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Abstract. Triangular 3rd order Lagrange elements have been imple-
mented previously to study the numerical error associated with grid mis-
alignment. It has previously been found that grid misalignment strongly
affects numerical accuracy in the case of linear elements. The same con-
clusion was obtained by higher order finite difference. Here we observe
that this is also true for higher order finite elements, up to 3rd order,
when the solution has a steep gradient. Three types of meshes are consid-
ered. Type t1 has one element edge fully aligned with the strong trans-
port direction; type t2 doesn’t have any alignment with that direction;
type t0 is a combination of t1 and t2, i.e., partial alignment.

1. Introduction

Higher order Lagrange elements[1] have been used recently to study the numer-
ical effect of grid misalignment[2][3] on highly anisotropic transport problems.
It has been found that the numerical solution is polluted by the grid misalign-
ment when linear elements were used. Also in [4] it showed that grid alignment
is critical to obtain accurate solution numerically even for higher order finite
difference methods. In [1] we found that higher order elements can reduce the
numerical artifacts caused by such misalignment significantly. Here we extend
the study in [1] to another 2 types of meshes: t1 and t2. The mesh applied in [1]
is a combination of t1 and t2, and we refer it as t0 for convenience.

The steady-state anisotropic heat conduction equation considered here is
given in the orthogonal coordinates (£,7) by:
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Here T is the temperature and k¢ and &, are the conductivities along the trans-
port axes £ and 7, respectively. Without loss of generality we assume &, =1
and k¢ > 1, so that the strong transport direction is aligned with &, and the
anisotropy ratio is given by k¢ /K, = ke.
The solution domain is given in the Cartesian coordinates (z,y) by the rect-
angular ABCD: [0, L,] x [0, L,] with Dirichlet boundary conditions. As shown
in Fig. 1. [AB] is aligned with the x-coordinate and [AD] is aligned with the
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Fig. 1. Rect ABCD: L, = L, = 1. T=0 on side [AD-DC], T=1 on [AB-BC]. The
strong anisotropic direction is aligned with the grid diagonal [AC].

y-coordinate. The strong transport axis £ is aligned with the [AC] diagonal.
The boundary conditions are: T=0 on side [AD-DC]; T=1 on side [AB-BC]. For
infinite anisotropy, the exact solution is: T = 0 above the grid diagonal [AC],
T = 1 below the grid diagonal [AC], and the width of the transition zone is zero.
For a finite anisotropy, the exact solution introduces an internal layer which has
non-zero transition width.

2. Mesh Setup

The unstructured triangular mesh is formed by first dividing the rectangular
domain ABCD into uniform rectangular cells: [0, N, —1] x [0, N, — 1]. Then each
of the rectangle grids is subdivided into two triangles in the following 3 ways:

Mesh t1 in Fig. 2. The strong transport direction £ has full alignment with the
element edge which is parallel to the diagonal [AC].

Mesh t2 in Fig. 2. The strong transport direction £ has no alignment with the
element edge. The elements, aligned with £ int Mesh t1, are now aligned with
the other diagonal [BD].

Mesh t0 in Fig. 2. This combines t1 and t2 such that the alignment is localized in
the upper-right and lower-left blocks of the rectangular domain. In the upper-left
and lower-right blocks, the misalignment is the same as in Mesh t2.

3. Numerical Experiments and Discussions

The numerical results for the convergence studies are presented in Table 1 and
2 for Mesh t1, t0 and t2, respectively in an ordering such that the alignment
is decreasing. The profile width, defined in [4], is used to detect the numerical
convergence when k¢ <= 10°. If the width remains the same 3 times in a row



Fig. 2. Meshes. t1 : 100% alignment; t0 : 50% alignment; ¢2 : 0% alignment.

when the grid resolution is increasing, we consider the solution converged. Only
3rd order elements are applied here based on the results from [1],

When the anisotropy k¢ is small, < 103, as shown in columns 1 and 2 for each
type of mesh in Table 1, the misalignment has a negligible effect. At k¢ = 102,
convergence takes place at grid resolution 79 for t1 and t0 meshes, and 99 for
t2 mesh. The solution on the t2 mesh is within 0.1% of the one on the t1 mesh.
At k¢ = 103, both solutions on the t0 and t2 meshes have deviated from the one
on the t1 mesh by about 0.3%, but convergence takes place later on the t2 mesh
than on the t0 mesh.

