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ABSTRACT. It has been shown recently that Zs X - - - X Zy symmetric cubature formulae for
the unit sphere S% are characterized by cubature formulae on the standard simplex £¢. In
particular, cubature formulae for the surface measure on S? correspond to the symmetric
cubature formulae for the weight function (u; U2U3)_1/2, where ug = 1 — u; — ug, on
the triangle £?. In this paper we construct cubature formulae for the weight function
(u1usg U3)_1/2 on the triangle and, using the correspondence, cubature formulae for the
surface measure on the unit sphere.

1. INTRODUCTION

Finding effective cubature formula for integrals over a region in R? is a problem of vast
dimensions. It is often necessary to limit the scope to constructing cubature formulae
for a particular setting. Indeed, most of the results in the literature deal with formulae
with respect to the unit weight function over one of the standard regions. The regions
that attract most of the attention are cubes, balls, simplices and spheres. We refer to
[5, 22, 24] for some of the references. Recently we have shown that cubature formulae
for spheres, for balls and for simplices are very closely related and even equivalent in
many cases. In [27], a correspondence between cubature formulae on the unit sphere
S% of R4 and on the unit ball BY of R? is discovered, which is used to construct new
formulae for S? in [7], and in [28] a correspondence between Zy X - -+ x Zy symmetric
cubature formulae on S% and cubature formulae on the simplex %% of R? is revealed,
which also implies an equivalence between Zy X - - X Zo symmetric formulae on B? and
cubature formulae on X¢. In both cases the results are established for a large class of
weight functions; in particular, the cubature formulae with respect to the surface measure
on S? correspond to the formulae with respect to the weight functions (1 — 22 — 22)~!/?
on B? and (u1u2u;;)_1/2 on Y%, where us = 1 — u; — uy. The correspondence allows us
to obtain new cubature formulae on one region from formulae over another region.
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In this paper we construct cubature formulae for (u1u2u;;)_1/2 on Y2 and use the
result to generate formulae for the surface integral on S?. First we state the correspon-
dence. Throughout this paper we denote by II¢ the space of polynomials of degree at
most n in d variables (d = 2 or 3), and we denote by X2 the triangle with vertices at
(0,0), (1,0) and (0,1). Let W be a weight function defined on R? normalized so that
fs2 W(yi,y5,y5)dw = 1. Associate to W we define a weight function W on the triangle
Y2 by

Wg(ul,u2) = 2W(u1,u2, 1— Uy — UQ)/\/U1UQ(1 — U1 — UQ), (ul,uz) € 22.

Then the correspondence in [28] states that

Theorem 1.1. Let W and Wy, be defined as above. Suppose that there is a cubature
formula of degree M on 2% given by

N
(1.2) flur, ug)Ws(ur, uz )duydug = Z e f(up, uk2), f ey,
n? k=1

whose N nodes lie on the simplex X%, Then there is a cubature formula of degree 2M + 1
on the unit sphere S2,

(1.3)
/52 9y, y2, ys)W (YT, s, y3 )dw

N

3
= Ak Z g(€1vk,17€2vk,27€3vk,3)/2ak7 9€H2M+17
1 g, ==+1

where ap 1s the number of nonzero elements among vy 1,vr2 and vi 3, and the nodes
(Vk1,Vk2,Vk3) € S? are defined in terms of (Uk1,uk2) by

(1.4) (Vk,15 08,2, Vk,3) = (\/Uk 15 \/Uk 25 \/1 — Ukl — Uk,2)-

On the other hand, if there exists a cubature formula of degree 2M +1 on S? in the form
of (1.4), then there is a cubature formula of degree M on the simplex X* in the form of
(1.3) whose nodes (ug1,up2) € X% are defined by (up1,ukz2) = (v,%’l,v,%’z).

The formula (1.3) is invariant under the change of signs, or invariant under the group
Ziy X Zig X Zz. The theorem establishes the equivalence between (1.2) and (1.3). In [2§]
this theorem is proved more generally for formulae on the sphere S¢ and the simplex ¢
for all d. When W(x) = 1/ws = 1/47 is the surface area of S?, the corresponding weight

—1/2

function on %2 is the multiple of the weight function (uquzus) , which we will denote

by Wy; that is,

(1.5) Wolur,uz) = (uqua(l —ug —uz)) /27, (ug,uy) € D2
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The construction of cubature formulae in this paper will be carried out only for Wj.
Most of the cubature formulae for 2 in the literature are constructed for the unit weight
function; the correspond formulae (1.3) on S? are with respect to |y1y2ys3 |dw.

This theorem allows us to construct cubature formulae for the surface measure on S?
by working with cubature formulae for Wy on the triangle. In the literature almost all
cubature formulae for the simplex are constructed for the unit weight function, see the
recent survey [16]. In Section 2, we will construct a few minimal cubature formulae of
lower degrees for Wy on ¥? and discuss the corresponding formulae on S%. The main part
of this paper is in Section 3, in which we adopt the method by Lyness and Jespersen in [17]
to construct symmetric cubature formulae on 3%, which are formulae that are invariant
under the symmetric group of the triangle. When the formula (1.2) on ©? is symmetric,
the corresponding formula (1.3) in Theorem 1.1 is invariant under the octahedral group,
which is the symmetric group of the unit cube {£1,41,41} in R®. In this case, the
formula (1.3) is of the form

(16) /S2g(y17y27y3)w(y%7y§7yg)dw

N
3
=D k> > glE10kor E20k 0 E3Vk ), g € T3y,
k=1

o eg;==1

where the second sum is taken over all permutations of o = (01,02,03). Formulae of
this type have been constructed by Lebedev [12 — 15]. It is called fully symmetric in [24,
10] and has been studied for S? in [8], which contains another correspondence between
fully symmetric formulae on S¢ and cubature formulae on 3¢, namely, a correspondence
between the consistent rule structure on these two regions.

Numerical integration on the sphere has attracted a lot of attentions, we refer to [1,
2,5, 8,12-15, 19, 22, 24] and the references there. Most formulae have been constructed
by making use of symmetry to reduce the number of moment equations that have to
be solved (see, for example, Sobolev [23] and MacLaren [18]). The fundamental result
of Sobolev states that a cubature formula invariant under a finite group is exact for all
polynomials in a subspace P if, and only if, it is exact for all polynomials in P that are
invariant under the same group. The group that has been under intense study is the
octahedral group; Lebedev constructed in [12 ~15] cubature formulae of degree up to 59,
many of them have the smallest number of nodes among all formulae that are known.
Working with symmetric cubature formulae on ¥%, we are able to find many formulae
on S? that Lebedev did not consider (see Section 3). There are also formulae that are
invariant under the icosahedral group, which have, however, no correspondence on the
triangle, since they are not symmetric under Zs X Zy X Zs in the first place. We refer to
[5, 22, 24] and the references there for other papers that deal with cubature formulae on
the sphere, see also [1] in which formulae are constructed making use of symmetry and a
Taylor expansion formula.

