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Abstract. This paper is devoted to the construction of nonconforming finite

elements for the discretization of fourth order elliptic partial differential oper-
ator in three spatial dimensions. The newly constructed elements include two

tetrahedron nonconforming finite elements and one quasi-conforming tetrahe-

dron element. These elements are all proved to be convergent for a model
biharmonic equation in three dimensions. In particular, the quasi-conforming

tetrahedron element is a modified Zienkiewicz element while the non-modified

Zienkiewicz element (a tetrahedral element of Hermite type) is proved to be
divergent on a special but regular grid.

1. Introduction

The construction of appropriate finite element spaces for fourth order elliptic
partial differential equations is an intriguing subject. This problem has been well-
studied in two dimensional spaces. There are a lot of interesting constructions of
both conforming and nonconforming finite element spaces for fourth order partial
differential equations in two dimensions. In comparison, there has been very little
work devoted to three dimensional problems.

A conforming finite element space for fourth order problems consist of piecewise
polynomials that are globally continuously differentiable (C1). This smoothness
requirement can only be met with piecewise polynomials of sufficiently high degree.
In two dimensions, it is known [20] that at least 5th order polynomial (the well
known Argyris element) is needed on a triangular mesh. Such a high order polyno-
mial leads to finite element spaces with a very large degree of freedoms which is not
desirable in practical computations. As a result, many lower order nonconforming
finite elements have been constructed and used in practice(see [5]).

In three spatial dimensions, even higher degree of polynomials are needed to
construct conforming finite element space on, say, a tetrahedral finite element grid.
In [19] (see also [9]), a conforming tetrahedral conforming finite element space
was first constructed using 9th degree of polynomials. This element requires C1

globally, C2 on all element edges and C4 on all element vertices. The degree of
freedoms for this element is huge, 220 on each element!. In order to reduce the
degree of polynomials, like in two dimensions, there have been some work on the
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construction of conforming finite element spaces on macro-elements (namely by
further partitioning a tetrahedron into sub-tetrahedrons), see [1] and [18] (similar
to Clough-Tocher in two dimensions) and [6]. But these elements all still have a very
large degree of freedoms and furthermore the macro-elements are often awkward to
use in practical applications.

To reduce the order of polynomials and degree of freedoms on each element,
one naturally turns to nonconforming elements. Surprisingly, there are very little
work on the construction of nonconforming finite elements for fourth order elliptic
boundary value problems in three dimensions. The purpose of this work is to fill
in this important gap in the literature for this type of elements.

The construction of nonconforming finite elements for fourth order problems in
three dimensions is not only important from a mathematical point of view but
also potentially important in practical applications. Indeed two dimensional bi-
harmonic equations have been much used in modeling linear plates (see [7]) and
such practical applications contributed to the importance and interests of study-
ing efficient numerical methods such as nonconforming finite elements to solve this
type of equations. We would like to point out that the three dimensional bihar-
monic operator also has important application in practice. One notable example
is the Cahn-Hilliard diffusion equation that is used in the phase-field method to
model and to predict complex microstructure evolution for many important ma-
terial processes (see [3,11]). In addition to the finite difference method and also
the spectral method, the fourth order term in the Cahn-Hilliard equation can also
be discretized by the finite element method of mixed type, namely by writing the
biharmonic operator as a product of two Laplacian operators. It is conceivable that
the biharmonic operator can also be discretized by a direct finite element space as
it is often done for biharmonic equations in two dimensions. As discussed above,
the existing known conforming finite elements are not very practical and we hope
that the nonconforming finite element methods proposed in this paper can be used
for such applications.

