
CONSTRUCTING CUBATURE FORMULAE FORTHE SPHERE AND FOR THE TRIANGLESangwoo Heo and Yuan XuJuly 1, 1997; revised, January 25, 1998Abstract. It has been shown recently that Z2� � � ��Z2 symmetric cubature formulae forthe unit sphere Sd are characterized by cubature formulae on the standard simplex �d. Inparticular, cubature formulae for the surface measure on S2 correspond to the symmetriccubature formulae for the weight function (u1u2u3)�1=2 , where u3 = 1 � u1 � u2, onthe triangle �2. In this paper we construct cubature formulae for the weight function(u1u2u3)�1=2 on the triangle and, using the correspondence, cubature formulae for thesurface measure on the unit sphere.1. IntroductionFinding e�ective cubature formula for integrals over a region in Rd is a problem of vastdimensions. It is often necessary to limit the scope to constructing cubature formulaefor a particular setting. Indeed, most of the results in the literature deal with formulaewith respect to the unit weight function over one of the standard regions. The regionsthat attract most of the attention are cubes, balls, simplices and spheres. We refer to[5, 22, 24] for some of the references. Recently we have shown that cubature formulaefor spheres, for balls and for simplices are very closely related and even equivalent inmany cases. In [27], a correspondence between cubature formulae on the unit sphereSd of Rd+1 and on the unit ball Bd of Rd is discovered, which is used to construct newformulae for S2 in [7], and in [28] a correspondence between Z2 � � � � �Z2 symmetriccubature formulae on Sd and cubature formulae on the simplex �d of Rd is revealed,which also implies an equivalence between Z2� � � � �Z2 symmetric formulae on Bd andcubature formulae on �d. In both cases the results are established for a large class ofweight functions; in particular, the cubature formulae with respect to the surface measureon S2 correspond to the formulae with respect to the weight functions (1� x21 � x22)�1=2on B2 and (u1u2u3)�1=2 on �2, where u3 = 1 � u1 � u2. The correspondence allows usto obtain new cubature formulae on one region from formulae over another region.1991 Mathematics Subject Classi�cation. 65D32, 41A55, 41A63.Key words and phrases. Cubature formulae, on the unit sphere, on the triangle, symmetric formulaon a triangle, octahedral symmetry.Supported by the National Science Foundation under Grant DMS-9500532. Typeset by AMS-TEX1



2 SANGWOO HEO AND YUAN XUIn this paper we construct cubature formulae for (u1u2u3)�1=2 on �2 and use theresult to generate formulae for the surface integral on S2. First we state the correspon-dence. Throughout this paper we denote by �dn the space of polynomials of degree atmost n in d variables (d = 2 or 3), and we denote by �2 the triangle with vertices at(0; 0), (1; 0) and (0; 1). Let W be a weight function de�ned on R3, normalized so thatRS2 W (y21 ; y22 ; y23)d! = 1. Associate to W we de�ne a weight function W� on the triangle�2 byW�(u1; u2) = 2W (u1; u2; 1� u1 � u2)=pu1u2(1 � u1 � u2); (u1; u2) 2 �2:Then the correspondence in [28] states thatTheorem 1.1. Let W and W� be de�ned as above. Suppose that there is a cubatureformula of degree M on �2 given by(1.2) Z�2 f(u1; u2)W�(u1; u2)du1du2 = NXk=1�kf(uk;1; uk;2); f 2 �2M ;whose N nodes lie on the simplex �2. Then there is a cubature formula of degree 2M +1on the unit sphere S2,ZS2 g(y1; y2; y3)W (y21 ; y22 ; y23)d!(1.3) = NXk=1�k X"i=�1 g("1vk;1; "2vk;2; "3vk;3)=2ak ; g 2 �32M+1;where ak is the number of nonzero elements among vk;1,vk;2 and vk;3, and the nodes(vk;1; vk;2; vk;3) 2 S2 are de�ned in terms of (uk;1; uk;2) by(1.4) (vk;1; vk;2; vk;3) = (puk;1;puk;2;p1� uk;1 � uk;2):On the other hand, if there exists a cubature formula of degree 2M +1 on S2 in the formof (1.4), then there is a cubature formula of degree M on the simplex �2 in the form of(1.3) whose nodes (uk;1; uk;2) 2 �2 are de�ned by (uk;1; uk;2) = (v2k;1; v2k;2).The formula (1.3) is invariant under the change of signs, or invariant under the groupZ2�Z2�Z2. The theorem establishes the equivalence between (1.2) and (1.3). In [28]this theorem is proved more generally for formulae on the sphere Sd and the simplex �dfor all d. When W (x) = 1=!2 = 1=4� is the surface area of S2, the corresponding weightfunction on �2 is the multiple of the weight function (u1u2u3)�1=2, which we will denoteby W0; that is,(1.5) W0(u1; u2) = (u1u2(1� u1 � u2))�1=2=2�; (u1; u2) 2 �2:



CUBATURE FORMULAE FOR SPHERE AND TRIANGLE 3The construction of cubature formulae in this paper will be carried out only for W0.Most of the cubature formulae for �2 in the literature are constructed for the unit weightfunction; the correspond formulae (1.3) on S2 are with respect to jy1y2y3jd!.This theorem allows us to construct cubature formulae for the surface measure on S2by working with cubature formulae for W0 on the triangle. In the literature almost allcubature formulae for the simplex are constructed for the unit weight function, see therecent survey [16]. In Section 2, we will construct a few minimal cubature formulae oflower degrees forW0 on �2 and discuss the corresponding formulae on S2. The main partof this paper is in Section 3, in which we adopt the method by Lyness and Jespersen in [17]to construct symmetric cubature formulae on �2, which are formulae that are invariantunder the symmetric group of the triangle. When the formula (1.2) on �2 is symmetric,the corresponding formula (1.3) in Theorem 1.1 is invariant under the octahedral group,which is the symmetric group of the unit cube f�1;�1;�1g in R3. In this case, theformula (1.3) is of the formZS2g(y1; y2; y3)W (y21 ; y22 ; y23)d!(1.6) = NXk=1�kX� X"i=�1 g("1vk;�1 ; "2vk;�2 ; "3vk;�3); g 2 �32M+1;where the second sum is taken over all permutations of � = (�1; �2; �3). Formulae ofthis type have been constructed by Lebedev [12 { 15]. It is called fully symmetric in [24,10] and has been studied for Sd in [8], which contains another correspondence betweenfully symmetric formulae on Sd and cubature formulae on �d, namely, a correspondencebetween the consistent rule structure on these two regions.Numerical integration on the sphere has attracted a lot of attentions, we refer to [1,2, 5, 8, 12{15, 19, 22, 24] and the references there. Most formulae have been constructedby making use of symmetry to reduce the number of moment equations that have tobe solved (see, for example, Sobolev [23] and MacLaren [18]). The fundamental resultof Sobolev states that a cubature formula invariant under a �nite group is exact for allpolynomials in a subspace P if, and only if, it is exact for all polynomials in P that areinvariant under the same group. The group that has been under intense study is theoctahedral group; Lebedev constructed in [12 {15] cubature formulae of degree up to 59,many of them have the smallest number of nodes among all formulae that are known.Working with symmetric cubature formulae on �2, we are able to �nd many formulaeon S2 that Lebedev did not consider (see Section 3). There are also formulae that areinvariant under the icosahedral group, which have, however, no correspondence on thetriangle, since they are not symmetric under Z2�Z2�Z2 in the �rst place. We refer to[5, 22, 24] and the references there for other papers that deal with cubature formulae onthe sphere, see also [1] in which formulae are constructed making use of symmetry and aTaylor expansion formula.2. Cubature formulae of lower degree on triangle and on sphereIn this section we present a list of minimal cubature formulae of lower degrees for theweight function W0 on �2. A cubature formula of degree M is minimal if its number of



