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Abstract

There are many interesting phenomena in extended-MHD such as anisotropic trans-
port, mhd, 2-fluid effects, stellarator and hot particles. Any one of them challenges
numerical analysts, and researchers are seeking for higher order methods, such as
higher order finite difference, higher order finite elements and hp/spectral elements.
It is true that these methods give more accurate solution than their linear coun-
terparts. However, numerically they are prohibitively expensive. Here we give a
successful solution of this conflict by applying mass lumped higher order finite el-
ements. This type of elements not only keep second/third order accuracy but also
scale closely to linear elements by doing mass lumping. This is especially true for
second order lump elements. Full M3D and anisotropic transport models are studied.
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1. Introduction

The extended-MHD [1] [2] is rich in multilevel physics, such as anisotropic
transport, mhd, 2-fluid effects, stellarator and hot particles. Among them,
solving the highly anisotropic transport is difficult but fundamental. For such
phenomena, the higher order methods, such as higher order finite difference
[3], higher order finite elements [4] and hp/spectral elements [5] have become
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more and more popular. Compared to linear methods [6] [7], these methods
give more accurate solution, particularly when the grid is not parallel to the
transport axis. Among them, the finite elements are well adapted to repre-
sent complex geometry. However, in the use of finite elements, continuously
inverting the mass matrix presents a major drawback, and this is a fundamen-
tal factor to affect the numerical efficiency. For linear elements, mass lumping
gives a good solution to the numerical performance. Nevertheless, this is much
less obvious in the case of higher order finite elements.

In order to have the accuracy of higher order elements as well as keep the
reasonable numerical efficiency of linear ones, the mass lumped higher order
elements are introduced in [8] and implemented here by the authors in toroidal
geometry. Compared to the Lagrange higher order elements, extra one bubble
node is added in the second order ones and extra 2 bubble nodes are added
in the third order ones, respectively (Figure 1). As a result, the number of
collation points increases to be the same as the number of nodal points. These
2 sets of points are carefully arranged so that they coincide with each other.
An extra third order term or fourth order term were added to each second
or third order bases functions, and in the same time the integral weight was
carefully chosen so that the Lagrange property

Ni(aj,ﬁj) = 5z'j (1)

are kept for the basis functions at the nodal point set as well as on the collation
point set also. Here (v, B;) are the values of barycentric coordinate (o, §) at
the nodal points n;. Therefore, mathematically these basis behave similarly
to spectral elements with Gauss-Lobatto quadrature points, so that the mass
matrix M remains to be diagonal. Now the mass lumping can be easily and
accurately taken.

Fig. 1.

For simplicity, the Lagrange higher order elements are called Lagrange ho ele-



ments, while the higher order elements with mass lumping are called lump ho
elements in this work. The Lagrange ho elements have already been installed
in M3D [4] and here the lump ho elements is compatibly integrated into it.
The numerical accuracy and efficiency of operators, such as first order deriva-
tive, gradient, Laplacian, inner product, and cross product, as well as elliptic
solvers, such as Poisson equations and Helmholtz equations, are monitored in
the process of solving realistic plasma modeling in section 2.

2. Numerical Accuracy and Efficiency Comparisons in M3D

M3D is a Multilevel, 3D code performing linear and non-linear calculations of
plasmas in toroidal topologies including tokamaks and stellarators, ideal and
resistive MHD models, two-fluid model, as well as hybrid particle-fluid. The
poloidal plane is represented by unstructured triangular mesh, and 4th order
finite difference is taken along toroidal direction.

Table 1: numerical accuracy

solvers/operators  linear Lagrange ho lump ho
Aty = ft:u .3133E-04 .1824E-10 2778E-10
A*u = f*:u .T480E-04 .1741E-07 9668E-11
Aty = ff:u  .7689E-05 .1368E-07 1316E-11
(ALt +X)u=fr:u .8375E-04 .5808E-06 5921E-11
(A* + X)u= ff:u .2019E-03 .1122E-04 1187E-10
(At £ AD)u=f] :u .3648E-04 .1582E-06 .1542E-10
Aty = fL (Neumann) : 8 .3034E-02 .1049E-03 1157E-03
: g_; 2290E-02 .7860E-04 .8898E-04
gu  2424E-03 .7718E-11 A4413E-13
% .9665E-03 .1709E-09 2709E-13
Qo v 9787E-03 .1705E-09  .5611E-11
vy -vg  .4251E-03  .7760E-13 A639E-13
vi X vy .3830E-02 .6218E-09 9326E-14
Laplacian  .6927E-03  .9690E-10 1106E-09

In a full M3D run, we need to continuously invert stiffness matrices in the
elliptic solvers and mass matrix in the derivative operators. There are seven
type of elliptic solvers as listed in [9] and six types of derivative operators



listed below in Table 1. There are also other operators not listed here since
they are more related to toroidal derivative, not directly related to higher
order elements. At each time step there are 13 ~ 19 elliptic solvers calls as
well as hundreds of derivative operator calls involved.