2. CUBATURE FORMULAE OF LOWER DEGREE ON TRIANGLE AND ON SPHERE

In this section we present a list of minimal cubature formulae of lower degrees for the
weight function Wy on 2. A cubature formula of degree M is minimal if its number of
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nodes is minimal among all cubature formulae of degree M. For Wy on ¥2 it is known
that the lower bound for the number of nodes is given by

Non(S2) > (”;2> and  Nap_y(52) > (”;rl> + {g}

(cf. [20, 22]). We show here that for n up to 7 the above lower bound is attained for Wj.

There is a close relation between common zeros of orthogonal polynomials and cubature
formulae. For example, if a cubature formula attains Moller’s lower bound of odd degree
formula (]20]), then its nodes are common zeros of a family of linearly independent
polynomials @1, ... ,Q, of degree n, where r = n 4+ 1 — [n/2], and each @; is orthogonal
to polynomials of lower degrees (see [20]). There are far more general results in this
direction, we refer to [20, 22, 25, 26]. For the weight function Wy, one basis of orthonormal

polynomials can be given explicitly in terms of Jacobi polynomials P,Ea’ﬁ),
PP (a1, a2) = By PR 20 1) (1= )P PUYET D (20 (1—2) T 1), 0< k<,

where h} are constants chosen so that P’ are normalized. The ordinary spherical harmon-
ics invariant under the group Zsg X Zg X Z are characterized by orthogonal polynomials
with respect to Wy. This fact is a corollary of a general result proved in [28] (see also
[4]) that, together with Sobolev’s theorem, leads to Theorem 1.1.

One interesting fact is that some of the minimal formulae for Wy can be obtained from
known cubature formula on S? in [22, 24] via the correspondence in Theorem 1.1. We
found minimal cubature formulae of degree 3 and 5 for Wy on ¥? this way from [24,
U,:7-2] (specify n = 3) and [24, Us: 11-2], respectively. We also constructed minimal
formulae of degree 4 and 7, as well as a new minimal formula of degree 3 by following the
method that has worked for the unit weight function on 22. In the following we present
the new minimal formulae for Wj. Each formula is given by its nodes and weights; we list
them in lines with each line containing one weight on the right and node(s) associated
with the weight on the left. We also give polynomials whose common zeros are the nodes.
It should be mentioned that we have normalized the weight function Wy so that it has
integral 1. If one uses just 1/,/ujusus, then there will be a multiplication factor 27 in
the weights A; of the cubature formula.

Degree 3: N =4,

(1/3,1/3), —9/40
(1/7,1/7), (1/7,5/7), (5/7,1/7), 49/120

This formula is minimal and also symmetric on %2, It is obtained from [24, p. 301, U,:
7-2], specifying n = 3, via Theorem 1.1. It has one negative weight.

Degree 3: N =4,

((15 +2v/30)/35, (10 — v/30 + /65 — 10v/30)/35), (18 —/30)/72
((15 — 2v/30)/35, (10 + /30 & /65 + 101/30)/35), (18 4 /30)/72
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This is a minimal formula. It is found by computing the common zeros of orthogonal
polynomials P§ and Pj. It is not symmetric on %2 but all weights are positive.

Degree 4: N = 6, the nodes (21,y1),... ,(xs,ys) are given by

(0,0), 1/15

(0,2(7 +/7)/21), A

(G 2 2) (bzyaz) A2

(ai, bi), Ai, 1=3,4

with
ay = oo (T VT =28 -TVT), —(T=VT+1/28-TVT7),
agzi(28—6\/_— 714 — 259V/7 ), 63:%(—14—%8\/7—%\/714—259\/7),
a4:%(28—6\/?—|—\/714—259\/?), 64:%(—14—%8\/_— 714 — 259V/7 ),

A 0.1122079561300387
A2 0.1892374781489235
A3 0.2227545696261541
A4 0.2198958512792939

This is a minimal cubature formula. It is obtained by the method of reproducing kernel
(cf. [21]). We choose the first point as (0,1) and the second point as (0,2(7 +/7)/21)),
which is one zero of Ky((21,22),(0,0)) = 855(1 — 14t + 21#?) where t = 1 — 21 — 3.

Degree 5: N =17,

(1/3,1/3), 9/70
(a,0), (b,a), (b,D), A
(c,d), (d.c), (d,d), A2

with

a=(9—4V3)/33, b=(15+8V3)/33,
c=(15+8v3)/33, d=(9+4V3)/33,
A= (1224 9v/3)/840, g = (122 — 9/3)/840.

This formula is minimal and also symmetric on 2. Tt is obtained from [24, p. 301, Us:
11-2] via Theorem 1.1. Its nodes are common zeros of orthogonal polynomials P, Pj

and P03 —I-PS/\/?.
Degree 7: N =12,

(zi,vi), (I—ai—yi,xi), (yi,1—xi —y5), A
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i ; Yi Ai

1 0.03580765622 0.03752772328 0.09458016209
2 0.66398055628 0.03149046699 0.08858749646
3 0.26858535175 0.19042737706 0.08088547446
4 0.68672614839 0.29513413158 0.06928020033

This formula is minimal. When it is transformed to the equilateral triangle A (see
the next section), it leads to a formula that is invariant under the rotation by 27/3.
Formulae with this symmetry are discussed in [6], which we followed to find this formula.
A minimal formula of degree 7 is constructed in [6] for the unit weight function.

In the Table 2.1 below, we list these formulae of degree 3 to 7 on ¥? together with others
that can be obtained from the formulae on S? via Theorem 1.1. Whenever a formula is
obtained via Theorem 1.1, we give reference from [24, p. 295-301]. The minimal formulae
are marked by an asterisk.

Table 2.1. Formulae on 32

Degrees N Reference

3 4*
4* Up:7—2,n=3
7 U337—2

4 6*
7 U339—1
9 U439—2
10 U339—3

S T Us:11 -2
10 Us;:11—-1
13 Us;:11-3

7 12*

The three new minimal formulae of degree 3, 4 and 7 yield new cubature formulae on
S? of degree 7, 9 and 15. The result is presented in the following table, in which we also
include the minimal number of nodes, N*, among all Zy x Zg X Z9 symmetric formulae
of the same degree that are known.

Table 2.2. Formulae on S?

