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Abstract 
 
 
 

The numerical methods based on  finite difference approximation are quite efficient in 

solving the ordinary differential equations in one and two dimension whereas for sovling 

partial differential equation in more than two dimension an advance methodology is 

required. The finite elements method (FEM) is an important and efficient numerical 

analysis tool used in solving partial differential equations in higher dimensions.  In FEM 

the representation of the differential equation is done in integrated form and then 

approximating this integrated form using a selected set of basis functions also called as  

ansatz function which is  defined on the domain of the problem.  This results in a linear 

system of equations which could be solved to obtain an approximate solution to the 

differential equation.  The linear system of equations so obtained is normally very large. 

Hence it requires advance computational algebra to solve this system of equations. In 

FEM the basis functions are selected in such a way that the system is sparse.  This allows 

FEM to compete with Finite Difference methods in terms of computational efficiency.  In 

this project the Finite Elements Method for the Poisson equation is implemented using 

MATLAB. Here we have tried to make our program more interactive my adding GUI to 

it, The user is asked to fill-in the specified Requirements for obtaining the FEM solution 

through graphical user interface. The use of GUI makes the program more handy.  Since 

the linear system resulting from the FEM problem is sparse, symmetric and positive 

definite, the use of the preconditioned conjugate gradient method reduces the total 

required computational time.  Thus, in addition to the main FEM routine, a program to 

solve a sparse, symmetric positive definite matrix using preconditioned conjugate 

gradients method is also implemented. 
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FEM 
 
The Finite Elements Method is a numerical method for solving differential equations.  It 
is specially applied for solving partial differential equations. The objective of this project 
is to implement the Finite Elements Method (FEM) to solve the Poisson equation: 
 

∇ּ(k(x,y)∇u(x,y))  = f(x,y),  (x,y) Є Ω                                         (1) 
u|B∂Ω B= g, (x,y) Є ∂Ω 
 

on a rectangular domain.  The solution obtained using FEM is approximate and is 
denoted by the capital letter U.  In FEM the approximate solution U of the differential 
equation is expressed as a sum of basis functions.  
   U(x,y) = ∑aBi BφBi B(x,y) B B                                                                      (2) 
where φBi B is the iPPP

th
P basis function and a BBBi B is its coefficient. 

 
The problem of FEM is then to select a convenient set of basis functions φBi Band to 
determine the corresponding coefficient aBi B so that the approximate solution U(x,y) = ∑aBi BφBi  
B is close to the true solution u(x,y).The determination of the coefficients aBi B is thus 
essentially an error minimization problem.  Two methods are popular, namely the Ritz 
procedure and Galerkin’s Method.   
 
In the Ritz procedure, the differential equation is transformed into a minimization 
problem.  A functional, an integral expression whose minimization yields the solution of 
the differential equation, is first derived.  The approximate solution U is then substituted 
in the functional and a minimization is performed with respect to the coefficients aBi. BThis 
will yield a system of equations whose solution gives aBi.B   
 
The Ritz procedure can not be applied for differential equations that have no minimum 
principle.  A more general method is the Galerkin’s Method.   In Galerkin’s method 
the variational form of the differential equation is used.  The variational form of a PDE is 
obtained by multiplying the PDE with a test function, integrating over the domain and 
applying integration by parts to simplify the expression.[1]   Once the expression is 
obtained Galerkin’s orthogonality principle can be applied to determine the coefficients 
a Bi B. This means U = ∑aBi Bφ Bi  Bmust B Bsatisfy the variational equation for each basis function φBi. B 
This yields enough number of equations to solve for all coefficients.  (For a full 
discussion of the Galerkin and Ritz methods and the principle behind them one is referred 
to FEM text books like [1] or [3]) 
 