Table 2: cpu time

solvers/operators linear Lagrange ho lump ho
Aty =ft 11.505164 17.993580 15.881487
A*y = f*  11.936641  17.842965 15.577935
Aty = ft 11.487363 17.065694 15.590550
(At +Xu = f;- 11.593001 17.850698 15.764700
(A" +M)u= fF 11.827986 17.617935 15.462633
(AT + AN )u = f,;' 11.127486  17.504207 15.329060
Aty = f! (Neumann) 11.800331  17.994744 15.368874

Qu (.325041  2.822974 0.443981

U 0467021  2.539099 0.469528

T - Zu 0560459  9.457784 2.098601
v1-vy  0.680051  2.715444 0.961536

vi x vy 0.234130  2.418649 0.544330
Laplacian  0.355726  6.733015 0.554883

Here in the toroidal geometry, we are using approximately 7000 vertexes per
poloidal plane to monitor the numerical accuracy and cpu time incurred by
each solver/operator for the linear elements, Lagrange ho elements, and lump
ho elements as well. Only 2nd order elements are considered in this compar-
ison. The numerical accuracy given in Table 1 is measured against the exact
solution. The first part of the table corresponds to the elliptic solvers : pure
Poisson, star Poisson, dagger Poisson, Helmholtz pure Poisson, Helmholtz star
Poisson, Helmholtz dagger Poisson, respectively. They are subject to Dirich-
let b.c., and their definition can be found in [9]. The second part of the table
gives the pure Poisson solver subjected to Neumann b.c. and the accuracies are
given in the first order partial derivative a% and a% of the numerical solution
due to a constant related to the uniqueness. The last part of the table gives the

operators ranging from first order partial derivative % and a%’ second order

derivative commute agzy — 63% related to the computation of V - B where B
is the magnetic field, to vector inner product, cross product, and Laplacian as
well. Obviously, the Lagrange ho elements beat the linear elements and lump

ho elements inherit this property. In fact in most cases, the lump ho elements




have more accurate digits due to extra third and fourth order terms added in
the their bases.

The corresponding cpu times to find the solutions from the solvers or form
the operators, measured in seconds, are given in Table 2 in the same order.
From the table it can immediately tell that the cpu time for the solvers has
increased % when switching from linear elements to Lagrange 2nd order ele-
ments, whereas this number is less than i for lump 2nd order elements. The
most significant and key improvement comes from operators given in the last
part of the table. The Lagrange 2nd order elements take longer to run, some
cases even 20 times more than the linear ones, while lump 2nd order elements
scale to linear elements in most cases. This can be explained by the replacing
of the mass matrix inversion in Lagrange ho elements completely by the vector
point-wise division in lump ho elements due to mass lumping.

3. Model Tests

The full M3D run is a very complex system, involving advancing 7 equations
explicitly or coupled implicitly or uncoupled implicitly at each time step. For
simplicity, two highly anisotropic transport examples are taken as snapshots
of M3D to demonstrate the characteristics of higher order elements. Here only
lump ho elements are applied. Same conclusion can be made for Lagrange ho
elements.

In both cases, the domains are 2D rectangle: ABCD: [0, L,| x [0, L,]| (Figure
2). [AB] is aligned with the x-coordinate and [AD] is aligned with the y-
coordinate. One has the strong transport direction aligned with the rectangle’s
diagonal; the other one has the magnetic field circular around the rectangle’s
center. They are realistic enough to modeling toroidal plasma. The linear,
second, and third order elements are applied and their numerical behaviors
are fully studied.

31 Casel

The model problem considered is the steady-state anisotropic heat conduction
equation [3] in 2D:

V- (RVT) =0, 2)

where T is the temperature and £ is the conductivity tensor. This can be writ-
ten in the orthogonal coordinates (&, 7), which are aligned with the transport
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axes, as follows:

90 0, 0T 3)
o og am "an

Without loss of generality we assume k¢ > &, so that the strong transport
direction is aligned with &.

The solution domain is given in the Cartesian coordinates (z, y), which are not
aligned with the transport axes (£,7n). There is an angle 6, between the axis £
and z. The Dirichlet boundary condition is shown in Fig. 1: T=0 on side [AD-
DC] and T=1 on side [AB-BC], so that the strong transport axis & is parallel
to the diagonal [AC]. For infinite anisotropy, the exact solution is: T = 0
above the grid diagonal [AC], T = 1 below the grid diagonal [AC], and the
width of the transition zone is zero. For a finite anisotropy, the exact solution
introduces an internal layer which has non-zero transition width (referred as
profile width). We will show that the resolution of this layer depends on higher
order elements when x| is large.
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The second example is a demonstration of the accurate calculation of anisotropic
thermal conduction governed by equation:

V'KHBB-V(I)-i-V'l{V(I)-l-S(x,y)=0 (4)

in the existence of magnetic field B [10]. B is the 2D field written in terms
of a given flux function ¢ (z,y), i.e., B =2 x V¢, and ¢(z, y) = sin 7% sin Z—?;
Therefore, B has a structure given in figure 3.
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In this application we let k = 1, S(z,y) = ¥(z,y), and

Ty
Ly

(m/La)? + (w/Ly)*’

T
Sin L. Sin

o =

so that the solution should be independent of the value of the parallel conduc-
tivity ). But It will be found that this can only be approximately achieved
by higher order elements when x is large.