4 SANGWOO HEO AND YUAN XUnodes is minimal among all cubature formulae of degree M . For W0 on �2 it is knownthat the lower bound for the number of nodes is given byN2n(�2) � �n+ 22 � and N2n�1(�2) � �n+ 12 �+ hn2 i:(cf. [20, 22]). We show here that for n up to 7 the above lower bound is attained for W0.There is a close relation between common zeros of orthogonal polynomials and cubatureformulae. For example, if a cubature formula attains M�oller's lower bound of odd degreeformula ([20]), then its nodes are common zeros of a family of linearly independentpolynomials Q1; : : : ; Qr of degree n, where r = n+ 1� [n=2], and each Qi is orthogonalto polynomials of lower degrees (see [20]). There are far more general results in thisdirection, we refer to [20, 22, 25, 26]. For the weight functionW0, one basis of orthonormalpolynomials can be given explicitly in terms of Jacobi polynomials P (�;�)k ,Pnk (x1; x2) = hnkP (2k;�1=2)n�k (2x1�1)(1�x1)kP (�1=2;�1=2)k (2x2(1�x1)�1�1); 0 � k � n;where hnk are constants chosen so that Pnk are normalized. The ordinary spherical harmon-ics invariant under the group Z2�Z2�Z2 are characterized by orthogonal polynomialswith respect to W0. This fact is a corollary of a general result proved in [28] (see also[4]) that, together with Sobolev's theorem, leads to Theorem 1.1.One interesting fact is that some of the minimal formulae forW0 can be obtained fromknown cubature formula on S2 in [22, 24] via the correspondence in Theorem 1.1. Wefound minimal cubature formulae of degree 3 and 5 for W0 on �2 this way from [24,Un:7-2] (specify n = 3) and [24, U3: 11-2], respectively. We also constructed minimalformulae of degree 4 and 7, as well as a new minimal formula of degree 3 by following themethod that has worked for the unit weight function on �2. In the following we presentthe new minimal formulae forW0. Each formula is given by its nodes and weights; we listthem in lines with each line containing one weight on the right and node(s) associatedwith the weight on the left. We also give polynomials whose common zeros are the nodes.It should be mentioned that we have normalized the weight function W0 so that it hasintegral 1. If one uses just 1=pu1u2u3, then there will be a multiplication factor 2� inthe weights �i of the cubature formula.Degree 3: N = 4,(1=3; 1=3); �9=40(1=7; 1=7); (1=7; 5=7); (5=7; 1=7); 49=120This formula is minimal and also symmetric on �2. It is obtained from [24, p. 301, Un:7-2], specifying n = 3, via Theorem 1.1. It has one negative weight.Degree 3: N = 4,((15 + 2p30)=35; (10�p30�p65� 10p30)=35); (18�p30)=72((15 � 2p30)=35; (10 +p30�p65 + 10p30)=35); (18 +p30)=72



CUBATURE FORMULAE FOR SPHERE AND TRIANGLE 5This is a minimal formula. It is found by computing the common zeros of orthogonalpolynomials P 20 and P 22 . It is not symmetric on �2 but all weights are positive.Degree 4: N = 6, the nodes (x1; y1); : : : ; (x6; y6) are given by(0; 0); 1=15(0; 2(7 +p7)=21); �1(a2; b2); (b2; a2); �2(ai; bi); �i; i = 3; 4witha2 = 121�7�p7�q28� 7p7 �; b2 = 121�7�p7 +q28� 7p7 �;a3 = 121�28� 6p7�q714� 259p7 �; b3 = 121�� 14 + 8p7 +q714� 259p7 �;a4 = 121�28� 6p7 +q714� 259p7 �; b4 = 121�� 14 + 8p7�q714� 259p7 �;�1 0.1122079561300387�2 0.1892374781489235�3 0.2227545696261541�4 0.2198958512792939This is a minimal cubature formula. It is obtained by the method of reproducing kernel(cf. [21]). We choose the �rst point as (0; 1) and the second point as (0; 2(7 +p7)=21)),which is one zero of K2((x1; x2); (0; 0)) = 855(1� 14t+ 21t2) where t = 1� x1 � x2.Degree 5: N = 7, (1=3; 1=3); 9=70(a; b); (b; a); (b; b); �1(c; d); (d; c); (d; d); �2with a = (9� 4p3)=33; b = (15 + 8p3)=33;c = (15 + 8p3)=33; d = (9 + 4p3)=33;�1 = (122 + 9p3)=840; �2 = (122� 9p3)=840:This formula is minimal and also symmetric on �2. It is obtained from [24, p. 301, U3:11-2] via Theorem 1.1. Its nodes are common zeros of orthogonal polynomials P 31 , P 33and P 30 + P 32 =p7.Degree 7: N = 12,(xi; yi); (1 � xi � yi; xi); (yi; 1� xi � yi); �i



6 SANGWOO HEO AND YUAN XUi xi yi �i1 0.03580765622 0.03752772328 0.094580162092 0.66398055628 0.03149046699 0.088587496463 0.26858535175 0.19042737706 0.080885474464 0.68672614839 0.29513413158 0.06928020033This formula is minimal. When it is transformed to the equilateral triangle 4 (seethe next section), it leads to a formula that is invariant under the rotation by 2�=3.Formulae with this symmetry are discussed in [6], which we followed to �nd this formula.A minimal formula of degree 7 is constructed in [6] for the unit weight function.In the Table 2.1 below, we list these formulae of degree 3 to 7 on �2 together with othersthat can be obtained from the formulae on S2 via Theorem 1.1. Whenever a formula isobtained via Theorem 1.1, we give reference from [24, p. 295-301]. The minimal formulaeare marked by an asterisk. Table 2.1. Formulae on �2Degrees N Reference3 4�4� Un : 7� 2, n = 37 U3 : 7� 24 6�7 U3 : 9� 19 U4 : 9� 210 U3 : 9� 35 7� U3 : 11� 210 U3 : 11� 113 U3 : 11� 37 12�The three new minimal formulae of degree 3, 4 and 7 yield new cubature formulae onS2 of degree 7, 9 and 15. The result is presented in the following table, in which we alsoinclude the minimal number of nodes, N�, among all Z2�Z2�Z2 symmetric formulaeof the same degree that are known.Table 2.2. Formulae on S2Degrees N N�7 32 26, [24; U3 : 7� 2]9 42 32, [24; U3 : 9� 1]15 96 86, [12]The table shows that these formulae on S2 use far more nodes than the minimal ones,although they are obtained from the minimal cubature formulae on �2. In fact, thenumber of nodes of the formula (1.3) in the Theorem 1.1 depends on how many nodes of(1.2) are on the boundary of �2. Let N0;N1 and N2 be the number of nodes in (1.2) thatare on the vertices, on the edges, and in the interior of the triangle. Then the number of