In this paper, we will propose a family of nonconforming finite elements for
3-dimensional fourth order partial differential equations. We took the natural ap-
proach of trying to extend the various nonconforming finite element in two dimen-
sions to three dimensions. In 2 dimensions, there are well-known nonconforming
elements, including the elements named after Morley, Zienkiewicz, Adini, Bogner-
Fox-Schmit, etc (see [2,5,8,10]). There are some other ways constructing elements,
such as quasi-conforming method [16,4]. Extensions of these elements from two di-
mensions to three dimensions turn out to be not so obvious. In this paper, we will
focus on tetrahedron complete or incomplete cubic elements, propose and analyze
the following three types of elements:

(1) TNC20 — a tetrahedral element with 20 degrees of freedom and complete
cubic polynomial shape function space.

(2) TNC16 — a tetrahedral element with 16 degrees of freedom and incomplete
cubic polynomial shape function space.

(3) TQC16 — a tetrahedral element with 16 degrees of freedom similar to 9-
parameter quasi-conforming element.

The first two are nonconforming elements, the last one is a quasi-conforming
element. For nonconforming elements, the basic mathematical theory has been



NONCONFORMING TETRAHEDRAL ELEMENTS FOR 4TH ORDER PDES 3

studied in many papers (see [5,8,13-15,22]). For quasi-conforming elements, de-
tailed discussions can be found in [21,22]. Following these theories, we give the
convergence analysis of the elements.

The element of Hermite tetrahedron of type (3′) [5], called TE16 in this paper,
is also viewed as an element for biharmonic equation just like Zienkiewicz element.
In 2-dimensional case, Zienkiewicz element is not convergent for general meshes.
We will also show that TE16 element is divergent for a popular grids in three
dimensions.

We note that the degree of freedoms of each of these finite elements is substan-
tially smaller than any known conforming elements. We expect that they can be
easily used in practice.

The rest of the paper is organized as follows. Section 2 gives the basic descriptions
of nonconforming element method. Section 3 gives the detail descriptions of the
finite elements. Section 4 shows the convergence of TNC20, TNC16 and TQC16
elements and the divergence of TE16 element. Some concluding remarks will be
made in the end of the paper.

2. Preliminaries

In this section, we shall give a brief discussion on a model fourth order elliptic
boundary value and how it may be discretized by a nonconforming finite element.

Given a bounded polyhedron domain Ω ⊂ R3 with boundary ∂Ω, for nonnegative
integer s, let Hs(Ω), ‖ · ‖s,Ω and | · |s,Ω be the usual Sobolev space, norm and semi-
norm respectively. Let Hs

0(Ω) be the closure of C∞0 (Ω) in Hs(Ω) with respect to
the norm ‖ · ‖s,Ω and (·, ·) denote the inner product of L2(Ω).

For f ∈ L2(Ω), we consider the following fourth order boundary value problem:

(2.1)


∆2u = f, in Ω,

u|∂Ω =
∂u

∂ν

∣∣∣∣
∂Ω

= 0

where ν = (ν1, ν2, ν3)> is the unit outer normal to ∂Ω and ∆ is the standard
Laplacian operator.

For any function v ∈ H1(T ), set

Dv =
( ∂v

∂x1
,
∂v

∂x2
,
∂v

∂x3

)
.

When v ∈ H2(Ω), we define

(2.2) E(v) =
(∂2v

∂x2
1

,
∂2v

∂x2
2

,
∂2v

∂x2
3

,
∂2v

∂x1∂x2
,

∂2v

∂x1∂x3
,

∂2v

∂x2∂x3

)>
.

Let K be the 6× 6 diagonal matrix with the first three elements in diagonal 1 and
the last three 2. Define

(2.3) a(v, w) =
∫

Ω

E(w)>KE(v)dx, ∀v, w ∈ H2(Ω).

The weak form of problem (2.1) is: find u ∈ H2
0 (Ω) such that

(2.4) a(u, v) = (f, v), ∀v ∈ H2
0 (Ω).
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For a subset B ⊂ R3 and a nonnegative integer r, let Pr(B) be the space of all
polynomials of degree not greater than r, and let Qr(B) the space of all polynomials
of degree in each coordinate not greater than r.