Both Galerkin’s and Ritz methods yield a system of linear equations that must be 
solved to obtain the coefficients aBi B.  The systems of equations that arise as a result of 
these methods are usually very large.  The computational cost of solving these systems is 
greatly reduced if the system is sparse.  The selection of the basis function is thus 
motivated by the desire to get a sparse final linear system of equations.  The roof 
functions (piecewise linear polynomials) are used in FEM for this purpose. 
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 These roof functions are also called sometimes as Hat Functions due to their peculiar 
shape. The roof functions require the domain to be decomposed into small parts.  In a two 
dimensional problem like the one this project is trying to solve requires generation of a 
mesh on the domain.  Each basis function is associated with a node in the mesh. The 
basis function is such that it  has a value of one on that node and zero everywhere else.  
The coupling between the basis functions is minimized and this results in a sparse linear 
system of equations. 
 
The mesh that is used in FEM is usually unstructured i.e. there is no regularity in the 
elements of the mesh.  With the roof functions each node of the mesh has one and exactly 
one basis function associated with it.  The usual practice of obtaining the values of the 
basis functions and their derivatives, which are needed in the computation of the solution, 
is to use mapping. A standard element with known shape and coordinate is used to obtain 
the basis functions and their derivatives and a mapping is used from the local coordinate 
of the standard element to the global coordinate (actual position) of each of the elements 
in the mesh.  Usually quadrilateral or triangular elements are used and a type of mapping 
called isoparametric mapping is used.  This scheme is especially well suited for computer 
implementation. The FEM deals with integrated form of the differential equation.  Thus 
the computation process involves the evaluation of a large number of integrals. The more 
general and easy to numerically compute the integrals arising in the solution process of 
FEM.  The Gaussian quadrature schemes are popular in this respect and will be used in 
this project. 
 

Formulation of FEM 
 
The first step in the solution of a partial differential equation using FEM is to derive the 
variational form of the problem.  This is done by multiplying both sides of the PDE with 
a function and integrating over the domain of definition of the problem.  After 
simplification using integration by parts the following weak form of the differential 
equation (1) is obtained. 
 

∫ k∇u .∇v dΩ  =  -  ∫ fv dΩ                                                           (3) 
 

According to Galerkin, in the finite element solution u is substituted by U and v is 
substituted by φ Bi.  BThis yields a linear system of equations  
    
   S a = f                                                                                          (4) 
Where  

(S)Bij B= ∫ k∇φ Bi B  .∇φ Bj B dx   and   (f)Bi B=  ∫ f φ Bi B dx  
 The above formula may change if there are Neumann boundary conditions 
  
a = [a B1 B, a B2B, a B3 B, ….]PP

T 

  
A better notation is 
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S =  ∫ kBP

T
PB dx;    f=  ∫ φP

T
P f dx ,  

 
where φ = [φBBB1 B, φB2 B, φB3,B …]P

T 

 
and  B =   
 

For perform
Jacobian m
coordinates
element a lo
global matri

 
S =  ∫∫ kBP

T
PJ

Basis Fu
In this Pro
triangular e
hence they a

Quadrilat
For the quad

The basis f
quadrilatera
 
ϕ B1B(ξ,η) = lP

1

ϕ B2B(ξ,η) = lP

1

ϕ B3B(ξ,η) = lP

1

ϕ B4B(ξ,η) = lP

1

0 

1 
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ing the integration using the local coordinates, we also need to have the 

atrix J of the mapping.  In this case the integration is done on the local 
 and the mapping handles the transformation into the global system.  For each 
cal stiffness matrix and load vector is computed and this is assembled in the 
x.  The formula for the local stiffness matrix in  the FEM formulation is  

P

-T
PJP

-1
PB det(J) dξ dη 

nctions and   Isoparametric Mapping 
ject two different element types are used.  These are quadrilateral and 
lements.  The basis functions to be used depend on the element type and 
re separately derived. 

eral Elements 
rilateral element type we the standard element shown in the figure below. 

 
unctions are derived using Lagrange Polynomials.  Thus the above standard 
l can be described by the following four basis function. 

