#define PETSCTS_DLL /* * Code for Timestepping with Runge Kutta * * Written by * Asbjorn Hoiland Aarrestad * asbjorn@aarrestad.com * http://asbjorn.aarrestad.com/ * */ #include "include/private/tsimpl.h" /*I "petscts.h" I*/ #include "time.h" typedef struct { Vec y1,y2; /* work wectors for the two rk permuations */ PetscInt nok,nnok; /* counters for ok and not ok steps */ PetscReal maxerror; /* variable to tell the maxerror allowed */ PetscReal ferror; /* variable to tell (global maxerror)/(total time) */ PetscReal tolerance; /* initial value set for maxerror by user */ Vec tmp,tmp_y,*k; /* two temp vectors and the k vectors for rk */ PetscScalar a[7][6]; /* rk scalars */ PetscScalar b1[7],b2[7]; /* rk scalars */ PetscReal c[7]; /* rk scalars */ PetscInt p,s; /* variables to tell the size of the runge-kutta solver */ } TS_Rk; EXTERN_C_BEGIN #undef __FUNCT__ #define __FUNCT__ "TSRKSetTolerance_RK" PetscErrorCode PETSCTS_DLLEXPORT TSRKSetTolerance_RK(TS ts,PetscReal aabs) { TS_Rk *rk = (TS_Rk*)ts->data; PetscFunctionBegin; rk->tolerance = aabs; PetscFunctionReturn(0); } EXTERN_C_END #undef __FUNCT__ #define __FUNCT__ "TSRKSetTolerance" /*@ TSRKSetTolerance - Sets the total error the RK explicit time integrators will allow over the given time interval. Collective on TS Input parameters: + ts - the time-step context - aabs - the absolute tolerance Level: intermediate .keywords: RK, tolerance .seealso: TSSundialsSetTolerance() @*/ PetscErrorCode PETSCTS_DLLEXPORT TSRKSetTolerance(TS ts,PetscReal aabs) { PetscErrorCode ierr,(*f)(TS,PetscReal); PetscFunctionBegin; ierr = PetscObjectQueryFunction((PetscObject)ts,"TSRKSetTolerance_C",(void (**)(void))&f);CHKERRQ(ierr); if (f) { ierr = (*f)(ts,aabs);CHKERRQ(ierr); } PetscFunctionReturn(0); } #undef __FUNCT__ #define __FUNCT__ "TSSetUp_Rk" static PetscErrorCode TSSetUp_Rk(TS ts) { TS_Rk *rk = (TS_Rk*)ts->data; PetscErrorCode ierr; PetscFunctionBegin; rk->nok = 0; rk->nnok = 0; rk->maxerror = rk->tolerance; /* fixing maxerror: global vs local */ rk->ferror = rk->maxerror / (ts->max_time - ts->ptime); /* 34.0/45.0 gives double precision division */ /* defining variables needed for Runge-Kutta computing */ /* when changing below, please remember to change a, b1, b2 and c above! */ /* Found in table on page 171: Dormand-Prince 5(4) */ /* are these right? */ rk->p=6; rk->s=7; rk->a[1][0]=1.0/5.0; rk->a[2][0]=3.0/40.0; rk->a[2][1]=9.0/40.0; rk->a[3][0]=44.0/45.0; rk->a[3][1]=-56.0/15.0; rk->a[3][2]=32.0/9.0; rk->a[4][0]=19372.0/6561.0; rk->a[4][1]=-25360.0/2187.0; rk->a[4][2]=64448.0/6561.0; rk->a[4][3]=-212.0/729.0; rk->a[5][0]=9017.0/3168.0; rk->a[5][1]=-355.0/33.0; rk->a[5][2]=46732.0/5247.0; rk->a[5][3]=49.0/176.0; rk->a[5][4]=-5103.0/18656.0; rk->a[6][0]=35.0/384.0; rk->a[6][1]=0.0; rk->a[6][2]=500.0/1113.0; rk->a[6][3]=125.0/192.0; rk->a[6][4]=-2187.0/6784.0; rk->a[6][5]=11.0/84.0; rk->c[0]=0.0; rk->c[1]=1.0/5.0; rk->c[2]=3.0/10.0; rk->c[3]=4.0/5.0; rk->c[4]=8.0/9.0; rk->c[5]=1.0; rk->c[6]=1.0; rk->b1[0]=35.0/384.0; rk->b1[1]=0.0; rk->b1[2]=500.0/1113.0; rk->b1[3]=125.0/192.0; rk->b1[4]=-2187.0/6784.0; rk->b1[5]=11.0/84.0; rk->b1[6]=0.0; rk->b2[0]=5179.0/57600.0; rk->b2[1]=0.0; rk->b2[2]=7571.0/16695.0; rk->b2[3]=393.0/640.0; rk->b2[4]=-92097.0/339200.0; rk->b2[5]=187.0/2100.0; rk->b2[6]=1.0/40.0; /* Found