Let (T, PT ,ΦT ) be a finite element where T is the geometric shape, PT the shape
function space and ΦT the vector of degrees of freedom, and let ΦT be PT -unisolvent
(see [5]). Take Th a triangulation of Ω with mesh size h. For each element T ∈ Th,
let hT be the diameter of the smallest ball containing T and ρT be the diameter of
the largest ball contained in T .

Let {Th} be a family of triangulations with h → 0. Throughout the paper, we
assume that {Th} is quasi-uniform, namely it satisfies that hT ≤ h ≤ ηρT , ∀T ∈ Th

for a positive constant η independent of h.
For each Th, let Vh0 be the corresponding finite element space associated with

(T, PT ,ΦT ) for the discretization of H2
0 (Ω). This defines a family of finite element

spaces {Vh0}. In the case of nonconforming element, Vh0 6⊂ H2
0 (Ω).

For vh ∈ Vh0 and T ∈ Th, denote by vT
h be the restriction of vh on T .

For v, w ∈ H2(Ω) + Vh0, we define

(2.5) ah(v, w) =
∑

T∈Th

∫
T

E(w)>KE(v)dx.

The finite element method for problem (2.4) corresponding to the element (T, PT ,ΦT )
is: find uh ∈ Vh0 such that

(2.6) ah(uh, vh) = (f, vh), ∀vh ∈ Vh0.

We introduce the following mesh dependent norm ‖ · ‖m,h and semi-norm | · |m,h:
‖v‖m,h =

( ∑
T∈Th

‖v‖2
m,T

)1/2

,

|v|m,h =
( ∑

T∈Th

|v|2m,T

)1/2

,

∀v ∈ Vh +Hm(Ω).

For each element T ∈ Th, we denote the interpolation operator of (T, PT ,ΦT )
by ΠT , and define Πh by (Πhv)|T = ΠT (v|T ), where T ∈ Th and v is piecewisely
smooth enough.

3. Tetrahedral Elements

Now let T be a tetrahedron with vertices ai = (xi1, xi2, xi3), 0 ≤ i ≤ 3. Denote
by Fi the face opposite ai and by bi the centric points of Fi, 0 ≤ i ≤ 3. Let
λ0, · · · , λ3 be the barycentric coordinates of T .

Let T̂ be the tetrahedron with vertices âi given by

â0 = (0, 0, 0), â1 = (1, 0, 0), â2 = (0, 1, 0), â3 = (0, 0, 1).

Define

BT =

 x11 − x01 x21 − x01 x31 − x01

x12 − x02 x22 − x02 x32 − x02

x13 − x03 x23 − x03 x33 − x03

 ,

and FT x̂ = BT x̂+ a0, x̂ ∈ R3, then

T = FT T̂ , ai = FT âi, 0 ≤ i ≤ 3.
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Set B−1
T = (ξij)3×3. Let B1, B2, B3 be the row vectors of B−1

T and

B0 = −(B1 +B2 +B3),

then

(3.1) Dλi = Bi, 0 ≤ i ≤ 3.

3.1. TNC20 Element. For TNC20 element, (T, PT ,ΦT ) is defined by
1): T is a tetrahedron,
2): PT = P3(T ),
3): ΦT is the vector with its component the following degrees of freedom,

v(aj),
∂v

∂ν
(bj), 0 ≤ j ≤ 3, Dv(ai)(aj − ai), 0 ≤ i 6= j ≤ 3, ∀v ∈ C1(T ).

For TNC20 element, we define

(3.2)



qi =
9

4‖Bi‖

 ∑
0≤j 6=k 6=l≤3
j 6=i,k 6=i,l 6=i

λjλkλl − λi

∑
0≤j 6=k≤3
j 6=i,k 6=i

λjλk

 , 0 ≤ i ≤ 3

pi = 3λ2
i − 2λ3

i +
∑

0≤k≤3
k 6=i

4BiB
>
k

3‖Bk‖
qk, 0 ≤ i ≤ 3

pij = λ2
iλj +

‖Bj‖
9

qj +
∑

0≤k≤3
k 6=i,k 6=j

(2Bi +Bj)B>k
9 ‖Bk‖

qk, 0 ≤ i 6= j ≤ 3.