Degrees N N*
7 32 26, [24,U;3 : 7T — 2]
9 42 32, [24,U;3 : 9 — 1]
15 96 86, [12]

The table shows that these formulae on S? use far more nodes than the minimal ones,
although they are obtained from the minimal cubature formulae on ¥2. In fact, the
number of nodes of the formula (1.3) in the Theorem 1.1 depends on how many nodes of

(1.2) are on the boundary of 32. Let Ny, N7 and Nz be the number of nodes in (1.2) that
are on the vertices, on the edges, and in the interior of the triangle. Then the number of
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nodes of (1.2) is equal to Ng + N1+ Ny. Let Np(E%) and Nops41(S?) denote the number
of nodes of the formula (1.2) and the formula (1.3), respectively. Then the following
relation holds,

(2.1) Nu(2?)=No+ N1+ Ny == Nopy11(S?) = 8Ny + 4Ny + 2Ny,

This formula also shows that minimal cubature formulae on S? may not lead to minimal
formulae on X2,

3. SYMMETRIC FORMULAE ON ¥? AND FULLY SYMMETRIC FORMULAE ON S?

In this section, we consider symmetric formulae with respect to the weight function Wy
on Y2, which correspond to cubature formulae with octahedral symmetry on S%. In the
first part of the section we present a method of constructing symmetric formulae given
by Lyness and Jespersen in [17]. Our findings of cubature formulae are discussed in the
Subsection 3.2, and we discuss the numerical computation in Subsection 3.3.

3.1. Symmetric formulae on Y2. Instead of ¥?, Lyness and Jespersen used the
equilateral triangle

A:{(l’,y)il'gl/Q, \/§y—:1;§1, —\/§y—x§1},

whose symmetric group S3(A) is generated by a rotation through an angle 27 /3 and a
reflection about the z-axis. The triangle ¥? can be transformed into A by the affine
transformation

(3.1) ¢:(z1,y1) €X% = (2,y) €A, r=3(x1 +22)/2 -1, y=+3(xy—x1)/2.

It is easy to see that invariance is preserved under ; in particular, if a function f defined
on A\ is invariant under S3(A\), then the function f o ¢ defined on 32 is invariant under
S3(2?%). The weight function Wy on ©? becomes

Wale,y) =372((1 +2)” = 3y%)"1/2(1 - 20)72/(2m)

A basis for the class of S3(A)-invariant polynomials of degree at most n, denoted by
I1¢, can be written down in terms of the polar coordinates x = r cos @ and y = rsinf as

follows,
(3.2) r2(r3 cos 36)7, 0<2:+435 <n.

Moreover, working with functions ¢(r,0) = f(r cos,rsin @) in polar coordinates, a basic
invariant cubature formula takes the form

)—I—g(r,—G—I- 2%)},

27y

Q(rv 9)9 = 3

L5 s

J=1
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which is just a sum over the S3(A)-orbit of the point (r, ). Because of the invariance of
Q(r, 6), we assume that r can take negative value and 0 < 6 < 7/3. Three distinct types of
orbits occur according to r = 0 (center of triangle); r # 0, cos 36 = 1 (median of triangle);
and r £ 0, cos 36 # 1. These three types are denoted as type 0, type 1 and type 2,
whose corresponding Q(r, 6)g requires 1, 3, or 6 function evaluations, respectively. Let
n; denote the number of orbits of type 7 in a symmetric cubature formula. The standard
(holistic) type cubature formula takes the form

ni ni+no
(3.3) Qlg) = norog(0,0) + > X\Q(ri,0)g + Y NQ(ri,ai)g.
=1 t=ni1+1

The number of nodes of this formula, denoted by p(Q), is (@) = ng + 3ny + 6ng. It
is shown in [17] that the cubature formula Q(g) is of degree M if its nodes and weights
satisfy the following system of equations:

ny ny+ns
Ao ‘|‘Z/\i + Z Ai = 00,0,
i=1 i=ni+1
ni ‘ ni+no ‘
(3.4) Zx\ir‘g + Z Nirl cos3kb; = vjsk, 2<j<M, k= ko,
i=1 i=n;+1
ny+ns ‘
Z Air? (cos 3ko8; — cos3k6;) =vjsk, j =06, or8<j <M,
i=ni+1

6 <3k <j, 5+ keven,

where kg = 0 if j is even and ko = 1 if j is odd, the numbers v; 34 are defined by
(3.5) Visk = / T cos 3kO W2 (r cos 8, sin §)drdb,
A

the integral is over the region defined by (r cosf,rsinf) € A. For each M, the system
contains

E(M) = [(M? 4 6M +12)/12]

equations, where [z] denote the smallest integer less than or equal to .

It is often useful to construct cubature formulae that have some nodes on the edges
or at the vertices of the triangle. To describe such a formula, we use a sub-classification
of the types of basic formula Q(r,«). The type 1 (r # 0, cos36 = 1) is split into three
sub-types according to r = —1 (vertex), r = 1/2 (median of edge), and —1 < r < 1/2;
the type 2 (r # 0, cos360 # 0) is split into two sub-types according to rcosf = 1/2 (on
an edge but not at median of the edge nor at a vertex), and r cos€ # 1/2. Accordingly,
ni, the number of orbits of type 1, is split as ny = my + ms + mg3, and ny, the number
of orbits of type 2, is split as ny = my + ms. Such a formula is called the cytolic type.
A cytolic formula is identified by [ng; mq,msa, ms;my, ms]. We note that ng, m; and mq
can only be either 0 or 1.
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According to the discussion in the end of section 2, see (2.1), a cytolic cubature formula
is preferable for obtaining, via Theorem 1.1, a cubature formula on the sphere with fewer
nodes. It is not hard to see that a cytolic formula [ng;my,ma, mg;my, ms] leads to a
cubature formula on S$? whose number of nodes is equal to

(3.6) N(S?%) = 8ng + 6my + 12mg + 24ms + 24my + 48ms.

A formula that has nodes on the vertices and edges of 3? uses more nodes than a formula,
that has all nodes in the interior, but it leads to a formula on S? with fewer nodes.

The nonlinear system of equations (3.4) remains in the same form for the cytolic
type formulae, we only need to assign proper values of certain r; and 6; according to
the given type. To form the nonlinear system equations (3.4), we choose ng and m; so
that the number of parameters matches with the number of equations. For the type
[rg;my,mo, m3;my, ms), this means

(3.7) no +mi 4+ ms + 2ms + 2my + 3ms = [(M* + 6M + 12)/12],

where M, as before, is the degree of the cubature formula. For each fixed M there may
be a number of integer solutions to the above equation, leading to different types of
cubature formulae. In this regard, the consistency conditions are very useful. Following
the argument in [17] for the holistic type, the conditions for the cytolic type are

2m4 + 3m5 ZE(M — 6),
(38) mi + ma + 2(m3 + m4) + 3m5 ZE(M) — 1,
ng +my +ma + 2(m3 +ma) + 3ms > E(M).