CUBATURE FORMULAE FOR SPHERE AND TRIANGLE 7nodes of (1.2) is equal to N0+N1+N2. Let NM (�2) and N2M+1(S2) denote the numberof nodes of the formula (1.2) and the formula (1.3), respectively. Then the followingrelation holds,(2.1) NM (�2) = N0 +N1 +N2 () N2M+1(S2) = 8N2 + 4N1 + 2N0:This formula also shows that minimal cubature formulae on S2 may not lead to minimalformulae on �2.3. Symmetric formulae on �2 and fully symmetric formulae on S2In this section, we consider symmetric formulae with respect to the weight functionW0on �2, which correspond to cubature formulae with octahedral symmetry on S2. In the�rst part of the section we present a method of constructing symmetric formulae givenby Lyness and Jespersen in [17]. Our �ndings of cubature formulae are discussed in theSubsection 3.2, and we discuss the numerical computation in Subsection 3.3.3.1. Symmetric formulae on �2. Instead of �2, Lyness and Jespersen used theequilateral triangle4 = f(x; y) : x � 1=2; p3y � x � 1; �p3y � x � 1g;whose symmetric group S3(4) is generated by a rotation through an angle 2�=3 and areection about the x-axis. The triangle �2 can be transformed into 4 by the a�netransformation(3.1) ' : (x1; y1) 2 �2 7! (x; y) 2 4; x = 3(x1 + x2)=2 � 1; y = p3(x2 � x1)=2:It is easy to see that invariance is preserved under '; in particular, if a function f de�nedon 4 is invariant under S3(4), then the function f � ' de�ned on �2 is invariant underS3(�2). The weight function W0 on �2 becomesW 04(x; y) = 3�3=2((1 + x)2 � 3y2)�1=2(1� 2x)�1=2=(2�)A basis for the class of S3(4)-invariant polynomials of degree at most n, denoted by�Gn , can be written down in terms of the polar coordinates x = r cos � and y = r sin � asfollows,(3.2) r2i(r3 cos 3�)j ; 0 � 2i + 3j � n:Moreover, working with functions g(r; �) = f(r cos �; r sin �) in polar coordinates, a basicinvariant cubature formula takes the formQ(r; �)g = 16 3Xj=1ng�r; � + 2�j3 �+ g�r;�� + 2�j3 �o;



8 SANGWOO HEO AND YUAN XUwhich is just a sum over the S3(4)-orbit of the point (r; �). Because of the invariance ofQ(r; �), we assume that r can take negative value and 0 � � < �=3. Three distinct types oforbits occur according to r = 0 (center of triangle); r 6= 0, cos 3� = 1 (median of triangle);and r 6= 0, cos 3� 6= 1. These three types are denoted as type 0, type 1 and type 2,whose corresponding Q(r; �)g requires 1, 3, or 6 function evaluations, respectively. Letni denote the number of orbits of type i in a symmetric cubature formula. The standard(holistic) type cubature formula takes the form(3.3) Q(g) = n0�0g(0; 0) + n1Xi=1 �iQ(ri; 0)g + n1+n2Xi=n1+1�iQ(ri; �i)g:The number of nodes of this formula, denoted by �(Q), is �(Q) = n0 + 3n1 + 6n2: Itis shown in [17] that the cubature formula Q(g) is of degree M if its nodes and weightssatisfy the following system of equations:�0 + n1Xi=1 �i + n1+n2Xi=n1+1�i = v0;0;n1Xi=1 �irji + n1+n2Xi=n1+1�irji cos 3k�i = vj;3k; 2 � j �M; k = k0;(3.4) n1+n2Xi=n1+1�irji (cos 3k0�i � cos 3k�i) = vj;3k; j = 6; or 8 � j �M;6 � 3k � j; j + k even;where k0 = 0 if j is even and k0 = 1 if j is odd, the numbers vj;3k are de�ned by(3.5) vj;3k = Z4 rj+1 cos 3k�W 04(r cos �; r sin �)drd�;the integral is over the region de�ned by (r cos �; r sin �) 2 4. For each M , the systemcontains E(M) = [(M2 + 6M + 12)=12]equations, where [x] denote the smallest integer less than or equal to x.It is often useful to construct cubature formulae that have some nodes on the edgesor at the vertices of the triangle. To describe such a formula, we use a sub-classi�cationof the types of basic formula Q(r; �). The type 1 (r 6= 0, cos 3� = 1) is split into threesub-types according to r = �1 (vertex), r = 1=2 (median of edge), and �1 < r < 1=2;the type 2 (r 6= 0, cos 3� 6= 0) is split into two sub-types according to r cos � = 1=2 (onan edge but not at median of the edge nor at a vertex), and r cos � 6= 1=2. Accordingly,n1, the number of orbits of type 1, is split as n1 = m1 +m2 +m3, and n2, the numberof orbits of type 2, is split as n2 = m4 +m5. Such a formula is called the cytolic type.A cytolic formula is identi�ed by [n0;m1;m2;m3;m4;m5]. We note that n0, m1 and m2can only be either 0 or 1.