4. Mesh Setup

The unstructured triangular mesh is formed by first dividing the rectangular
domain ABCD into uniform rectangular cells: [0, N, — 1] x [0, N, — 1]. Then
each of the rectangle grids is subdivided into two triangles in the following 3
ways:

e Mesh t1 in Figure 4.
The strong transport direction & has full alignment with the element edge
which is parallel to the diagonal [AC].

e Mesh t2 in Figure 4.
The strong transport direction £ has no alignment with the element edge.
The elements, aligned with & in Mesh t1, are now aligned with the other
diagonal [BD].
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e Mesh t0 in Figure 4.
This combines t1 and t2 in such a way that the alignment is localized in the
upper-right and lower-left blocks of the rectangular domain. In the upper-
left and lower-right blocks, the misalignment is the same as in Mesh t2.

5. Numerical Experiments and Discussions

As our first case, the contours of T are plotted in Figure 5 to demonstrate
the numerical representation of the transition layer with regard to the grid
resolution and the order of finite elements. k¢ is fixed at 10% and t; mesh
is used. A lower conduction number is chosen here so that the plot contrast
is clearer for a better view. Another reason is that when the anisotropy is
relatively low, the transition layer is not sensitive to the type of meshes. We
will discuss more about this later.

Note that there are 7 contour lines drawn in each sub-plot. Counting from color
green to red, they are 7" = 0.125,7 = 0.25,7 = 0.50,7 = 0.625,7 = 0.75,
and T" = 0.875 contour lines, respectively. The 1st row corresponds to the
linear elements with increasing grid resolution. As the grid gets refined, the
layer is narrowed, but not significant. A dramatic improvement is found at the
2nd row where the second order elements are applied. At this row, one can
see that the layer is much thinner. The 3rd row is obtained by the third order
elements. Clearly the layer is narrowed down to another level. From this figure
we can conclude that the proper resolution of the transition layer depends on
the higher order elements other than on the grid refining.

The transition layer is introduced by the perpendicular conduction k,. It’s
width is denoted by wd. The numerical computation of this layer at high
anisotropy can be difficult in the case when the computational grid is not
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aligned with the strong transport direction, k.

wd is plotted against the increasing anisotropy in Figure 6 for all the 3 types
of meshes. The k¢ has the values 10',10?,10%,10% 105,105,107, 108, 10°, while
the grid resolution is fixed at 239 x 239. A large IV, and N, is used here so that
the solutions have surely converged with regarding to grid resolution. From
the above conclusion, only the lump third order elements are applied this time.
Line RED is for t; mesh; Line GREEN is for ty mesh; Line YELLOW is for
to mesh. The plot is divided into 2 parts due to the dramatic changes of the
scale in wd. The first part is for 10" < k¢ < 10°. Its scale unit is 206y. The
second part is for 10° < k¢ < 10%, and its scale is 6y. Here dy = 0.0014. The
area under each line represents the width calculated on each of the three types
of meshes.

At small k¢, < 10%, the misalignment has a negligible effect. All three lines
have the same bandwidth. When the anisotropy increases from ~ 10%, the
layer becomes thinner and the misalignment starts to affect this layer. At
ke & 10* — 10°, the effect is medium. wd keeps going down on ¢; mesh; while
stays approximately at a level of 0.5y on 3 mesh, and 6y on t, mesh. At
large k¢, > 10°, the alignments become critical. The convergence of this layer
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toward zero is only observed on ¢; mesh which has full alignments. On ¢,
mesh with no alignments, wd stays as large as 5.8)y. The width on ¢y, mesh
lies between ¢; and 5. In all, wd on t; mesh drops correctly, while wd on the
other 2 types of meshes failed to converge, particularly on ¢ mesh with no
any alignments.

As our second case, the RMS of the error is plotted in Figure 7 against the
grid resolution at ) = 10. ¢y mesh is used. Three lines are drawn to show how
accurate the solution is calculated by linear (RED), lump 2nd order(GREEN),
lump 3rd order(YELLOW) elements. Obviously the numerical solution is pol-
luted by k. It is verified again that the higher order elements are effective
and necessary approaches in the existence of anisotropy.

In conclusion, the lump ho elements are proved to be effective approach to solve
highly anisotropic transport problems with regard to timing and accuracy.
Also in this study we found that grid alignment is essential to achieve better
numerical accuracy even higher order method is used, and this is consistent
with the conclusion made in [3].
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