They are also included in the conditions found in [8] for d-dimensional simplex. These
conditions ensure that there are enough unknown parameters to match part (properly
defined) or all of nonlinear equations, although they are neither necessary nor sufficient
for solving the equations. Another useful restriction is as follows.

Theorem 3.1. A formulae of degree M s of type [ng;my, ma, ms;my, ms| only of

(M —9)/4, of ma#0 and M > 9,
(3.9) ms > (M —6)/4, ifmy=0 and M > 6,
(M —3)/4, f ms=0 and M > 3.

Proof. Let {;, + = 1,2,3, be the linear polynomials such that ¢; = 0 give the equations
of the sides, and we choose the sign so that ¢; are nonnegative on A. Let h;, 1 = 1,2, 3,
be the linear polynomials such that h; = 0 give the equations of the medians of A.
Furthermore, let ¢g;, ¢ = 1,2,... ,n5, be the quadratic polynomials so that ¢g; = 0 gives
the equation of the circle that has center at origin and radius r;. If my # 0, then the
polynomial

Uilalshih3higt - gn,
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will vanish on all nodes of the formula. Since the polynomial is positive on A, its degree
has to be bigger than the degree of the cubature formula, which leads to the desired
inequality. If my = 0, then the factors ¢103(3 can be dropped from the polynomial,
leading to the desired inequality in this case. If ms = 0, then hih2h2 can be dropped
from the polynomial. [

This theorem and its proof are extensions of the result in [17, p. 26], which deals with
the cases of M = 5,6,9. There are other conditions that can be derived this way; for
example, if both mj and my4 are zero, then ms > M /4. For fixed M, it is possible to
identify all possible integer solutions of (3.7) which also satisfy the restriction (3.8) and
(3.9); the number of the solutions, however, is still large even for moderate M.

Some particular choices of the types lead to a system (3.4) that is split into subsystems
with independent variables; the smaller size of the subsystem makes them easier to solve.
Such a split is possible since the third group of the equations in (3.4) does not contain r;
and A; for ¢ = 1,2,... ,ny; and it occurs whenever m4 and ms satisfy the equation

(3.10) 2my +3ms = E(M —6) = [(M* —6M +12)/12],

because the third group of equations contain E(M — 6) independent parameters. It is
not hard to check that the integer solutions of the above equation exist for every M > 7,
except M = 10; hence, the splitting occurs for each M # 10. One important class of
formulae that admits the splitting corresponds to the cubature formulae constructed by
Lebedev in [12-15] on S? with octahedral symmetry. Apart from a few lower degree
cases, Lebedev consider the formulae on S? that correspond to the types

(3.11) [1;1,0,3m;m,m(m —1)]  and [1;1,1,3m + 1;m,m?],

which are of degree 6m + 2 and 6m + 5, respectively; and he has constructed formulae
form=1,2,3,4.

Our strategy for choosing the type [ng;my,mz, mg;my, ms] is as follows. We search
for types whose corresponding formulae on S* have fewer nodes. This means finding ng
and m;, which satisfy (3.7), (3.8) and (3.9), so that N in (3.6) is minimal or close to
minimal. To this end, we choose ng, m; and ms with value one whenever possible, and
then ms as small as possible. As a starting point, we choose my and mj satisty (3.10) so
that the system (3.4) is split into subsystems.

3.2. Fully symmetric cubature formulae on S?. We have attempted to find
symmetric cubature formulae of degree up to 20 on the triangle. There are some nonlinear
systems that we found no solution. For each M < 20, however, we found at least one
type of cubature formula that has all nodes inside A and have all positive weights, they
correspond to cubature formulae on S? of degree up to 41. Some of the formulae, however,
have nodes outside A, they will not lead to cubature formulae on S? via Theorem 1.1.

We report our findings as fully symmetric cubature formulae on S? and list the results
in Table 3.1 below. Each formula is identified by its [ng;my, ma, ms3; my, ms] type and
we give its number of nodes N. If a formula has all positive weight, we write P in the
last column, otherwise, we write N.
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Table 3.1. Fully symmetric cubature formula on S$*

Degrees Type # of Nodes Quality

3 0;1,0,0;0,0 6 P [S]
1;0,0,0;0,0 8 P [S]

5 1;1,0,0;0,0 14 P [S]

7 1;1,1,0;0,0 26 P [S]
1;0,0,1;0,0 32 N [S]

9 1;1,0,0;1,0 38 P [L]

11 1:1,1,1;0,0 50 P [S]

13 1:1,1,1;1,0 74 N [L]
0;1,0,2;1,0 78 P

15 1:1,0,2;1,0 86 P [L]
0;1,1,2:1,0 90 P

17 1:1,0,3;1,0 110 P [L]
1:1,0,2;2,0 110 N

19 1:1,1,3;0,1 146 P [L]
1:1,1,2;1,1 146 P
1;0,0,4;0,1 152 P

21 1:1,1,3;1,1 170 N
1:1,1,2;2,1 170 N
1;0,0,3;2,1 176 N
0;0,0,3;1,2 192 P (2)
1;0,0,2;0,3 200 P

23 1:1,1,451,1 194 P [L]
0;1,0,4:2.1 198 P
1;0,0,5;1,1 200 P
1:0,0,4;2,1 200 N

25 1:1,0,5;2,1 230 N [L]
1;0,0,5;1,2 248 P
0;0,0,5;0,3 264 P

27 1:1,1,5;1,2 266 N [L]
1;0,0,6;1,2 272 N
1;1,0,5;0,3 278 N
0;0,0,5;1,3 288 P

29 1:1,0,652,2 302 P [L]
0;0,0,6;0,4 336 P

31 1;0,0,4;3,4 368 P

33 1;0,0,6;1,5 416 P

35 1:1,1,7;2,4 434 P [L]
1;0,0,8;2,4 440 P

37 1;0,0,5;1,8 536 P

39 0;0,0,4;1,10 600 P (2)

41 1;1,0,9;3,6 590 P [L]
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The types marked by [S] correspond to formulae in Stroud’s book [24], types marked
by [L] correspond to formulae on S? found by Lebedev. The types [0;1,0,2;1,0] of degree
13 and [1:;1,0,2;2,0] of degree 17 have been constructed by Keast in [8], but the numerical
values of the nodes and weights are not given there. All other formulae in the table are
new; in particular, these include formulae of degrees 21, 31, 33, 37 and 39, where no
formulae of the same degree are known previously, and formulae of degrees 25 and 27
with all positive weights, where only formulae with negative nodes are known. We note
that all formulae found by Lebedev have smaller number of nodes on S2, although their
corresponding formulae on Y2 are not. Lebedev also found one formula for each of degree
47, 53 and 59 (the degree 41, 47, 53 are found in [15] joint with Skorokhodov). Because
the system of equations (3.3) is nonlinear, its solution may not be unique. Indeed, in
the cases of [0;0,0,3;1,2] of degree 21 and [0;0,0,4;1,10] of degree 39, we found two
solutions in each case and we mark these cases by (2) in the table.