It can be verified that

(3.3)



qi(ak) = 0, Dqi(ak) = 0,
∂qi
∂ν

(bk) = δik,

pi(ak) = δik, Dpi(ak) = 0,
∂pi

∂ν
(bk) = 0

pij(ak) = 0, Dpij(ak)(al − ak) = δikδjl,
∂pij

∂ν
(bk) = 0

when 0 ≤ i 6= j ≤ 3 and 0 ≤ k 6= l ≤ 3. Hence qi, pi and pij are basis functions
respect to the degrees of freedom. Therefore ΦT is PT -unisolvent.

The corresponding interpolation operator ΠT can be written by, ∀v ∈ C1(T )

(3.4) ΠT v =
∑

0≤i≤3

piv(ai) +
∑

0≤i≤3

qi
∂v

∂ν
(bi) +

∑
0≤i 6=j≤3

pijDv(ai)(aj − ai).

For TNC20 element, define the corresponding finite element space Vh0 as follows.
v ∈ Vh0 if any only if (1) | v|T ∈ P3(T ),∀T ∈ Th, (2) v and its first order derivatives
are continuous at all vertices of elements in Th and vanish at all vertices belonging
to ∂Ω, and (3) ∂

∂ν v is continuous at the barycentric points of all faces of elements
in Th and vanishes at barycentric points of all faces on ∂Ω.

Unlike Zienkiewicz element, this complete cubic element space is not contain in
C0(Ω̄). But it has the following property.

Lemma 3.1. Let Vh0 be the finite element space of TNC20 element. If T, T ′ ∈ Th

with common face F , then

(3.5)
∫

F

DvT
h ds =

∫
F

DvT ′

h ds, vh ∈ Vh0.
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If a face F of T ∈ Th is on ∂Ω then

(3.6)
∫

F

DvT
h ds = 0, vh ∈ Vh0.

Proof. Let vh ∈ Vh0 and F be a common face of T, T ′ ∈ Th. Denote the unit
normal of F relative to T by ν, and chose ν, τ (1), τ (2) an orthogonal unit basis of
R3. Let ã1, ã2, ã3 be vertices of F and ã0 be barycentric point of F .

By the definition of Vh0, ∂
∂ν v

T
h and ∂

∂ν v
T ′

h are quadratic polynomials on F . Hence

(3.7)
∫

F

∂vT
h

∂ν
ds =

|F |
12

( 3∑
i=1

∂vh

∂ν
(ãi) + 9

∂vh

∂ν
(ã0)

)
=

∫
F

∂vT ′

h

∂ν
ds.

Denote all sides of F by S1, S2, S3, and the unit out normal of Si by n(i), viewed
as the boundary of a triangle in 2-dimensional space with axes τ (1) and τ (2). Then
for i ∈ {1, 2}∫

F

∂vT
h

∂τ (i)
ds =

3∑
j=1

n
(j)
i

∫
Sj

vT
h dt,

∫
F

∂vT ′

h

∂τ (i)
ds =

3∑
j=1

n
(j)
i

∫
Sj

vT ′

h dt.

By the definition of Vh0, vT
h = vT ′

h on Sj . Therefore

(3.8)
∫

F

∂vT
h

∂τ (i)
ds =

∫
F

∂vT ′

h

∂τ (i)
ds, i = 1, 2.

Equality (3.5) follows from (3.7) and (3.8). By the similar way, we can show (3.6).

