of processors = %d\n",size);

123:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
124:      Create vector data structures
125:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
126:   /*
127:      Create distributed array (DA) to manage parallel grid and vectors
128:      and to set up the ghost point communication pattern.  There are M 
129:      total grid values spread equally among all the processors.
130:   */

132:   DACreate1d(PETSC_COMM_WORLD,DA_NONPERIODIC,m,1,1,PETSC_NULL,&appctx.da);

134:   /*
135:      Extract global and local vectors from DA; we use these to store the
136:      approximate solution.  Then duplicate these for remaining vectors that
137:      have the same types.
138:   */
139:   DACreateGlobalVector(appctx.da,&u);
140:   DACreateLocalVector(appctx.da,&appctx.u_local);

142:   /* 
143:      Create local work vector for use in evaluating right-hand-side function;
144:      create global work vector for storing exact solution.
145:   */
146:   VecDuplicate(appctx.u_local,&appctx.localwork);
147:   VecDuplicate(u,&appctx.solution);

149:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
150:      Set up displays to show graphs of the solution and error 
151:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

153:   PetscViewerDrawOpen(PETSC_COMM_WORLD,0,"",80,380,400,160,&appctx.viewer1);
154:   PetscViewerDrawGetDraw(appctx.viewer1,0,&draw);
155:   PetscDrawSetDoubleBuffer(draw);
156:   PetscViewerDrawOpen(PETSC_COMM_WORLD,0,"",80,0,400,160,&appctx.viewer2);
157:   PetscViewerDrawGetDraw(appctx.viewer2,0,&draw);
158:   PetscDrawSetDoubleBuffer(draw);

160:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
161:      Create timestepping solver context
162:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

164:   TSCreate(PETSC_COMM_WORLD,&ts);
165:   TSSetProblemType(ts,TS_LINEAR);

167:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
168:      Set optional user-defined monitoring routine
169:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

171:   TSMonitorSet(ts,Monitor,&appctx,PETSC_NULL);

173:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

175:      Create matrix data structure; set matrix evaluation routine.
176:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

178:   MatCreate(PETSC_COMM_WORLD,&A);
179:   MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,m,m);
180:   MatSetFromOptions(A);

182:   PetscOptionsHasName(PETSC_NULL,"-time_dependent_rhs",&flg);
183:   if (flg) {
184:     /*
185:        For linear problems with a time-dependent f(u,t) in the equation 
186:        u_t = f(u,t), the user provides the discretized right-hand-side
187:        as a time-dependent matrix.
188:     */
189:     TSSetRHSMatrix(ts,A,A,RHSMatrixHeat,&appctx);
190:   } else {
191:     /*
192:        For linear problems with a time-independent f(u) in the equation 
193:        u_t = f(u), the user provides the discretized right-hand-side
194:        as a matrix only once, and then sets a null matrix evaluation
195:        routine.
196:     */
197:     MatStructure A_structure;
198:     RHSMatrixHeat(ts,0.0,&A,&A,&A_structure,&appctx);
199:     TSSetRHSMatrix(ts,A,A,PETSC_NULL,&appctx);
200:   }

202:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
203:      Set solution vector and initial timestep
204:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

206:   dt = appctx.h*appctx.h/2.0;
207:   TSSetInitialTimeStep(ts,0.0,dt);
208:   TSSetSolution(ts,u);

210:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
211:      Customize timestepping solver:  
212:        - Set the solution method to be the Backward Euler method.
213:        - Set timestepping duration info 
214:      Then set runtime options, which can override these defaults.
215:      For example,
216:           -ts_max_steps <maxsteps> -ts_max_time <maxtime>
217:      to override the defaults set by TSSetDuration().
218:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

220:   TSSetDuration(ts,time_steps_max,time_total_max);
221:   TSSetFromOptions(ts);

223:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
224:      Solve the problem
225:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

227:   /*
228:      Evaluate initial conditions
229:   */
230:   InitialConditions(u,&appctx);