For each formula that is not marked by [S] or [L], we give the numerical values of the
weights and nodes in the Appendix.

In the Table 3.1, we only include the types that we found solution and the solution
leads to a fully symmetric formula on the sphere. The types that we attempted and found
solution with some nodes outside of the triangle are reported in the Table 3.2 below, those
types that we attempted but could not find a solution are not recorded. Moreover, we
stopped when one formula with all positive weights and all nodes inside A was found
following our strategy, we did not attempt all possible types.

Table 3.2. Cubature formula on triangle (PO or NO)

Degrees Type # of Nodes Quality
6 1;0,0,2;1,0 13 NO
7 1;0,0,2;0,1 13 PO
8 1;0,0,3;0,1 16 PO
10 0;0,0,4;0,2 24 PO

1;0,0,4;1.1 25 NO
11 0;0,0,5;0,2 27 PO
13 1;0,0,5;2,2 40 PO
15 0;0,0,6;0,5 48 PO
1;0,0,5;2,4 52 PO
0;0,0,4;2,5 54 PO
16 1;0,0,7;0,5 52 PO
1;1,0,7;1,4 55 NO
19 1;0,0;5;1,9 76 PO

In the table we use the notation of [1], the symbol PO (or NO) means that the nodes
are outside of the region and the weights are all positive (or some negative).

Numerical computation that leads to symmetric cubature formulae for the unit weight
function is carried out in [17] for M < 11 and in [3] for M < 20. The equations (3.4)
in the cases of the unit weight function and the weight function Wy are of the same
form, except that the moments are different, which only change the right hand side of
the equations. Since the equations are nonlinear, formulae of the same type may possess
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different quality for different weight functions. For example, for the type [1;0,0,6;1, 2]
of degree 13, we found a formula for Wy with some negative weights, while the formula
for the unit weight function has all positive weights. The most interesting case, however,
is perhaps the type [1;0,0,8; 1, 7] of degree 19, which we found no solution for the weight
function Wy, but a solution is found for the unit weight function in [3]. This shows that
the nonlinear system (3.4) is sensitive to the change of weight functions.

3.3. Remarks on numerical computation. The numerical computation was car-
ried out on a DEC Alphastation 500 in double precision, using the DUNLSF Fortran
subroutine in the IMSL Math /Library (Visual Numerics, Inc., 1994); however, moments
vj3k in (3.5) were computed exactly using Maple. The subroutine DUNLSF employs
iterative techniques which require an initial estimate of the solution. For solving the
nonlinear system (3.4), this means that we need to provide initial values for the weights
A; and for the parameters r; and #; that determine nodes. To determine the initial values,
we have followed the strategy in [3] for solving the systems for the unit weight function.
The node locations of the formulae for the weight function Wy appear to be similar to
those for the unit weight function: nodes are located closer to the edge of the triangle
than the centroid, and are located closer to the median 8 = 7 /3 than § = 0. Our compu-
tation shows that whenever a formula of a given type has a solution, then even a rough
initial estimate leads to the solution in reasonable computing time. For example, finding
a formula of degree 19 needs less than 30 minutes.

For each formula of degree M, we compute the relative error and the absolute error
of Z(f) — Zn(f) for all invariant polynomials f of degree < M, where Z(f) stands for
the integral of f with respect to Wy on the triangle and Z,(f) stands for the cubature
formula. The result shows that

sup{|Z(f) — Za(HI/Z(f) : f € My} <0.5x 1077

for formulae of degree up to 19 and < 0.5 x 107!? for degree 20. The numerical values
of the parameters are given to 12 digits. The DUNLSF subroutine solves the nonlinear
equations in the least square sense; that is, it finds the minimal solution of > f#(x),
where f; = 0 are nonlinear equations. In our computation, equations in (3.4) involve
high powers of polynomials which are sensible to perturbations; for example, for M = 20,
a perturbation in the 5-th decimal place of our solution did not change the order of
the relative error 10712, For M large, the accuracy of the solution found by DUNLSF
subroutine is limited by the machine accuracy. Because the computer we used has limited
precision of 15 digits, we stopped at M = 21.

4. FINAL COMMENTS

We comment on some perspectives that are not covered in the present paper.

Remark 4.1. Theorem 1.1 establishes the connection between cubature formulae on %4
and Zg X -++ X Zg symmetric cubature formulae on S? In [27] we also establish a
connection between cubature formulae on the ball B? and on S?, and the connection
has been used to construct cubature formulae on S? in [7]. Together, these results yield a
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correspondence between cubature formulae on ¢ and Zs X - - - x Zy symmetric formulae
on B?. In particular, a cubature formula for the weight function Wy on %2 corresponds
to a formula for the weight function 1/4/1 — 27 — 22 on B*. Thus, the results in Sections
2 and 3 also lead to Zgy x Zg x Zo symmetric formulae on B%. On the other hand, those
formulae constructed in [7] that are Zy x Zg X Zy symmetric lead to formulae on 2.
However, not all formulae on B? in [7] are fully symmetric. In fact, the correspondence
between formulae on B? and on S? is not restricted to Zg x Zo x Zo symmetric formulae.

Remark 4.2. The connection between cubature formulae on S¢, ¢ and B? works for
a large class of weight functions. In particular, cubature formulae for the unit weight
function on 2 corresponds to Zg X Zg X Zg symmetric formula for |z 2273 |dw on S? and
for weight function |xyx2| on B%; and Zg X Zy x Zo symmetric cubature formulae for the
unit weight function on B* correspond to formula for (1/,/z122) on X?. For examples of
formulae for the unit weight function on these domains, see the references in [22,24].

Remark 4.5. The connection between formulae on the three domains works also in higher
dimension. Although a number of formulae of lower degrees have been constructed for
the unit weight function in the literature (see [2, 5, 22, 24]), it may be of interests to
construct formulae for the weight function (uy - ug(l —u; — ... — ud))_1/2 on 2% and
use them to generate cubature formulae on S¢. To our knowledge, the calculation of
symmetric cubature formulae for this weight function on ©¢ for d > 2 has not been taken
previously, although the consistency conditions have been studied in [8] and [17]. For
the unit weight function, some symmetric formulae of lower degrees on ©¢ have been
constructed, see [2, 8, 22, 24] and ther references there.