in table on page 170: Fehlberg 4(5) */ /* rk->p=5; rk->s=6; rk->a[1][0]=1.0/4.0; rk->a[2][0]=3.0/32.0; rk->a[2][1]=9.0/32.0; rk->a[3][0]=1932.0/2197.0; rk->a[3][1]=-7200.0/2197.0; rk->a[3][2]=7296.0/2197.0; rk->a[4][0]=439.0/216.0; rk->a[4][1]=-8.0; rk->a[4][2]=3680.0/513.0; rk->a[4][3]=-845.0/4104.0; rk->a[5][0]=-8.0/27.0; rk->a[5][1]=2.0; rk->a[5][2]=-3544.0/2565.0; rk->a[5][3]=1859.0/4104.0; rk->a[5][4]=-11.0/40.0; rk->c[0]=0.0; rk->c[1]=1.0/4.0; rk->c[2]=3.0/8.0; rk->c[3]=12.0/13.0; rk->c[4]=1.0; rk->c[5]=1.0/2.0; rk->b1[0]=25.0/216.0; rk->b1[1]=0.0; rk->b1[2]=1408.0/2565.0; rk->b1[3]=2197.0/4104.0; rk->b1[4]=-1.0/5.0; rk->b1[5]=0.0; rk->b2[0]=16.0/135.0; rk->b2[1]=0.0; rk->b2[2]=6656.0/12825.0; rk->b2[3]=28561.0/56430.0; rk->b2[4]=-9.0/50.0; rk->b2[5]=2.0/55.0; */ /* Found in table on page 169: Merson 4("5") */ /* rk->p=4; rk->s=5; rk->a[1][0] = 1.0/3.0; rk->a[2][0] = 1.0/6.0; rk->a[2][1] = 1.0/6.0; rk->a[3][0] = 1.0/8.0; rk->a[3][1] = 0.0; rk->a[3][2] = 3.0/8.0; rk->a[4][0] = 1.0/2.0; rk->a[4][1] = 0.0; rk->a[4][2] = -3.0/2.0; rk->a[4][3] = 2.0; rk->c[0] = 0.0; rk->c[1] = 1.0/3.0; rk->c[2] = 1.0/3.0; rk->c[3] = 0.5; rk->c[4] = 1.0; rk->b1[0] = 1.0/2.0; rk->b1[1] = 0.0; rk->b1[2] = -3.0/2.0; rk->b1[3] = 2.0; rk->b1[4] = 0.0; rk->b2[0] = 1.0/6.0; rk->b2[1] = 0.0; rk->b2[2] = 0.0; rk->b2[3] = 2.0/3.0; rk->b2[4] = 1.0/6.0; */ /* making b2 -> e=b1-b2 */ /* for(i=0;is;i++){ rk->b2[i] = (rk->b1[i]) - (rk->b2[i]); } */ rk->b2[0]=71.0/57600.0; rk->b2[1]=0.0; rk->b2[2]=-71.0/16695.0; rk->b2[3]=71.0/1920.0; rk->b2[4]=-17253.0/339200.0; rk->b2[5]=22.0/525.0; rk->b2[6]=-1.0/40.0; /* initializing vectors */ ierr = VecDuplicate(ts->vec_sol,&rk->y1);CHKERRQ(ierr); ierr = VecDuplicate(ts->vec_sol,&rk->y2);CHKERRQ(ierr); ierr = VecDuplicate(rk->y1,&rk->tmp);CHKERRQ(ierr); ierr = VecDuplicate(rk->y1,&rk->tmp_y);CHKERRQ(ierr); ierr = VecDuplicateVecs(rk->y1,rk->s,&rk->k);CHKERRQ(ierr); PetscFunctionReturn(0); } /*------------------------------------------------------------*/ #undef __FUNCT__ #define __FUNCT__ "TSRkqs" PetscErrorCode TSRkqs(TS ts,PetscReal t,PetscReal h) { TS_Rk *rk = (TS_Rk*)ts->data; PetscErrorCode ierr; PetscInt j,l; PetscReal tmp_t=t; PetscScalar hh=h; PetscFunctionBegin; /* k[0]=0 */ ierr = VecSet(rk->k[0],0.0);CHKERRQ(ierr); /* k[0] = derivs(t,y1) */ ierr = TSComputeRHSFunction(ts,t,rk->y1,rk->k[0]);CHKERRQ(ierr); /* looping over runge-kutta variables */ /* building the k - array of vectors */ for(j = 1 ; j < rk->s ; j++){ /* rk->tmp = 0 */ ierr = VecSet(rk->tmp,0.0);CHKERRQ(ierr); for(l=0;ltmp,rk->a[j][l],rk->k[l]);CHKERRQ(ierr); } /* ierr = VecView(rk->tmp,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); */ /* k[j] = derivs(t+c(j)*h,y1+h*tmp,k(j)) */ /* I need the following helpers: PetscScalar tmp_t=t+c(j)*h Vec tmp_y=h*tmp+y1 */ tmp_t = t + rk->c[j] * h; /* tmp_y = h * tmp + y1 */ ierr = VecWAXPY(rk->tmp_y,hh,rk->tmp,rk->y1);CHKERRQ(ierr); /* rk->k[j]=0 */ ierr = VecSet(rk->k[j],0.0);CHKERRQ(ierr); ierr = TSComputeRHSFunction(ts,tmp_t,rk->tmp_y,rk->k[j]);CHKERRQ(ierr); } /* tmp=0 and tmp_y=0 */ ierr = VecSet(rk->tmp,0.0);CHKERRQ(ierr); ierr = VecSet(rk->tmp_y,0.0);CHKERRQ(ierr); for(j = 0 ; j < rk->s ; j++){ /* tmp=b1[j]*k[j]+tmp */ ierr = VecAXPY(rk->tmp,rk->b1[j],rk->k[j]);CHKERRQ(ierr); /* tmp_y=b2[j]*k[j]+tmp_y */ ierr = VecAXPY(rk->tmp_y,rk->b2[j],rk->k[j]);CHKERRQ(ierr); } /* y2 = hh * tmp_y */ ierr = VecSet(rk->y2,0.0);CHKERRQ(ierr); ierr = VecAXPY(rk->y2,hh,rk->tmp_y);CHKERRQ(ierr); /* y1 = hh*tmp + y1 */ ierr = VecAXPY(rk->y1,hh,rk->tmp);CHKERRQ(ierr); /* Finding difference between y1 and y2 */ PetscFunctionReturn(0); } #undef __FUNCT__ #define __FUNCT__ "TSStep_Rk" static PetscErrorCode TSStep_Rk(TS ts,PetscInt *steps,PetscReal *ptime) { TS_Rk *rk = (TS_Rk*)ts->data; PetscErrorCode ierr; PetscReal norm=0.0,dt_fac=0.0,fac = 0.0/*,ttmp=0.0*/; PetscFunctionBegin; ierr=VecCopy(ts->vec_sol,rk->y1);CHKERRQ(ierr); *steps = -ts->steps; /* trying to save the vector */ ierr = TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);CHKERRQ(ierr); /* while loop to get from start to stop */ while (ts->ptime < ts->max_time){ /* calling rkqs */ /* -- input ts - pointer to ts ts->ptime - current time ts->time_step - try this timestep y1 - solution for this step --output y1 - suggested solution y2 - check solution (runge - kutta second permutation) */ ierr = TSRkqs(ts,ts->ptime,ts->time_step);CHKERRQ(ierr); /* checking for maxerror */ /* comparing difference to maxerror */ ierr = VecNorm(rk->y2,NORM_2,&norm);CHKERRQ(ierr); /* modifying maxerror to satisfy this timestep */ rk->maxerror = rk->ferror * ts->time_step; /* ierr = PetscPrintf(PETSC_COMM_WORLD,"norm err: %f maxerror: %f dt: %f",norm,rk->maxerror,ts->time_step);CHKERRQ(ierr); */ /* handling ok and not ok */ if (norm < rk->maxerror){ /* if ok: */ ierr=VecCopy(rk->y1,ts->vec_sol);CHKERRQ(ierr); /* saves the suggested solution to current solution */ ts->ptime += ts->time_step; /* storing the new current time */ rk->nok++; fac=5.0; /* trying to save the vector */ /* calling monitor */ ierr = TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);CHKERRQ(ierr); } else{ /* if not OK */ rk->nnok++; fac=1.0; ierr=VecCopy(ts->vec_sol,rk->y1);CHKERRQ(ierr); /* restores old solution */ } /*Computing next stepsize. See page 167 in Solving ODE 1 * * h_new = h * min( facmax , max( facmin , fac * (tol/err)^(1/(p+1)) ) ) * facmax set above * facmin */ dt_fac = exp(log((rk->maxerror) / norm) / ((rk->p) + 1) ) * 0.9 ; if (dt_fac > fac){ /*ierr = PetscPrintf(PETSC_COMM_WORLD,"changing fac %f\n",fac);*/ dt_fac = fac; } /* computing new ts->time_step */ ts->time_step = ts->time_step * dt_fac; if (ts->ptime+ts->time_step > ts->max_time){ ts->time_step = ts->max_time - ts->ptime; } if (ts->time_step < 1e-14){ ierr = PetscPrintf(PETSC_COMM_WORLD,"Very small steps: %f\n",ts->time_step);CHKERRQ(ierr); ts->time_step = 1e-14; } /* trying to purify h */ /* (did not give any visible result) */ /* ttmp = ts->ptime + ts->time_step; ts->time_step = ttmp - ts->ptime; */ /* counting steps */ ts->steps++; } ierr=VecCopy(rk->y1,ts->vec_sol);CHKERRQ(ierr); *steps += ts->steps; *ptime = ts->ptime; PetscFunctionReturn(0); } /*------------------------------------------------------------*/ #undef __FUNCT__ #define __FUNCT__ "TSDestroy_Rk" static PetscErrorCode TSDestroy_Rk(TS ts) { TS_Rk *rk = (TS_Rk*)ts->data; PetscErrorCode ierr; PetscInt i; /* REMEMBER TO DESTROY ALL */ PetscFunctionBegin; if (rk->y1) {ierr = VecDestroy(rk->y1);CHKERRQ(ierr);} if (rk->y2) {ierr = VecDestroy(rk->y2);CHKERRQ(ierr);} if (rk->tmp) {ierr = VecDestroy(rk->tmp);CHKERRQ(ierr);} if (rk->tmp_y) {ierr = VecDestroy(rk->tmp_y);CHKERRQ(ierr);} for(i=0;is;i++){ if (rk->k[i]) {ierr = VecDestroy(rk->k[i]);CHKERRQ(ierr);} } ierr = PetscFree(rk);CHKERRQ(ierr); PetscFunctionReturn(0); } /*------------------------------------------------------------*/ #undef __FUNCT__ #define __FUNCT__ "TSSetFromOptions_Rk" static PetscErrorCode TSSetFromOptions_Rk(TS ts) { TS_Rk *rk = (TS_Rk*)ts->data; PetscErrorCode ierr; PetscFunctionBegin; ierr = PetscOptionsHead("RK ODE solver options");CHKERRQ(ierr); ierr = PetscOptionsReal("-ts_rk_tol","Tolerance for convergence","TSRKSetTolerance",rk->tolerance,&rk->tolerance,PETSC_NULL);CHKERRQ(ierr); ierr = PetscOptionsTail();CHKERRQ(ierr); PetscFunctionReturn(0); } #undef __FUNCT__ #define __FUNCT__ "TSView_Rk" static PetscErrorCode TSView_Rk(TS ts,PetscViewer viewer) { TS_Rk *rk = (TS_Rk*)ts->data; PetscErrorCode ierr; PetscFunctionBegin; ierr = PetscPrintf(PETSC_COMM_WORLD," number of ok steps: %D\n",rk->nok);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD," number of rejected steps: %D\n",rk->nnok);CHKERRQ(ierr); PetscFunctionReturn(0); } /* ------------------------------------------------------------ */ /*MC TS_RK - ODE solver using the explicit Runge-Kutta methods Options Database: . -ts_rk_tol Tolerance for convergence Contributed by: Asbjorn Hoiland Aarrestad, asbjorn@aarrestad.com, http://asbjorn.aarrestad.com/ Level: beginner .seealso: TSCreate(), TS, TSSetType(), TS_EULER, TSRKSetTolerance() M*/ EXTERN_C_BEGIN #undef __FUNCT__ #define __FUNCT__ "TSCreate_Rk" PetscErrorCode PETSCTS_DLLEXPORT TSCreate_Rk(TS ts) { TS_Rk *rk; PetscErrorCode ierr; PetscFunctionBegin; ts->ops->setup = TSSetUp_Rk; ts->ops->step = TSStep_Rk; ts->ops->destroy = TSDestroy_Rk; ts->ops->setfromoptions = TSSetFromOptions_Rk; ts->ops->view = TSView_Rk; ierr = PetscNew(TS_Rk,&rk);CHKERRQ(ierr); ierr = PetscLogObjectMemory(ts,sizeof(TS_Rk));CHKERRQ(ierr); ts->data = (void*)rk; ierr = PetscObjectComposeFunctionDynamic((PetscObject)ts,"TSRKSetTolerance_C","TSRKSetTolerance_RK",TSRKSetTolerance_RK);CHKERRQ(ierr); PetscFunctionReturn(0); } EXTERN_C_END