232:   /*
233:      Run the timestepping solver
234:   */
235:   TSStep(ts,&steps,&ftime);

237:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
238:      View timestepping solver info
239:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

241:   PetscPrintf(PETSC_COMM_WORLD,"avg. error (2 norm) = %G, avg. error (max norm) = %G\n",
242:               appctx.norm_2/steps,appctx.norm_max/steps);
243:   TSView(ts,PETSC_VIEWER_STDOUT_WORLD);

245:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
246:      Free work space.  All PETSc objects should be destroyed when they
247:      are no longer needed.
248:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

250:   TSDestroy(ts);
251:   MatDestroy(A);
252:   VecDestroy(u);
253:   PetscViewerDestroy(appctx.viewer1);
254:   PetscViewerDestroy(appctx.viewer2);
255:   VecDestroy(appctx.localwork);
256:   VecDestroy(appctx.solution);
257:   VecDestroy(appctx.u_local);
258:   DADestroy(appctx.da);

260:   /*
261:      Always call PetscFinalize() before exiting a program.  This routine
262:        - finalizes the PETSc libraries as well as MPI
263:        - provides summary and diagnostic information if certain runtime
264:          options are chosen (e.g., -log_summary). 
265:   */
266:   PetscFinalize();
267:   return 0;
268: }
269: /* --------------------------------------------------------------------- */
272: /*
273:    InitialConditions - Computes the solution at the initial time. 

275:    Input Parameter:
276:    u - uninitialized solution vector (global)
277:    appctx - user-defined application context

279:    Output Parameter:
280:    u - vector with solution at initial time (global)
281: */
282: PetscErrorCode InitialConditions(Vec u,AppCtx *appctx)
283: {
284:   PetscScalar    *u_localptr,h = appctx->h;
285:   PetscInt       i,mybase,myend;

288:   /* 
289:      Determine starting point of each processor's range of
290:      grid values.
291:   */
292:   VecGetOwnershipRange(u,&mybase,&myend);

294:   /* 
295:     Get a pointer to vector data.
296:     - For default PETSc vectors, VecGetArray() returns a pointer to
297:       the data array.  Otherwise, the routine is implementation dependent.
298:     - You MUST call VecRestoreArray() when you no longer need access to
299:       the array.
300:     - Note that the Fortran interface to VecGetArray() differs from the
301:       C version.  See the users manual for details.
302:   */
303:   VecGetArray(u,&u_localptr);

305:   /* 
306:      We initialize the solution array by simply writing the solution
307:      directly into the array locations.  Alternatively, we could use
308:      VecSetValues() or VecSetValuesLocal().
309:   */
310:   for (i=mybase; i<myend; i++) {
311:     u_localptr[i-mybase] = PetscSinScalar(PETSC_PI*i*6.*h) + 3.*PetscSinScalar(PETSC_PI*i*2.*h);
312:   }

314:   /* 
315:      Restore vector
316:   */
317:   VecRestoreArray(u,&u_localptr);

319:   /* 
320:      Print debugging information if desired
321:   */
322:   if (appctx->debug) {
323:      PetscPrintf(appctx->comm,"initial guess vector\n");
324:      VecView(u,PETSC_VIEWER_STDOUT_WORLD);
325:   }

327:   return 0;
328: }
329: /* --------------------------------------------------------------------- */
332: /*
333:    ExactSolution - Computes the exact solution at a given time.

335:    Input Parameters:
336:    t - current time
337:    solution - vector in which exact solution will be computed
338:    appctx - user-defined application context

340:    Output Parameter:
341:    solution - vector with the newly computed exact solution
342: */
343: PetscErrorCode ExactSolution(PetscReal t,Vec solution,AppCtx *appctx)
344: {
345:   PetscScalar    *s_localptr,h = appctx->h,ex1,ex2,sc1,sc2;
346:   PetscInt       i,mybase,myend;

349:   /* 
350:      Determine starting and ending points of each processor's 
351:      range of grid values
352:   */
353:   VecGetOwnershipRange(solution,&mybase,&myend);