CUBATURE FORMULAE FOR SPHERE AND TRIANGLE 9According to the discussion in the end of section 2, see (2.1), a cytolic cubature formulais preferable for obtaining, via Theorem 1.1, a cubature formula on the sphere with fewernodes. It is not hard to see that a cytolic formula [n0;m1;m2;m3;m4;m5] leads to acubature formula on S2 whose number of nodes is equal to(3.6) N(S2) = 8n0 + 6m1 + 12m2 + 24m3 + 24m4 + 48m5:A formula that has nodes on the vertices and edges of �2 uses more nodes than a formulathat has all nodes in the interior, but it leads to a formula on S2 with fewer nodes.The nonlinear system of equations (3.4) remains in the same form for the cytolictype formulae, we only need to assign proper values of certain ri and �i according tothe given type. To form the nonlinear system equations (3.4), we choose n0 and mi sothat the number of parameters matches with the number of equations. For the type[n0;m1;m2;m3;m4;m5], this means(3.7) n0 +m1 +m2 + 2m3 + 2m4 + 3m5 = [(M2 + 6M + 12)=12];where M , as before, is the degree of the cubature formula. For each �xed M there maybe a number of integer solutions to the above equation, leading to di�erent types ofcubature formulae. In this regard, the consistency conditions are very useful. Followingthe argument in [17] for the holistic type, the conditions for the cytolic type are2m4 + 3m5 �E(M � 6);m1 +m2 + 2(m3 +m4) + 3m5 �E(M) � 1;(3.8) n0 +m1 +m2 + 2(m3 +m4) + 3m5 �E(M):They are also included in the conditions found in [8] for d-dimensional simplex. Theseconditions ensure that there are enough unknown parameters to match part (properlyde�ned) or all of nonlinear equations, although they are neither necessary nor su�cientfor solving the equations. Another useful restriction is as follows.Theorem 3.1. A formulae of degree M is of type [n0;m1;m2;m3;m4;m5] only if(3.9) m5 > 8><>: (M � 9)=4; if m4 6= 0 and M � 9;(M � 6)=4; if m4 = 0 and M � 6;(M � 3)=4; if m3 = 0 and M � 3:Proof. Let `i, i = 1; 2; 3, be the linear polynomials such that `i = 0 give the equationsof the sides, and we choose the sign so that `i are nonnegative on 4. Let hi, i = 1; 2; 3,be the linear polynomials such that hi = 0 give the equations of the medians of 4.Furthermore, let gi, i = 1; 2; : : : ; n5, be the quadratic polynomials so that gi = 0 givesthe equation of the circle that has center at origin and radius ri. If m4 6= 0, then thepolynomial `1`2`3h21h22h23g21 : : : g2m5



10 SANGWOO HEO AND YUAN XUwill vanish on all nodes of the formula. Since the polynomial is positive on 4, its degreehas to be bigger than the degree of the cubature formula, which leads to the desiredinequality. If m4 = 0, then the factors `1`2`3 can be dropped from the polynomial,leading to the desired inequality in this case. If m3 = 0, then h21h22h23 can be droppedfrom the polynomial. �This theorem and its proof are extensions of the result in [17, p. 26], which deals withthe cases of M = 5; 6; 9. There are other conditions that can be derived this way; forexample, if both m3 and m4 are zero, then m5 > M=4. For �xed M , it is possible toidentify all possible integer solutions of (3.7) which also satisfy the restriction (3.8) and(3.9); the number of the solutions, however, is still large even for moderate M .Some particular choices of the types lead to a system (3.4) that is split into subsystemswith independent variables; the smaller size of the subsystem makes them easier to solve.Such a split is possible since the third group of the equations in (3.4) does not contain riand �i for i = 1; 2; : : : ; n1; and it occurs whenever m4 and m5 satisfy the equation(3.10) 2m4 + 3m5 = E(M � 6) = [(M2 � 6M + 12)=12];because the third group of equations contain E(M � 6) independent parameters. It isnot hard to check that the integer solutions of the above equation exist for every M � 7,except M = 10; hence, the splitting occurs for each M 6= 10. One important class offormulae that admits the splitting corresponds to the cubature formulae constructed byLebedev in [12{15] on S2 with octahedral symmetry. Apart from a few lower degreecases, Lebedev consider the formulae on S2 that correspond to the types(3.11) [1; 1; 0; 3m;m;m(m� 1)] and [1; 1; 1; 3m+ 1;m;m2];which are of degree 6m + 2 and 6m + 5, respectively; and he has constructed formulaefor m = 1; 2; 3; 4.Our strategy for choosing the type [n0;m1;m2;m3;m4;m5] is as follows. We searchfor types whose corresponding formulae on S2 have fewer nodes. This means �nding n0and mi, which satisfy (3.7), (3.8) and (3.9), so that N in (3.6) is minimal or close tominimal. To this end, we choose n0, m1 and m2 with value one whenever possible, andthen m5 as small as possible. As a starting point, we choose m4 and m5 satisfy (3.10) sothat the system (3.4) is split into subsystems.3.2. Fully symmetric cubature formulae on S2. We have attempted to �ndsymmetric cubature formulae of degree up to 20 on the triangle. There are some nonlinearsystems that we found no solution. For each M � 20, however, we found at least onetype of cubature formula that has all nodes inside 4 and have all positive weights, theycorrespond to cubature formulae on S2 of degree up to 41. Some of the formulae, however,have nodes outside 4, they will not lead to cubature formulae on S2 via Theorem 1.1.We report our �ndings as fully symmetric cubature formulae on S2 and list the resultsin Table 3.1 below. Each formula is identi�ed by its [n0;m1;m2;m3;m4;m5] type andwe give its number of nodes N . If a formula has all positive weight, we write P in thelast column, otherwise, we write N .



CUBATURE FORMULAE FOR SPHERE AND TRIANGLE 11Table 3.1. Fully symmetric cubature formula on S2Degrees Type # of Nodes Quality3 0;1,0,0;0,0 6 P [S]1;0,0,0;0,0 8 P [S]5 1;1,0,0;0,0 14 P [S]7 1;1,1,0;0,0 26 P [S]1;0,0,1;0,0 32 N [S]9 1;1,0,0;1,0 38 P [L]11 1;1,1,1;0,0 50 P [S]13 1;1,1,1;1,0 74 N [L]0;1,0,2;1,0 78 P15 1;1,0,2;1,0 86 P [L]0;1,1,2;1,0 90 P17 1;1,0,3;1,0 110 P [L]1;1,0,2;2,0 110 N19 1;1,1,3;0,1 146 P [L]1;1,1,2;1,1 146 P1;0,0,4;0,1 152 P21 1;1,1,3;1,1 170 N1;1,1,2;2,1 170 N1;0,0,3;2,1 176 N0;0,0,3;1,2 192 P (2)1;0,0,2;0,3 200 P23 1;1,1,4;1,1 194 P [L]0;1,0,4;2,1 198 P1;0,0,5;1,1 200 P1;0,0,4;2,1 200 N25 1;1,0,5;2,1 230 N [L]1;0,0,5;1,2 248 P0;0,0,5;0,3 264 P27 1;1,1,5;1,2 266 N [L]1;0,0,6;1,2 272 N1;1,0,5;0,3 278 N0;0,0,5;1,3 288 P29 1;1,0,6;2,2 302 P [L]0;0,0,6;0,4 336 P31 1;0,0,4;3,4 368 P33 1;0,0,6;1,5 416 P35 1;1,1,7;2,4 434 P [L]1;0,0,8;2,4 440 P37 1;0,0,5;1,8 536 P39 0;0,0,4;1,10 600 P (2)41 1;1,0,9;3,6 590 P [L]