3.2. TNC16 Element. For 0 ≤ i < j < k ≤ 3, let aijk = (ai + aj + ak)/3 and
νijk be the unit out normal of the face with ai, aj , ak as vertices. Set

ψ̃ijk(v) = 3
∂v

∂νijk
(aijk)−

∑
l=i,j,k

∂v

∂νijk
(al).

Define
P ′′3 (T ) = { p ∈ P3(T ) | ψ̃ijk(p) = 0, 0 ≤ i < j < k ≤ 3 }.

It is obvious that P2(T ) ⊂ P ′′3 (T ). For TNC16 element, (T, PT ,ΦT ) is defined by
1): T is a tetrahedron,
2): PT = P ′′3 (T ),
3): ΦT is the vector with its component the following degrees of freedom,

v(aj), 0 ≤ j ≤ 3, Dv(ai)(aj − ai), 0 ≤ i 6= j ≤ 3, ∀v ∈ C1(T )

The basis functions of TNC16 element can be derived from ones of TNC20. Set

(3.9) p̃ij = λ2
iλj −

2‖Bj‖
9

qj +
∑

1≤k≤4
k 6=i,k 6=j

2(Bi −Bj)B>k
9‖Bk‖

qk, 0 ≤ i 6= j ≤ 3.

The corresponding interpolation operator ΠT can be written by,

(3.10) ΠT v =
∑

0≤i≤3

piv(ai) +
∑

0≤i 6=j≤3

p̃ijDv(ai)(aj − ai), ∀v ∈ C1(T )

For TNC16 element, define the corresponding finite element space Vh0 as follows.
Vh0 = {v ∈ L2(Ω) | v|T ∈ P ′′3 (T ),∀T ∈ Th, v and its first order derivatives are
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continuous at all vertices of elements in Th and vanish at all vertices belonging to
∂Ω}.

For this element, Vh0 is still not a subspace of C0(Ω̄).

3.3. TE16 Element. For 0 ≤ i < j < k ≤ 3, define

ψijk(v) = 6v(aijk)− 2
∑

l=i,j,k

v(al) +
∑

l=i,j,k

Dv(al)(al − aijk).

Define
P ′3(T ) = { p ∈ P3(T ) |ψijk(p) = 0, 0 ≤ i < j < k ≤ 3 }.

Define TE16 element (T, PT ,ΦT ) as follows.
1): The element T is a tetrahedron.
2): The shape function space PT = P ′3(T ).
3): For v ∈ C1(T ), the vector ΦT (v) of its degrees of freedom is

ΦT (v) =
(
v(a0), Dv(a0), v(a1), Dv(a1), v(a2), Dv(a2), v(a3), Dv(a3)

)>
.

The corresponding interpolation operator ΠT is defined by

(3.11)

ΠT v =
3∑

i=0

(
3λ2

i − 2λ3
i + 2λi

∑
0≤j<k≤3

j,k 6=i

λjλk

)
v(ai)

+
1
2

∑
0≤i 6=j≤3

λiλj(1 + λi − λj)Dv(ai)(aj − ai), ∀v ∈ C1(T ).

In Ciarlet [5], TE16 element is the element of Hermite n-simplex of type (3′)
with n = 3. The element with n = 2 is the Zienkiewicz element.

For TE16 element, define the corresponding finite element space Vh0 as follows.
Vh0 = {v ∈ L2(Ω) | v|T ∈ P ′3(T ),∀T ∈ Th, v and its first order derivatives are
continuous at all vertices of elements in Th and vanish at all vertices belonging to
∂Ω}. From [5], we know that Vh0 ⊂ H1(Ω).

3.4. TQC16: a modified Zikeniewicz Element. The Zienkiewicz element is
not convergent in general. We will show in next section that TE16 element is also
divergent for a special tedrahetral grid. In 2-dimensional case, a convergent element
was proposed by the so-called quasi-conforming element technique in [16,4]. Now
we use the technique to give a new element by modifying TE16.