355:   /*
356:      Get a pointer to vector data.
357:   */
358:   VecGetArray(solution,&s_localptr);

360:   /* 
361:      Simply write the solution directly into the array locations.
362:      Alternatively, we culd use VecSetValues() or VecSetValuesLocal().
363:   */
364:   ex1 = exp(-36.*PETSC_PI*PETSC_PI*t); ex2 = exp(-4.*PETSC_PI*PETSC_PI*t);
365:   sc1 = PETSC_PI*6.*h;                 sc2 = PETSC_PI*2.*h;
366:   for (i=mybase; i<myend; i++) {
367:     s_localptr[i-mybase] = PetscSinScalar(sc1*(PetscReal)i)*ex1 + 3.*PetscSinScalar(sc2*(PetscReal)i)*ex2;
368:   }

370:   /* 
371:      Restore vector
372:   */
373:   VecRestoreArray(solution,&s_localptr);
374:   return 0;
375: }
376: /* --------------------------------------------------------------------- */
379: /*
380:    Monitor - User-provided routine to monitor the solution computed at 
381:    each timestep.  This example plots the solution and computes the
382:    error in two different norms.

384:    Input Parameters:
385:    ts     - the timestep context
386:    step   - the count of the current step (with 0 meaning the
387:              initial condition)
388:    time   - the current time
389:    u      - the solution at this timestep
390:    ctx    - the user-provided context for this monitoring routine.
391:             In this case we use the application context which contains 
392:             information about the problem size, workspace and the exact 
393:             solution.
394: */
395: PetscErrorCode Monitor(TS ts,PetscInt step,PetscReal time,Vec u,void *ctx)
396: {
397:   AppCtx         *appctx = (AppCtx*) ctx;   /* user-defined application context */
399:   PetscReal      norm_2,norm_max;

401:   /* 
402:      View a graph of the current iterate
403:   */
404:   VecView(u,appctx->viewer2);

406:   /* 
407:      Compute the exact solution
408:   */
409:   ExactSolution(time,appctx->solution,appctx);

411:   /*
412:      Print debugging information if desired
413:   */
414:   if (appctx->debug) {
415:      PetscPrintf(appctx->comm,"Computed solution vector\n");
416:      VecView(u,PETSC_VIEWER_STDOUT_WORLD);
417:      PetscPrintf(appctx->comm,"Exact solution vector\n");
418:      VecView(appctx->solution,PETSC_VIEWER_STDOUT_WORLD);
419:   }

421:   /*
422:      Compute the 2-norm and max-norm of the error
423:   */
424:   VecAXPY(appctx->solution,-1.0,u);
425:   VecNorm(appctx->solution,NORM_2,&norm_2);
426:   norm_2 = sqrt(appctx->h)*norm_2;
427:   VecNorm(appctx->solution,NORM_MAX,&norm_max);

429:   /*
430:      PetscPrintf() causes only the first processor in this 
431:      communicator to print the timestep information.
432:   */
433:   PetscPrintf(appctx->comm,"Timestep %D: time = %G, 2-norm error = %G, max norm error = %G\n",
434:               step,time,norm_2,norm_max);
435:   appctx->norm_2   += norm_2;
436:   appctx->norm_max += norm_max;

438:   /* 
439:      View a graph of the error
440:   */
441:   VecView(appctx->solution,appctx->viewer1);

443:   /*
444:      Print debugging information if desired
445:   */
446:   if (appctx->debug) {
447:      PetscPrintf(appctx->comm,"Error vector\n");
448:      VecView(appctx->solution,PETSC_VIEWER_STDOUT_WORLD);
449:   }

451:   return 0;
452: }
453: /* --------------------------------------------------------------------- */
456: /*
457:    RHSMatrixHeat - User-provided routine to compute the right-hand-side
458:    matrix for the heat equation.