12 SANGWOO HEO AND YUAN XUThe types marked by [S] correspond to formulae in Stroud's book [24], types markedby [L] correspond to formulae on S2 found by Lebedev. The types [0;1,0,2;1,0] of degree13 and [1;1,0,2;2,0] of degree 17 have been constructed by Keast in [8], but the numericalvalues of the nodes and weights are not given there. All other formulae in the table arenew; in particular, these include formulae of degrees 21, 31, 33, 37 and 39, where noformulae of the same degree are known previously, and formulae of degrees 25 and 27with all positive weights, where only formulae with negative nodes are known. We notethat all formulae found by Lebedev have smaller number of nodes on S2, although theircorresponding formulae on �2 are not. Lebedev also found one formula for each of degree47, 53 and 59 (the degree 41, 47, 53 are found in [15] joint with Skorokhodov). Becausethe system of equations (3.3) is nonlinear, its solution may not be unique. Indeed, inthe cases of [0; 0; 0; 3; 1; 2] of degree 21 and [0; 0; 0; 4; 1; 10] of degree 39, we found twosolutions in each case and we mark these cases by (2) in the table.For each formula that is not marked by [S] or [L], we give the numerical values of theweights and nodes in the Appendix.In the Table 3.1, we only include the types that we found solution and the solutionleads to a fully symmetric formula on the sphere. The types that we attempted and foundsolution with some nodes outside of the triangle are reported in the Table 3.2 below, thosetypes that we attempted but could not �nd a solution are not recorded. Moreover, westopped when one formula with all positive weights and all nodes inside 4 was foundfollowing our strategy, we did not attempt all possible types.Table 3.2. Cubature formula on triangle (PO or NO)Degrees Type # of Nodes Quality6 1;0,0,2;1,0 13 NO7 1;0,0,2;0,1 13 PO8 1;0,0,3;0,1 16 PO10 0;0,0,4;0,2 24 PO1;0,0,4;1,1 25 NO11 0;0,0,5;0,2 27 PO13 1;0,0,5;2,2 40 PO15 0;0,0,6;0,5 48 PO1;0,0,5;2,4 52 PO0;0,0,4;2,5 54 PO16 1;0,0,7;0,5 52 PO1;1,0,7;1,4 55 NO19 1;0,0;5;1,9 76 POIn the table we use the notation of [1], the symbol PO (or NO) means that the nodesare outside of the region and the weights are all positive (or some negative).Numerical computation that leads to symmetric cubature formulae for the unit weightfunction is carried out in [17] for M � 11 and in [3] for M � 20. The equations (3.4)in the cases of the unit weight function and the weight function W0 are of the sameform, except that the moments are di�erent, which only change the right hand side ofthe equations. Since the equations are nonlinear, formulae of the same type may possess



CUBATURE FORMULAE FOR SPHERE AND TRIANGLE 13di�erent quality for di�erent weight functions. For example, for the type [1; 0; 0; 6; 1; 2]of degree 13, we found a formula for W0 with some negative weights, while the formulafor the unit weight function has all positive weights. The most interesting case, however,is perhaps the type [1; 0; 0; 8; 1; 7] of degree 19, which we found no solution for the weightfunction W0, but a solution is found for the unit weight function in [3]. This shows thatthe nonlinear system (3.4) is sensitive to the change of weight functions.3.3. Remarks on numerical computation. The numerical computation was car-ried out on a DEC Alphastation 500 in double precision, using the DUNLSF Fortransubroutine in the IMSL Math/Library (Visual Numerics, Inc., 1994); however, momentsvj;3k in (3.5) were computed exactly using Maple. The subroutine DUNLSF employsiterative techniques which require an initial estimate of the solution. For solving thenonlinear system (3.4), this means that we need to provide initial values for the weights�i and for the parameters ri and �i that determine nodes. To determine the initial values,we have followed the strategy in [3] for solving the systems for the unit weight function.The node locations of the formulae for the weight function W0 appear to be similar tothose for the unit weight function: nodes are located closer to the edge of the trianglethan the centroid, and are located closer to the median � = �=3 than � = 0. Our compu-tation shows that whenever a formula of a given type has a solution, then even a roughinitial estimate leads to the solution in reasonable computing time. For example, �ndinga formula of degree 19 needs less than 30 minutes.For each formula of degree M , we compute the relative error and the absolute errorof I(f) � In(f) for all invariant polynomials f of degree � M , where I(f) stands forthe integral of f with respect to W0 on the triangle and In(f) stands for the cubatureformula. The result shows thatsupfjI(f) � IM (f)j=I(f) : f 2 �GMg � 0:5� 10�13for formulae of degree up to 19 and � 0:5 � 10�12 for degree 20. The numerical valuesof the parameters are given to 12 digits. The DUNLSF subroutine solves the nonlinearequations in the least square sense; that is, it �nds the minimal solution of P f2i (x),where fi = 0 are nonlinear equations. In our computation, equations in (3.4) involvehigh powers of polynomials which are sensible to perturbations; for example, forM = 20,a perturbation in the 5-th decimal place of our solution did not change the order ofthe relative error 10�12. For M large, the accuracy of the solution found by DUNLSFsubroutine is limited by the machine accuracy. Because the computer we used has limitedprecision of 15 digits, we stopped at M = 21.4. Final commentsWe comment on some perspectives that are not covered in the present paper.Remark 4.1. Theorem 1.1 establishes the connection between cubature formulae on �dand Z2 � � � � � Z2 symmetric cubature formulae on Sd. In [27] we also establish aconnection between cubature formulae on the ball Bd and on Sd, and the connectionhas been used to construct cubature formulae on S2 in [7]. Together, these results yield a