When the anisotropy increases, the transition layer becomes thinner and the
misalignment starts to come in and play a role.

At ke ~ 10° — 10°, the misalignment has a medium effect. As seen from
columns 3 and 4 in table 1 for the different types of mesh, the convergence takes
place at a much earlier stage on the t1 mesh with full alignment. The convergence
comes later on the partially aligned mesh t0, and it is seriously delayed on mesh
t2 with no alignment. At k¢ = 10%, solutions on the t0 mesh has a deviation
from the one on the t1 mesh of about 0.8%, but about 11% from the solution on
the t2 mesh with no alignment. At k¢ = 10°, solutions on the t1 mesh converges
at grid resolution 199, but not yet for solutions on the t0 and t2 meshes.

When the anisotropy continues to increase, k¢ > 105, numerically it becomes
difficult to measure the profile width correctly since this layer becomes very thin.
Therefore, the L, norm of the solution is used in Table 2. This norm should
converges to 1 when k¢ — co. The data in Table 2 indicate that the alignment
has a strong effect. The Ly norm approaches 1 faster on the mesh, than the t0
mesh. The L, norm on the t2 mesh is the slowest. Therefore, we conclude that in
order to achieve good precision for problems with high anisotropy, grid alignment
is an important factor to be considered even for the 3rd order elements.

Finally, it is observed that 3rd order elements only works for k¢ <= 107 since
the L, norm remains the same at k¢ = 107 and k¢ = 10® . For problem with
k¢ > 107, higher order elements than 3rd order should be introduced. We will
address this in the future.



Table 1: profile width

t1 mesh (100% alignment)

t0 mesh (50% alignment)

t2 mesh (0% alignment)

102

103

107

10°

102

103

107

10°

102

10°

107

10°

39

0.1060

0.0353

0.0124

0.0094

0.1060

0.0354

0.0158

0.0138

0.1065

0.0441

0.0337

0.0328

49

0.1061

0.0353

0.0121

0.0077

0.1059

0.0355

0.0141

0.0113

0.1063

0.0408

0.0289

0.0275

59

0.1060

0.0350

0.0121

0.0066

0.1060

0.0351

0.0132

0.0096

0.1062

0.0386

0.0254

0.0240

69

0.1060

0.0351

0.0117

0.0059

0.1060

0.0351

0.0125

0.0084

0.1062

0.0374

0.0226

0.0213

79

0.1060

0.0350

0.0117

0.0054

0.1060

0.0350

0.0122

0.0076

0.1061

0.0365

0.0211

0.0193

89

0.0349

0.0115

0.0050

0.0350

0.0119

0.0069

0.1061

0.0361

0.0196

0.0177

0.0349

0.0115

0.0047

0.0350

0.0118

0.0063

0.1061

0.0357

0.0184

0.0163

109

0.0349

0.0115

0.0045

0.0117

0.0059

0.0355

0.0174

0.0152

119

0.0114

0.0043

0.0117

0.0055

0.0353

0.0166

0.0143

129

0.0114

0.0042

0.0116

0.0053

0.0352

0.0159

0.0135

139

0.0114

0.0040

0.0116

0.0051

0.0351

0.0153

0.0127

149

0.0114

0.0039

0.0115

0.0049

0.0351

0.0147

0.0121

159

0.0113

0.0039

0.0115

0.0048

0.0350

0.0143

0.0116

169

0.0113

0.0038

0.0114

0.0047

0.0350

0.0139

0.0111

179

0.0113

0.0037

0.0114

0.0046

0.0350

0.0135

0.0106

189

0.0037

0.0114

0.0045

0.0133

0.0106

199

0.0038

0.0044

0.0130

0.0099

209

0.0038

0.0043

0.0127

0.0095

219

0.0038

0.0042

0.0125

0.0092

229

0.0042

0.0090

Table 1: Ly Norm

t1 mesh (100% alignment)

t0 mesh (50% alignment)

t2

mesh (0% alignment)