Define

N ii = span {1, λi, λ0λi}, 1 ≤ i ≤ 3; N ij = P0(T ), 1 ≤ i 6= j ≤ 3.

Let Π1
T be the linear interpolation operator with the function values at four vertices

as degrees of freedom. For p ∈ PT , define ∂ij
T p ∈ N ij , 1 ≤ i, j ≤ 3, such that

(3.12)



∫
T

q∂ii
T pdx =

∫
∂T

qΠ1
T

∂p

∂xi
νids−

∫
T

∂q

∂xi

∂p

∂xi
dx, ∀q ∈ N ii, 1 ≤ i ≤ 3,

∫
T

∂ij
T pdx =

1
2

∫
∂T

(
Π1

T

∂p

∂xi
νj + Π1

T

∂p

∂xj
νi

)
ds, 1 ≤ i 6= j ≤ 3.

Set

(3.13) ET (p) =
(
∂11

T p, ∂22
T p, ∂33

T p, ∂12
T p, ∂13

T p, ∂23
T p

)>
.
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For TQC16 element, we use ET (p) to approximate E(p).
Define

N =


Ñ11

Ñ22 0
Ñ33

1
0 1

1

 ,

where Ñ ii = (1, λi, λ0λi), 1 ≤ i ≤ 3,

HT =


ξ2
11 ξ2

21 ξ2
31 2ξ11ξ21 2ξ11ξ31 2ξ21ξ31

ξ2
12 ξ2

22 ξ2
32 2ξ12ξ22 2ξ12ξ32 2ξ22ξ32

ξ2
13 ξ2

23 ξ2
33 2ξ13ξ23 2ξ13ξ33 2ξ23ξ33

ξ11ξ12 ξ21ξ22 ξ31ξ32 ξ12ξ21 + ξ11ξ22 ξ12ξ31 + ξ11ξ32 ξ22ξ31 + ξ21ξ32

ξ11ξ13 ξ21ξ23 ξ31ξ33 ξ13ξ21 + ξ11ξ23 ξ13ξ31 + ξ11ξ33 ξ23ξ31 + ξ21ξ33

ξ12ξ13 ξ22ξ23 ξ32ξ33 ξ13ξ22 + ξ12ξ23 ξ13ξ32 + ξ12ξ33 ξ23ξ32 + ξ22ξ33



Q =



0−120 0 0 0 120 0 0 0 0 0 0 0 0 0 0
120 0 15 15−120 90−15−15 0 15 0 0 0 15 0 0

4 −6 1 1 4 4 1 1 −4 −1 2 0 −4 −1 0 2
0 0−120 0 0 0 0 0 0 0 120 0 0 0 0 0

120 15 0 15 0 0 15 0−120−15 90−15 0 0 15 0
4 1 −6 1 −4 2 −1 0 4 1 4 1 −4 0 −1 2
0 0 0−120 0 0 0 0 0 0 0 0 0 0 0 120

120 15 15 0 0 0 0 15 0 0 0 15−120−15−15 90
4 1 1 −6 −4 2 0 −1 −4 0 2 −1 4 1 1 4
0 −60 −60 0 0 0 60 0 0 60 0 0 0 0 0 0
0 −60 0 −60 0 0 0 60 0 0 0 0 0 60 0 0
0 0 −60 −60 0 0 0 0 0 0 0 60 0 0 60 0



A0 =

 50 −90 −210
−90 570 −1050
−210 −1050 9450

 , A =


A0

A0 0
A0

17
0 17

17

 ,

and

MT =



1 0
0 B>T 0

1 0
0 B>T

1 0
0 B>T

0 1 0
0 B>T


,

then

(3.14) ET (p) =
1

2040
HTNAQMT ΦT (p), ∀p ∈ PT .
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Now let Vh0 be the finite element space corresponding to TE16 element. Define

(3.15) āh(vh, wh) =
∑

T∈Th

∫
T

ET (wh)>KET (vh)dx, ∀vh, wh ∈ Vh0.