14 SANGWOO HEO AND YUAN XUcorrespondence between cubature formulae on �d and Z2� � � � �Z2 symmetric formulaeon Bd. In particular, a cubature formula for the weight function W0 on �2 correspondsto a formula for the weight function 1=p1� x21 � x22 on B2. Thus, the results in Sections2 and 3 also lead to Z2�Z2�Z2 symmetric formulae on B2. On the other hand, thoseformulae constructed in [7] that are Z2 �Z2 �Z2 symmetric lead to formulae on �2.However, not all formulae on B2 in [7] are fully symmetric. In fact, the correspondencebetween formulae on Bd and on Sd is not restricted to Z2�Z2�Z2 symmetric formulae.Remark 4.2. The connection between cubature formulae on Sd, �d and Bd works fora large class of weight functions. In particular, cubature formulae for the unit weightfunction on �2 corresponds to Z2�Z2�Z2 symmetric formula for jx1x2x3jd! on S2 andfor weight function jx1x2j on B2; andZ2�Z2�Z2 symmetric cubature formulae for theunit weight function on B2 correspond to formula for (1=px1x2) on �2. For examples offormulae for the unit weight function on these domains, see the references in [22,24].Remark 4.3. The connection between formulae on the three domains works also in higherdimension. Although a number of formulae of lower degrees have been constructed forthe unit weight function in the literature (see [2, 5, 22, 24]), it may be of interests toconstruct formulae for the weight function (u1 � � �ud(1 � u1 � : : : � ud))�1=2 on �d anduse them to generate cubature formulae on Sd. To our knowledge, the calculation ofsymmetric cubature formulae for this weight function on �d for d > 2 has not been takenpreviously, although the consistency conditions have been studied in [8] and [17]. Forthe unit weight function, some symmetric formulae of lower degrees on �d have beenconstructed, see [2, 8, 22, 24] and ther references there.Ackowledgement: The authors thank referees for their useful comments.AppendixWe give the weights and nodes for the cubature formulae described in Section 3. Thecubature formulae on S2 are of the form (1.6) with W (x) = 1=4�. Because of thesymmetry, for each weight �k we need to give only one node (vk;1; vk;2; vk;3). For aformula of type [n0;m1;m2;m3;m4;m5], the nodes corresponding to n0, m1 and m2 are(p1=3;p1=3;p1=3); (1; 0; 0); (p1=2;p1=2; 0);respectively; the weights corresponding to them are �0, �1 and �2. Note that some or allof �0; �1; �2 could be zero, which means that the corresponding node does not show upin the formula.For each formula we give the value of nonzero �i, i = 0; 1; 2, �rst, those that are notgiven are understood as zero. We then given the table for the other nodes (vi;1; vi;2; vi;3)and the corresponding weights �i start with i = 3 and follow the order of m3, m4 andm5; that is, the type m3 nodes are listed �rst, then the m4 type and followed by the m5type.



CUBATURE FORMULAE FOR SPHERE AND TRIANGLE 15Degree 13: [0;1,0,2;1,0]; N = 78�1 = 0:013866592105i xi yi zi �i3 0.286640146767 0.914152532416 0.286640146767 0.0130509318634 0.659905001656 0.659905001656 0.359236381200 0.0132064232235 0.539490098706 0.841991943785 0.0 0.011942663555Degree 15: [0;1,1,2;1,0]; N = 90�1 = 0:013191522874; �2 = 0:011024070845i xi yi zi �i3 0.337785899794 0.878522265967 0.337785899794 0.0105389711144 0.658511676782 0.658511676782 0.364314072036 0.0116569607155 0.399194381765 0.916866318264 0.0 0.010660818696Degree 17: [1;1,0,2;2,0]; N = 110�0 = 0:009103396603; �1 = �0:002664002664i xi yi zi �i3 0.357406744337 0.862856209461 0.357406744337 0.0107778366554 0.678598344546 0.678598344546 0.281084637715 0.0091619457845 0.542521185161 0.840042120165 0.0 0.0097985449126 0.222866509741 0.974848972321 0.0 0.009559874447Degree 19-1: [1;1,1,2;1,1]; N = 146�0 = 0:008559575701; �1 = 0:006231186664; �2 = 0:007913582691i xi yi zi �i3 0.201742306653 0.958436269875 0.201742306653 0.0077363739314 0.675586904541 0.675586904541 0.295236631918 0.0046448319025 0.443668207806 0.896191118781 0.0 0.0076252845406 0.496188289109 0.814892033188 0.299579965948 0.006646198191Degree 19-2: [1;0,0,4;0,1]; N = 152�0 = 0:006159164865i xi yi zi �i3 0.154480689145 0.975843959536 0.154480689145 0.0076614261264 0.414167295917 0.810512740174 0.414167295917 0.0066320449775 0.667293171280 0.667293171280 0.330816636714 0.0060759820316 0.703446477338 0.703446477338 0.101617454410 0.0052619838727 0.449332832327 0.882270011260 0.140355381171 0.006991087353Degree 21-1: [1;1,1,3;1,1]; N = 170



16 SANGWOO HEO AND YUAN XU�0 = �0:056995598467; �1 = 0:005570590570 ; �2 = 0:004620905358i xi yi zi �i3 0.186798108665 0.964475470501 0.186798108665 0.0061738975404 0.366886721514 0.854861548529 0.366886721514 0.0063040346385 0.607095656232 0.607095656232 0.512708229276 0.0254472558606 0.399651971962 0.916666952228 0.0 0.0065993885827 0.573253885705 0.795085657737 0.198037318162 0.006218761274Degree 21-2: [1;1,1,2;2,1]; N = 170�0 = �0:007545260195; �1 = �0:004709932317; �3 = 0:006599231780i xi yi zi �i3 0.295937832153 0.908207905163 0.295937832153 0.0072009193944 0.519472253003 0.678452029786 0.519472253003 0.0083041839735 0.446007176001 0.895029384409 0.0 0.0068726244476 0.165319162227 0.986240120154 0.0 0.0068956305277 0.566806527713 0.782784716286 0.256862702801 0.006393131123Degree 21-3: [1;0,0,3;2,1]; N = 176�0 = �0:059097949898i xi yi zi �i3 0.136045412794 0.981317120668 0.136045412794 0.0059229075754 0.321321668532 0.890788847406 0.321321668532 0.0065049461985 0.547239633521 0.633291060261 0.547239633521 0.0255789723846 0.645751079582 0.763547996670 0.0 0.0039404662717 0.407685091182 0.913122591128 0.0 0.0069433114048 0.568997367119 0.784986512893 0.245026877683 0.006237689734Degree 21-4: [0;0,0,3;1,2]; N = 192i xi yi zi �i3 0.121942991996 0.985017671621 0.121942991996 0.0048431329694 0.405172013544 0.819555537399 0.405172013544 0.0059067225575 0.635692088835 0.635692088835 0.437939649249 0.0055705383526 0.601743299291 0.798689552804 0.0 0.0046793743577 0.595006226182 0.774595852605 0.214403488618 0.0045593528138 0.368090580737 0.919422462557 0.138461762661 0.005774096403Degree 21-5: [0;0,0,3;1,2]; N = 192