Ackowledgement: The authors thank referees for their useful comments.

APPENDIX

We give the weights and nodes for the cubature formulae described in Section 3. The
cubature formulae on S? are of the form (1.6) with W(x) = 1/4r. Because of the
symmetry, for each weight p; we need to give only one node (vg1,vk2,vk3). For a
formula of type [ng;my, mg, m3; my, ms], the nodes corresponding to ng, my and my are

(V1/3.V/1/3.4/1/3), (1,0,0), (V1/2,/1/2,0),

respectively; the weights corresponding to them are ug, @1 and ps. Note that some or all
of wo, pt1, 2 could be zero, which means that the corresponding node does not show up
in the formula.

For each formula we give the value of nonzero p;, ¢ = 0,1, 2, first, those that are not
given are understood as zero. We then given the table for the other nodes (v; 1, v 2,vi3)
and the corresponding weights p; start with ¢ = 3 and follow the order of mgs, m4 and
ms; that is, the type m3 nodes are listed first, then the m, type and followed by the ms

type.
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Degree 13: [0;1,0,2;1,0]; N =78

w1 = 0.013866592105

Ly

Yq

)

i

U |

0.286640146767
0.659905001656
0.539490098706

0.914152532416
0.659905001656
0.841991943785

0.286640146767
0.359236381200
0.0

0.013050931863
0.013206423223
0.011942663555

Degree 15: [0;1,1,2;1,0]; N =90

w1 = 0.013191522874,

pe = 0.011024070845

Ly

Y

<

i

U |

0.337785899794
0.658511676782
0.399194381765

0.878522265967
0.658511676782
0.916866318264

0.337785899794
0.364314072036
0.0

0.010538971114
0.011656960715
0.010660818696

Degree 17: [1;1,0,2;2,0]; N = 110

to = 0.009103396603,

11 = —0.002664002664

Ly

Y

<

i

=23 ST JUN B

0.357406744337
0.678598344546
0.542521185161
0.222866509741

0.862856209461
0.678598344546
0.840042120165
0.974848972321

0.357406744337
0.281084637715
0.0
0.0

0.010777836655
0.009161945784
0.009798544912
0.009559874447

Degree 19-1: [1;1,1,2;1,1]; N = 146

to = 0.008559575701,

w1 = 0.006231186664,

p2 = 0.007913582691

Ly

Y

<

i

=23 ST JUN B

0.201742306653
0.675586904541
0.443668207806
0.496188289109

0.958436269875
0.675586904541
0.896191118781
0.814892033188

0.201742306653
0.295236631918
0.0

0.299579965948

0.007736373931
0.004644831902
0.007625284540
0.006646198191

Degree 19-2: [1;0,0,4;0,1]; N = 152

to = 0.006159164865

Ly

Y

<

i

- O U |

0.154480689145
0.414167295917
0.667293171280
0.703446477338
0.449332832327

0.975843959536
0.810512740174
0.667293171280
0.703446477338
0.882270011260

0.154480689145
0.414167295917
0.330816636714
0.101617454410
0.140355381171

0.007661426126
0.006632044977
0.006075982031
0.005261983872
0.006991087353

Degree 21-1: [1;1,1,3;1,1]; N =170




16

to = —0.056995598467,

p1 = 0.005570590570
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, 2 = 0.004620905358

Ly

Y

<

i

BN =N, BTNICH

0.186798108665
0.366886721514
0.607095656232
0.399651971962
0.573253885705

0.964475470501
0.854861548529
0.607095656232
0.916666952228
0.795085657737

0.186798108665
0.366886721514
0.512708229276
0.0

0.198037318162

0.006173897540
0.006304034638
0.025447255860
0.006599388582
0.006218761274

Degree 21-2: [1;1

to = —0.007545260195,

,1,2;2.1]; N =170

p1 = —0.004709932317,

ps = 0.006599231780

Ly

Y

<

i

- O U |

0.295937832153
0.519472253003
0.446007176001
0.165319162227
0.566806527713

0.908207905163
0.678452029786
0.895029384409
0.986240120154
0.782784716286

0.295937832153
0.519472253003
0.0
0.0
0.256862702801

0.007200919394
0.008304183973
0.006872624447
0.006895630527
0.006393131123

Degree 21-3: [1;0,0,3;2,1]; N = 176

Ho

—0.059097949898

Ly

Y

<

i

0 =1 O Ut ok | T

0.136045412794
0.321321668532
0.547239633521
0.645751079582
0.407685091182
0.568997367119

0.981317120668
0.890788847406
0.633291060261
0.763547996670
0.913122591128
0.784986512893

0.136045412794
0.321321668532
0.547239633521
0.0
0.0
0.245026877683

0.005922907575
0.006504946198
0.025578972384
0.003940466271
0.006943311404
0.006237689734

Degree 21-4: [0;0,0,3;1,2]; N =192

Ly

Y

<

i

0 =1 O Ut ok | T

0.121942991996
0.405172013544
0.635692088835
0.601743299291
0.595006226182
0.368090580737

0.985017671621
0.819555537399
0.635692088835
0.798689552804
0.774595852605
0.919422462557

0.121942991996
0.405172013544
0.437939649249
0.0

0.214403488618
0.138461762661

0.004843132969
0.005906722557
0.005570538352
0.004679374357
0.004559352813
0.005774096403

Degree 21-5: [0;0,0,3;1,2]; N =192
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Ly

Y

<

i

0 =1 O Utk | T

0.114731000078
0.505750398065
0.682741864646
0.590785303447
0.467118005205
0.344252417343

0.986749003163
0.698879867870
0.682741864646
0.806828807884
0.838405331367
0.930159244514

0.114731000078
0.505750398065
0.260244293924
0.0

0.280850973913
0.127648160971

0.004256407290
0.005470376179
0.006041707753
0.006478529177
0.004792379399
0.004917443735

Degree 21-6: [1;0,0,2;0,3]; N = 200

to = 0.005200472756

Ly

Yq

)

i

-1 O Ut W

0.124787616061
0.382642965364
0.580333662379
0.600802371831
0.371677251651

0.984304882522
0.840933244743
0.729548523912
0.789769929774
0.918768165963

0.124787616061
0.382642965364
0.361900250852
0.123693039525
0.133120538678

0.005028347403
0.004910500721
0.004214767940
0.005272844391
0.005509551481

Degree 23-1: [0;1,0,4;2,1]; N =198

w1 = 0.005026500922

Ly

Yq

)