10°

10°

107

10%

10°

10°

107

10°

10°

10°

107

10°

0.9969

0.9972

0.9972

0.9972

0.9965

0.9967

0.9967

0.9967

0.9919

0.9919

0.9920

0.9920

0.9974

0.9978

0.9978

0.9978

0.9971

0.9973

0.9974

0.9974

0.9933

0.9934

0.9934

0.9934

0.9977

0.9981

0.9982

0.9982

0.9975

0.9978

0.9978

0.9978

0.9942

0.9943

0.9943

0.9943

0.9979

0.9984

0.9985

0.9985

0.9977

0.9981

0.9981

0.9981

0.9949

0.9950

0.9950

0.9950

0.9980

0.9986

0.9987

0.9987

0.9979

0.9983

0.9983

0.9983

0.9954

0.9955

0.9956

0.9956

0.9982

0.9987

0.9988

0.9988

0.9980

0.9985

0.9985

0.9985

0.9958

0.9960

0.9960

0.9960

99

0.9982

0.9988

0.9989

0.9989

0.9981

0.9986

0.9987

0.9986

0.9961

0.9963

0.9963

0.9963

109

0.9983

0.9989

0.9990

0.9990

0.9982

0.9987

0.9988

0.9988

0.9964

0.9966

0.9966

0.9966

119

0.9984

0.9990

0.9991

0.9991

0.9983

0.9988

0.9989

0.9989

0.9966

0.9968

0.9968

0.9968

129

0.9984

0.9991

0.9992

0.9992

0.9983

0.9989

0.9989

0.9989

0.9968

0.9970

0.9970

0.9970

139

0.9984

0.9991

0.9992

0.9992

0.9984

0.9989

0.9990

0.9990

0.9970

0.9972

0.9972

0.9972

149

0.9985

0.9992

0.9993

0.9993

0.9984

0.9990

0.9991

0.9991

0.9971

0.9973

0.9974

0.9973

159

0.9985

0.9992

0.9993

0.9993

0.9985

0.9990

0.9991

0.9991

0.9972

0.9975

0.9975

0.9975

169

0.9985

0.9992

0.9994

0.9994

0.9985

0.9991

0.9992

0.9992

0.9973

0.9976

0.9976

0.9976

179

0.9985

0.9993

0.9994

0.9994

0.9985

0.9991

0.9992

0.9992

0.9974

0.9977

0.9977

0.9977

189

0.9985

0.9993

0.9994

0.9994

0.9985

0.9992

0.9993

0.9993

0.9975

0.9978

0.9978

0.9978

199

0.9986

0.9992

0.9995

0.9994

0.9985

0.9992

0.9993

0.9993

0.9976

0.9979

0.9979

0.9979

209

0.9986

0.9993

0.9995

0.9995

0.9986

0.9992

0.9993

0.9993

0.9977

0.9980

0.9980

0.9980

219

0.9986

0.9993

0.9995

0.9995

0.9986

0.9992

0.9994

0.9993

0.9977

0.9980

0.9981

0.9981

229

0.9994

0.9995

0.9995

0.9986

0.9993

0.9994

0.9994

0.9978

0.9981

0.9981

0.9981

239

0.9994

0.9996

0.9995

0.9993

0.9994

0.9994

0.9978

0.9982

0.9982

0.9982
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