Instead of solving problem (2.6), TQC16 element finds ūh ∈ Vh0 such that

(3.16) āh(ūh, vh) = (f, vh), ∀vh ∈ Vh0.

TQC16 element is a 3-dimensional analogue of one proposed in [16,4] (also see [22]).
For vh ∈ Vh0 and i, j ∈ {1, 2, 3}, define ∂ij

h vh by

∂ij
h vh|T = ∂ij

T v
T
h , ∀T ∈ Th.

Let ΠT be the interpolation operator of TE16 element.

Lemma 3.2. TQC16 element has the following properties:
(1) ET (p) = E(p), ∀p ∈ P2(T ).
(2) There exist positive constants c1 and c2 independent of h such that

(3.17) c1|p|2,T ≤
∑

1≤i,j≤3

|∂ij
T p|0,T ≤ c2|p|2,T , ∀p ∈ PT .

(3) there exists a constant C independent of h such that

(3.18)
∑

1≤i,j≤3

∣∣∣ ∂2v

∂xi∂xj
− ∂ij

T ΠT v
∣∣∣
0,T

≤ Ch|v|3,T , ∀v ∈ H3(T ).

Proof. From Green formula, we have
(3.19)

∫
T

q
∂2p

∂x2
i

dx =
∫

∂T

q
∂p

∂xi
νids−

∫
T

∂q

∂xi

∂p

∂xi
dx, ∀q ∈ N ii, ∀p ∈ PT , 1 ≤ i ≤ 3,

∫
T

∂2p

∂xi∂xj
dx =

1
2

∫
∂T

( ∂p

∂xi
νj +

∂p

∂xj
νi

)
ds, ∀p ∈ PT . 1 ≤ i 6= j ≤ 3.

If p ∈ P2(T ), then E(p) is uniquely determined by (3.19). On the other hand,

Π1
T

∂p

∂xi
=

∂p

∂xi
, ∀p ∈ P2(T ).

ET (p) = E(p),∀p ∈ P2(T ), from (3.12).
It can be verified that the rank of matrix Q is 12. Then the rank of AQMT is

12 too. Let S be the subspace of R16 such that AQMT d = 0,∀d ∈ S. Then the
dimension of S is 4. By the conclusion 1 of the lemma, we have

S = span {ΦT (1),ΦT (x1),ΦT (x2),ΦT (x3)}.
If ET (p) = 0 for some p ∈ PT then AQMT ΦT (p) = 0. It follows that p ∈ P1(T ).
Furthermore, for all T ∈ Th,

(3.20) α1T |p|2,T ≤
∑

1≤i,j≤3

|∂ij
T p|0,T ≤ α2T |p|2,T , ∀p ∈ PT

where α1T and α2T are positive constants perhaps dependent on T . By the affine
technique, we obtain (3.17).

From the first two conclusions of the lemma, the interpolation theory and the
affine technique, we can prove (3.18).
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4. Convergence Analysis

In this section, we discuss the convergence properties of the elements in previous
sections. Toward the end of this section, we show that TE16 is not convergent in
general.

First, let us derive the error estimates for the interpolation operator.

Theorem 4.1. Let ΠT be the interpolation operator corresponding to TNC20,
TNC16 and TE16 elements. Then there exists a constant C independent of h
such that

(4.1) |v −ΠT v|m,T ≤ Chr−m|v|r,T , 0 ≤ m ≤ r, ∀v ∈ Hr(T ),

where r = 3 for TNC16 and TE16 elements, r = 4 for THC20 element.

From Lemma 3.1 and the argument [12] for Morley element, we can show the
following lemma.