Hi

N=SEE IS B - S, BT JCH e

0.176588660459
0.339207318490
0.498904016243
0.679838773734
0.615520670749
0.364554848325
0.491903042583

0.968314458218
0.877426230612
0.708653346251
0.679838773734
0.788120741943
0.931181917008
0.842732170863

0.176588660459
0.339207318490
0.498904016243
0.275024514281
0.0

0.0

0.218709590304

0.005279416073
0.003732271633
0.006051284349
0.005561610887
0.005177363547
0.005381929440
0.004613082753

Degree 23-2: [1;0,0,5;1,1]; N = 200

to = 0.005651017861

Ly

Y

<

i

NSNS B =20 2 T~ JCH B

0.115535209070
0.282433358777
0.441560530469
0.670525624125
0.706832372661
0.345770219761
0.525118572444

0.986561316356
0.916767579979
0.781056077285
0.670525624125
0.706832372661
0.938319218138
0.836036015482

0.115535209070
0.282433358777
0.441560530469
0.317475628644
0.027856667351
0.0

0.159041710538

0.004259841569
0.005294395887
0.005588219406
0.005591297404
0.002936895883
0.005051846065
0.005530248916

Degree 23-3 [1;0,0,4;2,1]; N = 200

to = —0.013079151392
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Ly

Y

<

1

NSNS = T2 T~ JCH B

0.083820743273
0.208890425565
0.527146296056
0.684194032927
0.599358474983
0.364297979633
0.461647695180

0.992949226292
0.955368818946
0.666508488400
0.684194032927
0.800480742096
0.931282439454
0.847134675079

0.083820743273
0.208890425565
0.527146296056
0.252501585372
0.0

0.0

0.263143017794

0.002613177651
0.004696071564
0.010074474289
0.005747985286
0.005781262714
0.005394066441
0.005859672926

Degree 25-1: [1;0,0,5;1,2]; N = 248

to = 0.004313243133

Ly

Y

<

i

© 0 =1 O U W e

—_
o

0.111691690919
0.315067166823
0.459462014542
0.660753497156
0.702154945166
0.532020255731
0.519695051509
0.329337385202

0.987446166816
0.895245977808
0.760124538735
0.660753497156
0.702154945166
0.846731626604
0.822359911686
0.938200966027

0.111691690919
0.315067166823
0.459462014542
0.356103400703
0.118139180447
0.0

0.231605762210
0.106375909186

0.003986365505
0.003663031548
0.004204049922
0.004269004376
0.004203472415
0.004142483118
0.004090305599
0.003789950437

Degree 25-2: [0;0,0,5;0,3]; N = 264

Ly

Yq

)

1

© 0 =~ O Ut = W .

—_
o

0.107086858755
0.333879222938
0.515654412063
0.668811941305
0.702834079289
0.520513375926
0.523649799991
0.320409052387

0.988465886798
0.881504015295
0.684252186435
0.668811941305
0.702834079289
0.792782385892
0.845078822417
0.940317942977

0.107086858755
0.333879222938
0.515654412063
0.324624666862
0.109765723158
0.317114985615
0.107854860213
0.114630734376

0.003694297843
0.003835709610
0.004019086734
0.003295936329
0.004023268501
0.003428775431
0.003917073182
0.004053335212

Degree 27-1: [1;0,0,6;1,2]; N = 272

to = 0.004205508418
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Ly

Y

<

i

© 0 =1 O U W e

— =
O

0.110768319347
0.222696255452
0.322320222672
0.462107300704
0.660712667463
0.702450665599
0.525731112119
0.524493924092
0.323348454269

0.987654169666
0.949111561206
0.890067046976
0.756910619077
0.660712667463
0.702450665599
0.850650808352
0.819343388819
0.939227929750

0.110768319347
0.222696255452
0.322320222672
0.462107300704
0.356254883628
0.114569301299
0.0

0.231479015871
0.115311201101

0.003927799571
-0.000407112852
0.003694205329
0.004136341725
0.004202512176
0.004176738239
0.004229582701
0.004071467594
0.004080914226

Degree 27-2: [1;1,0,5;0,3]; N = 278

po = 0.004145413998,

w1 = —0.001001399850

Ly

Yq

)

i

© 0 =~ O U = W .

—_
o

0.103271889407
0.326015048812
0.464476869175
0.661042838405
0.702427075066
0.523633133581
0.526385749330
0.324014265315

0.989277430106
0.887371610937
0.754004294419
0.661042838405
0.702427075066
0.818640861296
0.849564329470
0.939146832366

0.103271889407
0.326015048812
0.464476869175
0.355027789879
0.114858210103
0.235871748274
0.034036641931
0.114096376493

0.004007770760
0.003609101265
0.004065377803
0.004167019227
0.004176827652
0.003963497360
0.002254418391
0.004036641877

Degree 27-3: [0;0,0,5;1,3]; N = 288

Ly

Y

<

i

© 0 =1 O U W e

—_
o

[
[

0.110332978624
0.319075401552
0.453117779552
0.614431551407
0.702545464357
0.530118512908
0.622283431805
0.517277385525
0.326096877477

0.987751622452
0.892402250249
0.767703429527
0.614431551407
0.702545464357
0.847923559216
0.708196634681
0.826495160269
0.939054487386

0.110332978624
0.319075401552
0.453117779552
0.494921950685
0.113400798163
0.0

0.333497911729
0.222103256339
0.108800258362

0.003893829077
0.003606286203
0.003808504359
0.002421634085
0.004077606558
0.004062279727
0.002263516691
0.003782934834
0.003851811803

Degree 29: [0;0,0,6;0,4]; N = 336

19
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Ly

Y

<

i

© 0 =1 O U W e

— =
O

12

0.072505573442
0.310481161354
0.440992773670
0.527582710733
0.659924119492
0.699729990451
0.594169250176
0.531107498266
0.426665999347
0.247454899976

0.994729050365
0.898444709979
0.781697350093
0.665817517546
0.659924119492
0.699729990451
0.802748431448
0.806604859340
0.898209890946
0.963715742772

0.072505573442
0.310481161354
0.440992773670
0.527582710733
0.359166135688
0.144069014458
0.050575270178
0.259448311183
0.105712425044
0.100090157417

0.001894697146
0.003783811492
0.003012182159
0.002724403361
0.003559107906
0.003227454716
0.002024884516
0.003467968868
0.003229411196
0.003010240364

Degree 31: [1;0,0,4;3,4]; N = 368

to = 0.000578329494

Ly

Yq

)

i

© 0 =~ O Ut = W .