CUBATURE FORMULAE FOR SPHERE AND TRIANGLE 17i xi yi zi �i3 0.114731000078 0.986749003163 0.114731000078 0.0042564072904 0.505750398065 0.698879867870 0.505750398065 0.0054703761795 0.682741864646 0.682741864646 0.260244293924 0.0060417077536 0.590785303447 0.806828807884 0.0 0.0064785291777 0.467118005205 0.838405331367 0.280850973913 0.0047923793998 0.344252417343 0.930159244514 0.127648160971 0.004917443735Degree 21-6: [1;0,0,2;0,3]; N = 200�0 = 0:005200472756i xi yi zi �i3 0.124787616061 0.984304882522 0.124787616061 0.0050283474034 0.382642965364 0.840933244743 0.382642965364 0.0049105007215 0.580333662379 0.729548523912 0.361900250852 0.0042147679406 0.600802371831 0.789769929774 0.123693039525 0.0052728443917 0.371677251651 0.918768165963 0.133120538678 0.005509551481Degree 23-1: [0;1,0,4;2,1]; N = 198�1 = 0:005026500922i xi yi zi �i3 0.176588660459 0.968314458218 0.176588660459 0.0052794160734 0.339207318490 0.877426230612 0.339207318490 0.0037322716335 0.498904016243 0.708653346251 0.498904016243 0.0060512843496 0.679838773734 0.679838773734 0.275024514281 0.0055616108877 0.615520670749 0.788120741943 0.0 0.0051773635478 0.364554848325 0.931181917008 0.0 0.0053819294409 0.491903042583 0.842732170863 0.218709590304 0.004613082753Degree 23-2: [1;0,0,5;1,1]; N = 200�0 = 0:005651017861i xi yi zi �i3 0.115535209070 0.986561316356 0.115535209070 0.0042598415694 0.282433358777 0.916767579979 0.282433358777 0.0052943958875 0.441560530469 0.781056077285 0.441560530469 0.0055882194066 0.670525624125 0.670525624125 0.317475628644 0.0055912974047 0.706832372661 0.706832372661 0.027856667351 0.0029368958838 0.345770219761 0.938319218138 0.0 0.0050518460659 0.525118572444 0.836036015482 0.159041710538 0.005530248916Degree 23-3 [1;0,0,4;2,1]; N = 200�0 = �0:013079151392



18 SANGWOO HEO AND YUAN XUi xi yi zi �i3 0.083820743273 0.992949226292 0.083820743273 0.0026131776514 0.208890425565 0.955368818946 0.208890425565 0.0046960715645 0.527146296056 0.666508488400 0.527146296056 0.0100744742896 0.684194032927 0.684194032927 0.252501585372 0.0057479852867 0.599358474983 0.800480742096 0.0 0.0057812627148 0.364297979633 0.931282439454 0.0 0.0053940664419 0.461647695180 0.847134675079 0.263143017794 0.005859672926Degree 25-1: [1;0,0,5;1,2]; N = 248�0 = 0:004313243133i xi yi zi �i3 0.111691690919 0.987446166816 0.111691690919 0.0039863655054 0.315067166823 0.895245977808 0.315067166823 0.0036630315485 0.459462014542 0.760124538735 0.459462014542 0.0042040499226 0.660753497156 0.660753497156 0.356103400703 0.0042690043767 0.702154945166 0.702154945166 0.118139180447 0.0042034724158 0.532020255731 0.846731626604 0.0 0.0041424831189 0.519695051509 0.822359911686 0.231605762210 0.00409030559910 0.329337385202 0.938200966027 0.106375909186 0.003789950437Degree 25-2: [0;0,0,5;0,3]; N = 264i xi yi zi �i3 0.107086858755 0.988465886798 0.107086858755 0.0036942978434 0.333879222938 0.881504015295 0.333879222938 0.0038357096105 0.515654412063 0.684252186435 0.515654412063 0.0040190867346 0.668811941305 0.668811941305 0.324624666862 0.0032959363297 0.702834079289 0.702834079289 0.109765723158 0.0040232685018 0.520513375926 0.792782385892 0.317114985615 0.0034287754319 0.523649799991 0.845078822417 0.107854860213 0.00391707318210 0.320409052387 0.940317942977 0.114630734376 0.004053335212Degree 27-1: [1;0,0,6;1,2]; N = 272�0 = 0:004205508418



CUBATURE FORMULAE FOR SPHERE AND TRIANGLE 19i xi yi zi �i3 0.110768319347 0.987654169666 0.110768319347 0.0039277995714 0.222696255452 0.949111561206 0.222696255452 -0.0004071128525 0.322320222672 0.890067046976 0.322320222672 0.0036942053296 0.462107300704 0.756910619077 0.462107300704 0.0041363417257 0.660712667463 0.660712667463 0.356254883628 0.0042025121768 0.702450665599 0.702450665599 0.114569301299 0.0041767382399 0.525731112119 0.850650808352 0.0 0.00422958270110 0.524493924092 0.819343388819 0.231479015871 0.00407146759411 0.323348454269 0.939227929750 0.115311201101 0.004080914226Degree 27-2: [1;1,0,5;0,3]; N = 278�0 = 0:004145413998; �1 = �0:001001399850i xi yi zi �i3 0.103271889407 0.989277430106 0.103271889407 0.0040077707604 0.326015048812 0.887371610937 0.326015048812 0.0036091012655 0.464476869175 0.754004294419 0.464476869175 0.0040653778036 0.661042838405 0.661042838405 0.355027789879 0.0041670192277 0.702427075066 0.702427075066 0.114858210103 0.0041768276528 0.523633133581 0.818640861296 0.235871748274 0.0039634973609 0.526385749330 0.849564329470 0.034036641931 0.00225441839110 0.324014265315 0.939146832366 0.114096376493 0.004036641877Degree 27-3: [0;0,0,5;1,3]; N = 288i xi yi zi �i3 0.110332978624 0.987751622452 0.110332978624 0.0038938290774 0.319075401552 0.892402250249 0.319075401552 0.0036062862035 0.453117779552 0.767703429527 0.453117779552 0.0038085043596 0.614431551407 0.614431551407 0.494921950685 0.0024216340857 0.702545464357 0.702545464357 0.113400798163 0.0040776065588 0.530118512908 0.847923559216 0.0 0.0040622797279 0.622283431805 0.708196634681 0.333497911729 0.00226351669110 0.517277385525 0.826495160269 0.222103256339 0.00378293483411 0.326096877477 0.939054487386 0.108800258362 0.003851811803Degree 29: [0;0,0,6;0,4]; N = 336