Lemma 4.2. Let Vh0 be the finite element space of TNC20 or TNC16 element.
Then there exists a constant C independent of h such that for v ∈ H3(Ω) ∩H2

0 (Ω)
with ∆2v ∈ L2(Ω),

(4.2) |ah(v, vh)− (∆2v, vh)| ≤ Ch(|v|3,Ω + h‖∆2v‖0,Ω)|vh|2,h, ∀vh ∈ Vh0.

Now let u and uh be the solutions of problems (2.4) and (2.6) respectively.
Combining theorem 4.1 and lemma 4.2, we get the following theorem.

Theorem 4.3. Let Vh0 be the finite element space of TNC20 or TNC16 element.
Then there exists a constant C independent of h such that

(4.3) ‖u− uh‖2,h ≤ Ch(|u|3,Ω + h‖f‖0,Ω)

when u ∈ H3(Ω).

Now let Π1
h be the interpolation operator corresponding to linear conforming

element for second order partial differential equation and Th. For TNC20 and
TNC16 elements, we can also consider the following finite element method: to find
ũh ∈ Vh0 such that

(4.4) ah(ũh, vh) = (f,Π1
hvh), ∀vh ∈ Vh0.

For the finite element solution ũh of problem (4.4), we have

Theorem 4.4. Let Vh0 be the finite element space of TNC20 or TNC16 element.
Then there exists a constant C independent of h such that

(4.5) ‖u− ũh‖2,h ≤ Ch|u|3,Ω

when u ∈ H3(Ω).

For the convergence of TQC16 element, we can follow the way used in [21 or 22].
We give the result without proof.

Theorem 4.5. For TQC16 element, problem (3.16) has unique solution ūh, and
there exists a constant C independent of h such that

(4.6) ‖u− ūh‖2,h +
∑

1≤i 6=j≤3

∣∣∣ ∂2u

∂xi∂xj
− ∂ij

h ūh

∣∣∣
0,Ω

≤ Ch|u|3,Ω.

when u ∈ H3(Ω).
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4.1. TE16: the Zienkiewicz element and its divergence property. It is
known that Zienkiewicz element is not convergent for all general meshes in 2 dimen-
sions. As a analogue in 3 dimensional case, TE16 element has the same property.
In this section, we show that TE16 element is divergent for one special grid.

Now let Ω be the cube [−1, 1]3. For k = 1, 2, · · · , let Tk be a triangulation of Ω
defined as follows. T1 is shown in Fig. 1, while the subdivision is symmetric with
respect to the centric point of Ω. For k > 2, Ω is first subdivided into equal cubes
with side length hk = 2/k, then each cube is subdivided into tetrahedrons by the
same way used for T1. Fig. 2 shows the case of k = 2.

Fig. 1 Fig. 2

Theorem 4.6. TE16 element is divergent for triangulations Tk.

Proof. Let V10 be the finite element space of TE16 element on T1. Let vh ∈ V10

be the function such that vh is 1 at the centric point of Ω and vanishes at other
vertices of T1, and Dvh is zero at all vertices of T1. It is can be computed that∑

T∈T1

∫
T

∂2vh

∂x2
i

dx = −8
3
, i = 1, 2, 3,

∑
T∈T1

∫
T

∂2vh

∂xi∂xj
dx = 0, 1 ≤ i ≤ 3, i < j ≤ 3.

That is, TE16 element does not pass the patch test. On the other hand, for Tk the
number of the patches reduced from T1 is k3 and the number of elements in Tk is
48k3. From the result given in [17], we obtain the conclusion of the lemma.

5. Concluding remarks

In this paper, we proposed and analyzed several tetrahedron complete or incom-
plete cubic nonconforming finite elements for fourth order elliptic partial differential
operators.
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More works need to be done for constructing other types of nonconforming ele-
ments. One noticeable element that is missing from our work is a three dimensional
extension of Morley triangular element in two dimensions that only makes use of
quadratic polynomials. Another type of elements are cuboid nonconforming el-
ements that may be extended from rectangular nonconforming elements in two
dimensions. We will discuss them in future papers.
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