next up previous
Next: Kinetic Ballooning Up: Resistive Ballooning Previous: Resistive Ballooning

Guzdar-Drake Drift-Resistive Ballooning Model

The 1993 $\bf E \times B$ drift-resistive ballooning mode model by Guzdar and Drake [2] is selected

\begin{displaymath}
D^{RB} = F_1^{RB}
\abs \left( 2\pi q_{a}^2 \right) \rho_e^...
...ei}\left( {R\over p}
\right)\left(- {{d p }\over {d r}}\right)\end{displaymath}

where $F_1^{RB}=$ frb(1). Here the normalize presure gradient scale length has been substituted for the density gradient scale given in their paper following a comment made by Drake at the 1995 TTF Workshop[4]. Including diamagnetic and elongation effects, the particle diffusivity is

\begin{displaymath}
D^{RB} = F_1^{RB} \abs \left( 2\pi q_{a}^2 \right) \rho_e^2...
...{d p }\over {d r}}\right)
c_9 \kappa^{c_{4}} \eqno{\tt zgddb}
\end{displaymath}

where $\rho_e=v_e/\omega_{ce}$, $c_9 =$ cswitch(9) and and $c_4 =$ cswitch(4).

The electron and ion thermal diffusivities are taken equal taken to be an adjustable fraction of the particle diffusivity.

\begin{displaymath}
\chi_e^{RB} = F_2^{RB}
\abs \left( 2\pi q_{a}^2 \right) \r...
...{d p }\over {d r}}\right)
c_9 \kappa^{c_{4}} \eqno{\tt therb}
\end{displaymath}


\begin{displaymath}
\chi_i^{RB} = F_3^{RB}
\abs \left( 2\pi q_{a}^2 \right) \r...
...{d p }\over {d r}}\right)
c_9 \kappa^{c_{4}} \eqno{\tt thirb}
\end{displaymath}

where $F_2^{RB}=$ frb(2) and $F_3^{RB}=$ frb(3)



transp_support 2001-12-21