20 SANGWOO HEO AND YUAN XUi xi yi zi �i3 0.072505573442 0.994729050365 0.072505573442 0.0018946971464 0.310481161354 0.898444709979 0.310481161354 0.0037838114925 0.440992773670 0.781697350093 0.440992773670 0.0030121821596 0.527582710733 0.665817517546 0.527582710733 0.0027244033617 0.659924119492 0.659924119492 0.359166135688 0.0035591079068 0.699729990451 0.699729990451 0.144069014458 0.0032274547169 0.594169250176 0.802748431448 0.050575270178 0.00202488451610 0.531107498266 0.806604859340 0.259448311183 0.00346796886811 0.426665999347 0.898209890946 0.105712425044 0.00322941119612 0.247454899976 0.963715742772 0.100090157417 0.003010240364Degree 31: [1;0,0,4;3,4]; N = 368�0 = 0:000578329494i xi yi zi �i3 0.097855721318 0.990377966037 0.097855721318 0.0030615221044 0.336734048041 0.879329495570 0.336734048041 0.0026313228905 0.521197545604 0.675800441634 0.521197545604 0.0028211127656 0.658338802723 0.658338802723 0.364938408033 0.0029630462877 0.635957331845 0.771724220219 0.0 0.0028541701888 0.475363041502 0.879789735547 0.0 0.0027716533339 0.291089031268 0.956695968360 0.0 0.00262654622610 0.622288265573 0.760613900822 0.184996779450 0.00289397617211 0.505117362658 0.786669092004 0.354976322629 0.00283774932112 0.461391815178 0.869489953690 0.176365567271 0.00271580458813 0.289362045905 0.943297248354 0.162665016636 0.002424728107Degree 33: [1;0,0,6;1,5]; N = 416�0 = 0:002848140682i xi yi zi �i3 0.087642362514 0.992289087205 0.087642362514 0.0024493270624 0.244826259453 0.938147219451 0.244826259453 0.0021793774515 0.373613468997 0.849014694553 0.373613468997 0.0026531795076 0.483960471286 0.729084716933 0.483960471286 0.0028177921977 0.648358940509 0.648358940509 0.399075642609 0.0028326438918 0.692365152833 0.692365152833 0.203128014525 0.0027761157219 0.424680986592 0.905343061843 0.0 0.00263485161210 0.663530717023 0.747173970345 0.038184363366 0.00104495920111 0.560342562719 0.821357965819 0.106711313324 0.00255226714812 0.544103582859 0.784667458480 0.297066104970 0.00277195132713 0.408251323723 0.892327016644 0.192570382056 0.00254090074514 0.259902436546 0.962160309302 0.081842914665 0.002276921078Degree 35: [1;0,0,8;2,4]; N = 440



CUBATURE FORMULAE FOR SPHERE AND TRIANGLE 21�0 = 0:002515482567i xi yi zi �i3 0.069156813118 0.995205843230 0.069156813118 0.0015275155294 0.175148458557 0.968837465693 0.175148458557 0.0020540288405 0.285287793163 0.914998224121 0.285287793163 0.0023184177816 0.392405552644 0.831886870018 0.392405552644 0.0024516184427 0.491306203394 0.719191510665 0.491306203394 0.0025042933988 0.645641884498 0.645641884498 0.407790527065 0.0025136064129 0.690921150829 0.690921150829 0.212734404066 0.00252988668310 0.707101476221 0.707101476221 0.003873584007 0.00127557430611 0.471598691154 0.881813287778 0.0 0.00241744237612 0.210272522872 0.977642811115 0.0 0.00191095128213 0.590515704894 0.799927854385 0.106801826076 0.00251223685514 0.555015236112 0.771746262687 0.310428403520 0.00249664405415 0.450233038264 0.868946032283 0.205482369646 0.00241693004416 0.334436314543 0.937180985852 0.099217696370 0.002236607760Degree 37: [1;0,0,5;1,8]; N = 536�0 = 0:001436589472i xi yi zi �i3 0.181665204347 0.966434429777 0.181665204347 0.0022338718114 0.303427242195 0.903251801763 0.303427242195 0.0021191805255 0.483529149430 0.729656853119 0.483529149430 0.0022814587276 0.625463680619 0.625463680619 0.466465827743 0.0018640352237 0.705074619796 0.705074619796 0.075759890693 0.0018584090638 0.444572576129 0.895742833940 0.0 0.0023364865559 0.630713490341 0.746274388124 0.212779300527 0.00181875179610 0.596705492981 0.724560936181 0.344897092487 0.00196171336711 0.587046661123 0.807169311670 0.062079948160 0.00161196743812 0.505464222397 0.844656624412 0.176241614590 0.00194208758013 0.458746299673 0.824994538226 0.330054305281 0.00224594097914 0.369539839929 0.915094022626 0.161379169844 0.00196730785815 0.277639225331 0.958974697835 0.057306103258 0.00156157596116 0.116956662074 0.992865475735 0.023222538401 0.001137835823Degree 39-1: [0;0,0,4;1,10]; N = 600



22 SANGWOO HEO AND YUAN XUi xi yi zi �i3 0.067102856429 0.995487023179 0.067102856429 0.0014610693474 0.338906615896 0.877658596154 0.338906615896 0.0020810644255 0.448234256905 0.773415866060 0.448234256905 0.0020038831316 0.701808440747 0.701808440747 0.122187663015 0.0018683961167 0.633404727273 0.773820684311 0.0 0.0019747048928 0.563818465348 0.651676642607 0.507371946024 0.0011206315689 0.628884552131 0.731765201351 0.262724019044 0.00162651380310 0.568134999733 0.808896715135 0.151356289337 0.00182288911111 0.490729623093 0.818248053726 0.299423712476 0.00194330915012 0.589988659798 0.705342105582 0.392945155719 0.00176660724213 0.493911282058 0.868009534637 0.051098857469 0.00136118587714 0.415275416293 0.891987868825 0.178616825894 0.00185262490315 0.350457251849 0.935213276436 0.050555338040 0.00138316928316 0.278497898816 0.940831443705 0.193067643306 0.00148329141417 0.205495716318 0.975518961862 0.078321552738 0.001778552026Degree 39-2: [0;0,0,4;1,10]; N = 600i xi yi zi �i3 0.076392926087 0.994146991992 0.076392926087 0.0018612554474 0.338772022760 0.877762515257 0.338772022760 0.0017938843495 0.454420421720 0.766161967633 0.454420421720 0.0019747569536 0.688478852474 0.688478852474 0.228021357313 0.0016920170417 0.519110405221 0.854707193834 0.0 0.0018634622358 0.570664193557 0.653131915106 0.497756044325 0.0012919655719 0.595919741511 0.712690180359 0.370070761473 0.00193170094310 0.646378012450 0.759163172837 0.076594660580 0.00194722260711 0.588862981291 0.775828653959 0.226561887708 0.00143301987412 0.385384000208 0.903175728662 0.189084043588 0.00170542539013 0.476387123224 0.823112602544 0.309096995068 0.00183227897514 0.512379521668 0.846931416658 0.142036619409 0.00164650534915 0.255068480104 0.944108152303 0.208805812209 0.00106476322116 0.227252272934 0.970698830744 0.078103677500 0.00189438298917 0.375230766664 0.925197335485 0.056672410922 0.001493380402References1. Z. P. Ba�zant and B. H. Oh, E�cient numerical integration on the surface of a sphere, Z. Angew.Math. Mech. 66 (1986), 37-49.2. R. Cools and P. Rabinowitz, Monomial cubature rules since \Stroud": a compilation, J. Comp.Appl. Math. 48 (1992), 309-326.3. D. A. Dunavant, High degree e�cient symmetrical Gaussian quadrature rules for the triangle, In-ternat. J. Numer. Methods Engrg. 21 (1985), 1129-1148.4. C. Dunkl, Orthogonal polynomials with symmetry of order three, Can. J. Math. 36 (1984), 685-717.5. H. Engels, Numerical quadrature and cubature, Academic Press, New York, 1980.
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