N
N o= O

13

0.097855721318
0.336734048041
0.521197545604
0.658338802723
0.635957331845
0.475363041502
0.291089031268
0.622288265573
0.505117362658
0.461391815178
0.289362045905

0.990377966037
0.879329495570
0.675800441634
0.658338802723
0.771724220219
0.879789735547
0.956695968360
0.760613900822
0.786669092004
0.869489953690
0.943297248354

0.097855721318
0.336734048041
0.521197545604
0.364938408033
0.0

0.0

0.0

0.184996779450
0.354976322629
0.176365567271
0.162665016636

0.003061522104
0.002631322890
0.002821112765
0.002963046287
0.002854170188
0.002771653333
0.002626546226
0.002893976172
0.002837749321
0.002715804588
0.002424728107

Degree 33: [1;0,0,6;1,5]; N = 416

to = 0.002848140682

Ly

Yq

)

Hi

© 0 =~ O Ut = W .

e
W N = O

14

0.087642362514
0.244826259453
0.373613468997
0.483960471286
0.648358940509
0.692365152833
0.424680986592
0.663530717023
0.560342562719
0.544103582859
0.408251323723
0.259902436546

0.992289087205
0.938147219451
0.849014694553
0.729084716933
0.648358940509
0.692365152833
0.905343061843
0.747173970345
0.821357965819
0.784667458480
0.892327016644
0.962160309302

0.087642362514
0.244826259453
0.373613468997
0.483960471286
0.399075642609
0.203128014525
0.0

0.038184363366
0.106711313324
0.297066104970
0.192570382056
0.081842914665

0.002449327062
0.002179377451
0.002653179507
0.002817792197
0.002832643891
0.002776115721
0.002634851612
0.001044959201
0.002552267148
0.002771951327
0.002540900745
0.002276921078

Degree 35: [1;0,0,8;2,4]; N = 440




to = 0.002515482567

CUBATURE FORMULAE FOR SPHERE AND TRIANGLE

Ly

Yq

)

Hi

© 0 =~ O U = W .

S S = S S S S G
S U AW NN = O

0.069156813118
0.175148458557
0.285287793163
0.392405552644
0.491306203394
0.645641884498
0.690921150829
0.707101476221
0.471598691154
0.210272522872
0.590515704894
0.555015236112
0.450233038264
0.334436314543

0.995205843230
0.968837465693
0.914998224121
0.831886870018
0.719191510665
0.645641884498
0.690921150829
0.707101476221
0.881813287778
0.977642811115
0.799927854385
0.771746262687
0.868946032283
0.937180985852

0.069156813118
0.175148458557
0.285287793163
0.392405552644
0.491306203394
0.407790527065
0.212734404066
0.003873584007
0.0

0.0

0.106801826076
0.310428403520
0.205482369646
0.099217696370

0.001527515529
0.002054028840
0.002318417781
0.002451618442
0.002504293398
0.002513606412
0.002529886683
0.001275574306
0.002417442376
0.001910951282
0.002512236855
0.002496644054
0.002416930044
0.002236607760

Degree 37: [1;0,0,5;1,8]; N = 536

to = 0.001436589472

Ly

Yq

)

i

© 0 =~ O U W .

I = T S e Y
S U W NN = O

0.181665204347
0.303427242195
0.483529149430
0.625463680619
0.705074619796
0.444572576129
0.630713490341
0.596705492981
0.587046661123
0.505464222397
0.458746299673
0.369539839929
0.277639225331
0.116956662074

0.966434429777
0.903251801763
0.729656853119
0.625463680619
0.705074619796
0.895742833940
0.746274388124
0.724560936181
0.807169311670
0.844656624412
0.824994538226
0.915094022626
0.958974697835
0.992865475735

0.181665204347
0.303427242195
0.483529149430
0.466465827743
0.075759890693
0.0

0.212779300527
0.344897092487
0.062079948160
0.176241614590
0.330054305281
0.161379169844
0.057306103258
0.023222538401

0.002233871811
0.002119180525
0.002281458727
0.001864035223
0.001858409063
0.002336486555
0.001818751796
0.001961713367
0.001611967438
0.001942087580
0.002245940979
0.001967307858
0.001561575961
0.001137835823

Degree 39-1: [0;0,0,4;1,10]; N = 600

21
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i T; Yi 2 Hi

3 0.067102856429 0.995487023179 0.067102856429 0.001461069347
4 0.338906615896 0.877658596154 0.338906615896 0.002081064425
5 0.448234256905 0.773415866060 0.448234256905 0.002003883131
6 0.701808440747 0.701808440747 0.122187663015 0.001868396116
7 0.633404727273 0.773820684311 0.0 0.001974704892
8 0.563818465348 0.651676642607 0.507371946024 0.001120631568
9 0.628884552131 0.731765201351 0.262724019044 0.001626513803
10 | 0.568134999733 0.808896715135 0.151356289337 0.001822889111
11 | 0.490729623093 0.818248053726 0.299423712476 0.001943309150
12 | 0.589988659798 0.705342105582 0.392945155719 0.001766607242
13 | 0.493911282058 0.868009534637 0.051098857469 0.001361185877
14 | 0.415275416293 0.891987868825 0.178616825894 0.001852624903
15 | 0.350457251849 0.935213276436 0.050555338040 0.001383169283
16 | 0.278497898816 0.940831443705 0.193067643306 0.001483291414
17 | 0.205495716318 0.975518961862 0.078321552738 0.001778552026

Degree 39-2: [0;0,0,4;1,10]; N = 600

1 z; Yi 2 ti

3 0.076392926087 0.994146991992 0.076392926087 0.001861255447
4 0.338772022760 0.877762515257 0.338772022760 0.001793884349
5 0.454420421720 0.766161967633 0.454420421720 0.001974756953
6 0.688478852474 0.688478852474 0.228021357313 0.001692017041
7 0.519110405221 0.854707193834 0.0 0.001863462235
8 0.570664193557 0.653131915106 0.497756044325 0.001291965571
9 0.595919741511 0.712690180359 0.370070761473 0.001931700943
10 | 0.646378012450 0.759163172837 0.076594660580 0.001947222607
11 | 0.588862981291 0.775828653959 0.226561887708 0.001433019874
12 | 0.385384000208 0.903175728662 0.189084043588 0.001705425390
13 | 0.476387123224 0.823112602544 0.309096995068 0.001832278975
14 | 0.512379521668 0.846931416658 0.142036619409 0.001646505349
15 | 0.255068480104 0.944108152303 0.208805812209 0.001064763221
16 | 0.227252272934 0.970698830744 0.078103677500 0.001894382989
17 | 0.375230766664 0.925197335485 0.056672410922 0.001493380402
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