PB1B(ξ)lP

1
PB1 B(η) = (ξ-1)(η-1) 

PB2B(ξ)lP

1
PB1 B(η) = ξ(1-η) 

PB2B(ξ)lP

1
PB2 B(η) = ξη 

PB1B(ξ)lP

1
PB2 B(η) = (1-ξ)η 

1 ξ 

Figure 1: The Standard Quadrilateral Element 
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Hence the B matrix and the Jacobian for mapping is as follows 
 
B =  
 
 
 
 
J =  
 
 
 
 
 

Trian
For th

For th
ϕ B1B = l P

0

ϕ B2B = l P

1

ϕ B3B(ξ,η
 
Hence
B = 
 
 
 

fic

g
e 

e 
PB1 B(
PB2 B(
) 

 t

0

1

η

ular Elements 
triangular element type the standard element shown in the figure below 

 
triangular element the three basis functions are formulated as below 
ξ)lP

0
PB1 B(η)lP

0
PB1 B(θ) = θ = 1 - ξ-η 

ξ)lP

0
PB1 B(η)lP

0
PB1 B(θ) = ξ 

= lP

0
PB1B(ξ)lP

1
PB2 B(η)lP

0
PB1B(θ) = η 

he B matrix and the Jacobian for mapping is as follows 

 

 

1 ξ 

 

Figure 2: The Standard Triangular Element 
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sian Quadrature 

th element types, the implementation of the program requires the evaluation of 
als.  The integration in the program is performed using the Gaussian quadrature 
d.  For the quadrilateral element a 4 point Gaussian quadrature method is used 
for the triangular element one-point method is used.  To perform this quadrature we 
o determine the coordinates of the quadrature points as well as the multiplying 

 or Côtes number. 

ng Lagrange’s polynomials and minimizing the quadrature error with respect to the 
n of the quadrature points (which is obtained by finding the roots of Legendre’s 
mials) the following result was obtained for the quadrilateral and triangular 

nts. 

rilateral Elements 
 Numbers:  

w1 = w2 = 0.5 

rature Points: 
(½+ ½ √P

1
P/B3 B, ½ + ½ √ P

1
P/ B3B) 

(½ + ½ √P

1
P/B3 B, ½ - ½ √P

1
P/ B3B) 

(½ - ½ √P

1
P/B3 B, ½ + ½ √ P

1
P/ B3B) 

(½ - ½ √P

1
P/B3 B, ½ - ½ √P

1
P/ B3B) 

gular Elements 
 Number:  

w = 1/6 

rature Points: 
(0, 0.5) 
(0.5, 0) 
(0.5, 0.5) 
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PROGRAM CONSTRUCTION 

No_of_Refinements True Solutuion if exist 
  

      “Poission.m” 

Main Module  “GUI.m” 
     Calls the following Modules  

Readquad.m Initializes 
quadrilateral mesh 

Refine.m Performs 
refinements 

Triangulate.m 
Perform triangulation 

Lostiff.m Calculate 
local stiffness matrix 

Assemble.m Assemble 
Stiffness matrix 

Lostiffm.m calculate 
local mass matrix 

Assemblem.m 
Assemble mass matrix. 
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Conjugate.m Solves the 
system of equation. 
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Program Description 
 
As the above flowchart describes how the program is implemented the main routine that 
call most of the subroutines is the GUI.m this files generates the graphical user interface 
and asks the user for the input. For more clear description the following figure of the GUI 
is presented below. 
 
 

 
 
Figure 3. The GUI input for the FEM program 
 
As  one could easily see from the above figure that the user input is required in the terms 
of Number of refinements and also the Type of the mesh to be use i.e either triangular or 
rectangular. Then the corresponding  FEM solution is shown in along with the true 
solution if the true solution exist and if the true solution does not exist the only the FEM 
solution is shown along with the description of the L2 norm of the exact and the 
approximate solution along with the error in the solution. The error tend to decrease as 
the number of refinements are increased. 
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Presentation of the Results 
 
As a test, the program was run on an equation whose solution is known.  In this 
experiment the following function was used. 
u = sin 4πx + exp(y)   ……………………………….(5) 
 
The diffusion coefficient k was selected to be x.   
 