460:    Input Parameters:
461:    ts - the TS context
462:    t - current time
463:    global_in - global input vector
464:    dummy - optional user-defined context, as set by TSetRHSJacobian()

466:    Output Parameters:
467:    AA - Jacobian matrix
468:    BB - optionally different preconditioning matrix
469:    str - flag indicating matrix structure

471:   Notes:
472:   RHSMatrixHeat computes entries for the locally owned part of the system.
473:    - Currently, all PETSc parallel matrix formats are partitioned by
474:      contiguous chunks of rows across the processors. 
475:    - Each processor needs to insert only elements that it owns
476:      locally (but any non-local elements will be sent to the
477:      appropriate processor during matrix assembly). 
478:    - Always specify global row and columns of matrix entries when
479:      using MatSetValues(); we could alternatively use MatSetValuesLocal().
480:    - Here, we set all entries for a particular row at once.
481:    - Note that MatSetValues() uses 0-based row and column numbers
482:      in Fortran as well as in C.
483: */
484: PetscErrorCode RHSMatrixHeat(TS ts,PetscReal t,Mat *AA,Mat *BB,MatStructure *str,void *ctx)
485: {
486:   Mat            A = *AA;                      /* Jacobian matrix */
487:   AppCtx         *appctx = (AppCtx*)ctx;     /* user-defined application context */
489:   PetscInt       i,mstart,mend,idx[3];
490:   PetscScalar    v[3],stwo = -2./(appctx->h*appctx->h),sone = -.5*stwo;

492:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
493:      Compute entries for the locally owned part of the matrix
494:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

496:   MatGetOwnershipRange(A,&mstart,&mend);

498:   /* 
499:      Set matrix rows corresponding to boundary data
500:   */

502:   if (mstart == 0) {  /* first processor only */
503:     v[0] = 1.0;
504:     MatSetValues(A,1,&mstart,1,&mstart,v,INSERT_VALUES);
505:     mstart++;
506:   }

508:   if (mend == appctx->m) { /* last processor only */
509:     mend--;
510:     v[0] = 1.0;
511:     MatSetValues(A,1,&mend,1,&mend,v,INSERT_VALUES);
512:   }

514:   /*
515:      Set matrix rows corresponding to interior data.  We construct the 
516:      matrix one row at a time.
517:   */
518:   v[0] = sone; v[1] = stwo; v[2] = sone;
519:   for (i=mstart; i<mend; i++) {
520:     idx[0] = i-1; idx[1] = i; idx[2] = i+1;
521:     MatSetValues(A,1,&i,3,idx,v,INSERT_VALUES);
522:   }

524:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
525:      Complete the matrix assembly process and set some options
526:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
527:   /*
528:      Assemble matrix, using the 2-step process:
529:        MatAssemblyBegin(), MatAssemblyEnd()
530:      Computations can be done while messages are in transition
531:      by placing code between these two statements.
532:   */
533:   MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
534:   MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

536:   /*
537:      Set flag to indicate that the Jacobian matrix retains an identical
538:      nonzero structure throughout all timestepping iterations (although the
539:      values of the entries change). Thus, we can save some work in setting
540:      up the preconditioner (e.g., no need to redo symbolic factorization for
541:      ILU/ICC preconditioners).
542:       - If the nonzero structure of the matrix is different during
543:         successive linear solves, then the flag DIFFERENT_NONZERO_PATTERN
544:         must be used instead.  If you are unsure whether the matrix
545:         structure has changed or not, use the flag DIFFERENT_NONZERO_PATTERN.
546:       - Caution:  If you specify SAME_NONZERO_PATTERN, PETSc
547:         believes your assertion and does not check the structure
548:         of the matrix.  If you erroneously claim that the structure
549:         is the same when it actually is not, the new preconditioner
550:         will not function correctly.  Thus, use this optimization
551:         feature with caution!
552:   */
553:   *str = SAME_NONZERO_PATTERN;

555:   /*
556:      Set and option to indicate that we will never add a new nonzero location 
557:      to the matrix. If we do, it will generate an error.
558:   */
559:   MatSetOption(A,MAT_NEW_NONZERO_LOCATION_ERR);

561:   return 0;
562: }