Then the corresponding full differential equation is 
 
∇ּ(x∇u)  = 4π cos 4πx - (4π)P

2
P x sin 4πx + x(exp(y)) ……….(6) 

where u is defined for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 
and with a boundary condition of  
u = sin 4πx + exp(y)   on all boundaries  
 
The result obtained by running the program for this problem is shown in the figure 
 

 
Figure 4 
 
A more detailed presentation of the result will be given during the presentation which is 
to be given on 2 P

nd
P feb 2004. 
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Convergence of  Fem solution  
As the pictures clearly show the program is giving a close approximation to the true 
solution of the differential equation.  The following table shows L2 norm measurement of 
the solution and the error.   To measure the L2 norm we have used two approaches.  The 
first was to just apply MATLAB’s norm function on the solution or error vector, and the 

second was to implement our own norm function.  This norm is (uP

T
PMu) P

½
P, where u is the 

solution vector and M is its corresponding mass matrix.  This norm is a better 
measurement as it is less affected by an increase in the number of components of the u 
vector. 
 
L2 norm measurement results are displayed in Table 1.  As can be seen from the 
progression the error is cut drastically as the mesh size is reduced.  This is especially 
apparent with the use of latter measurement of L2 norm.  Thus the FEM solution is 
obviously converging to the true solution.  
 
Table1: L2 Norm Measurement Results 

L2 norm for Triangular Element L2 norm for the Quadrilateral 
Element 

Number of Mesh 
Refinements 

Using Mass Matrix Using MATLAB’s 
norm function 

Using Mass Matrix Using MATLAB’s 
norm function 

 Solution Error Solution Error Solution Error Solution Error 
1 11.8246 0.2889 8.8344 1.5012 6.2096 0.0134 9.1273 0.4687 
2 15.1138 0.0108 17.2328 0.4400 7.3134 0.0036 17.2859 0.3584 
3 16.3032 5.00 e-004 32.7875 0.1827 7.9296 8.31e-004 32.6598 0.3223 
 
 

Real Application of the program. 
The  program was tested for its applicability to real life problems.  Our program was 
tested for heat distribution on a printed circuit board given by the teacher. 

The Problem 
Figure 5 shows a printed circuit board with various electronic components mounted.  The 
electronic components generate heat. The board itself is mounted in a rack such that the 
ambient temperature is held constant at 20 degree Celsius. In the equilibrium, the devices 
have temperatures as follows:  

• The large processor (e): 60 degrees Celsius.  
• The two driving circuits (b, d): 50 degrees Celsius.  
• The stabilizer (c): 40 degrees Celsius.  
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The problem is finding the temperature distribution on the board.  The differential 
equation that describes this problem is 
 

∆u = 0                               (8) 
with the Dirichlet Boundary conditions mentioned above 

 

Modifying the Program to Solve the Problem 
The FEM program that we wrote can not be used as it is.  A few modifications are 
necessary.  One is scaling the dimensions of the domain of definition to match the 
problem.  And the other is introducing boundary conditions in the interior of the domain.  
Otherwise, the main routines for the program remain unchanged.   
 
A few lines of code handle the first problem.  In our implementation we used a kind of 
mapping from the original domain to the newly defined domain by using a linear scaling 
of the dimensions in the mesh. 
 
The second problem is handled by locating all the nodes that appear with in the internal 
regions whose temperature is fixed, i.e. the components, and fixing the temperatures to 
the respective values.  This is very reminiscent of handling of normal boundary 
conditions. 
 

Figure 5: Printed Circuit Board Heat Distribution Problem 

η b 

c 

d 

e 

a 
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Results 
The modified program was applied to the problem and the following result was obtained.  
For comparison the same problem was solved using the FEMLAB package. 
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Figure 7: FEMLAB Solution to the Printed Circuit Board Heat Distribution Problem 

Figure 6: Solution to the Printed Circuit Board Heat Distribution Problem 
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