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ABSTRACT

We describe mathematical methods based on optimizing a modified non-linear flux function (MFF) to evaluate whether odd-parity perturba-
tions affect the local closure of magnetic field lines in field-reversed configurations. Using the MFF methodology, quantitative formulas are
derived that provide the shift of the field minimum and the threshold for field-line opening, a discontinuous change in field topology.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0090163

I. INTRODUCTION

The local closure of magnetic field lines and their topology are
appropriate proxies and the first step toward analyzing plasma con-
finement. It is well known from r � B ¼ 0 that all magnetic field
lines close. However, closure of certain magnetic field lines can hap-
pen far away from the region of interest, the limited volume in
which plasma must be confined. Small perturbations can dramati-
cally alter and open up the local field structure, even for initially
well-defined closed structures. The spatial scale of the closure is
important to fusion plasma physics,1,2 solar physics, and planetary
plasma physics.3

This study, a step toward understanding plasma confinement by
magnetic fields, provides a quantitative method to test the resilience of
the field structure to intentional manipulation. Though perturbations
may vary with time and interactions between the field and plasma
may alter certain results, we discuss only time-independent perturba-
tions, valid under the conditions we consider.

The field structure of radio-frequency-heated (RF) field-reversed
configurations (FRCs) at an instant of time is our specific interest. The
RF fields considered have frequencies well below the electron cyclotron
and plasma frequencies and sufficiently below the ion cyclotron fre-
quency to satisfy the time-independent assertion. The RF field is likely
to have components parallel and perpendicular to the FRC’s magnetic
field and may be symmetric about the FRC’s axial midplane, z¼ 0,
where z is the major axis. This symmetric case is termed as even parity.

Anti-symmetric fields are termed as odd parity. An FRC’s magnetic
fields are odd parity and close around an equilibrium line.

Previous studies4 of this question by graphic and numerical
methods showed that an FRC’s closed field structure was destroyed
by even-parity perturbations but maintained by weak odd-parity
ones. These studies gave a loose description of what is meant by
“weak” and defined the term “local” to those field lines within the
unperturbed FRC’s approximately elliptical separatrix surface. The
methodology we present provides detailed information on the per-
turbed field’s shape, focusing on perturbations with long axial wave-
lengths. Some results, namely, preservation of field line closure,
apply to arbitrary wavelengths.

At the heart of the analysis is the construction of a modified flux
function (MFF), derived by solving non-linear differential field-line
equations.

The analysis is formulated based on symmetry with respect to the
z¼ 0 midplane. Notable observations from the analysis presented
herein for small odd-parity perturbations are the field structure retains
closure for a broad range of wavelengths, the field minimum shifts
radially, and the closed field structures change shape within the sepa-
ratrix. Quantitative values of these are derived. Though the derivations
are strictly valid for long-wavelength perturbations, the accuracy
turned out to be relatively high, and the analysis was adequate for
wave-number �0:5/(separatrix semi-major axis). Such agreement is
attributed to the long-wavelength approximation being a second-order
approximation of the perturbation. Generalization of the analysis to
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arbitrary wavelengths remains to be done. A discontinuous change in
the field structure at increased odd-parity perturbation is identified.

II. MODEL FRC AND ODD-PARITY PERTURBATION
FIELDS

There are many FRC shapes considered in the literature,
falling into categories such as elliptic, racetrack,5 long-thin,6

Grad–Shafranov,7,8 MHD,9 and Solov’ev.10 All share the essential fea-
tures, namely, a separatrix, two X-point spindle nulls on the major
axis, and a single O-point line defining the minor axis. In this study,
we restrict attention to the Solov’ev, which, being analytic, is appropri-
ate for investigating and explaining field closure in mathematical
terms. Furthermore, we confine attention to the inner side of the
unperturbed separatrix, avoiding the need for non-Solov’ev boundary
conditions. Field closure under odd-parity perturbations was previ-
ously reported in FRCs by three other techniques, field-line tracing,
graphical,4 andMHD.9

Again, we chose the Solov’ev equilibrium10 because of its mathe-
matical tractability. In cylindrical co-ordinates, the FRC magnetic field
inside the separatrix is described by

ðBr ;B/;BzÞ ¼ B0
rz
z2s
; 0; 1� 2r2

r2s
� z2

z2s

 !
; (1)

where B0 is the magnitude of the FRC field at z ¼ r ¼ 0. rs and zs are
the semi-minor and semi-major axes of the separatrix of the unper-
turbed Solov’ev field, respectively. The field is independent of /
and, hence, can be summarized by a scalar flux function w. Using
the flux function, the magnetic field can be written as ðBr ;BzÞ
¼ ð�ð1=rÞ@zw; ð1=rÞ@rwÞ or B ¼ rw� /̂=r. The contours of con-
stant w are perpendicular to its gradient. B is also perpendicular to
rw and on the same plane; hence, B is tangent to the contours of w.

For the Solov’ev FRC, the w is

w ¼ B0

2
r2 1� r2

r2s
� z2

z2s

 !
: (2)

For perturbed field lines, the magnetic field is not independent of /.
The flux function concept cannot be applied to analyze the field lines.
Our goal is to formulate a specific type of flux function for the FRC,
including perturbations cases.

A general class of anti-symmetric perturbations can be expressed
by the following equations:11

DBr ¼ �2aB0 I0ðkrÞ �
I1ðkrÞ
kr

� �
sin kz cos/; (3a)

DB/ ¼ 2aB0
I1ðkrÞ
kr

sin kz sin/; (3b)

DBz ¼ �2aB0I1ðkrÞ cos kz cos/; (3c)

where a represents a ratio factor of the perturbation field strength to
the FRC field strength, B0. I0 and I1 are the modified Bessel functions
of the first kind.

We begin by assuming a small and that kz; kr � 1. We will later
extend a to larger values to understand phase transitions. Regardless
of the assumption on a, this approximates—to second order in kzs and
krs—the odd-parity perturbation as

DB � �aB0ðkz cos/;�kz sin/; kr cos/Þ: (4)

The earlier work4 assumed krs � 1, though not necessarily
kzs � 1. The closure of the field lines happens in the neighborhood of
equilibrium points, located in the plane z¼ 0. In the neighborhood of
the equilibrium points, z ! 0 leads to sin kz ! kz; cos kz ! 1, e.g.,
Eq. (4). Hence, the closure analysis around the equilibria on z¼ 0 axis
is accurate as long as krs � 1. Analysis of the shape will require small
kzs as well. This analysis will show that, within a specific range of a,
the field lines retain their closed structure around a radially shifted
equilibrium, in sharp contrast to even-parity perturbations which,
even of arbitrary smallness, destroy closed-ness.2 We will also analyze
which value of a opens up the field lines and the behavior after that
transition.

By the method described below, quantitative information about
the change in the shape of the field structure is extracted. These results
are valid strictly for perturbations with a long wavelength, namely,
krs; kzs � 1. As we will see, the shape of the field structure goes
through a sharp transition after a crosses a critical limit.

III. CONSTRUCTION OF MODIFIED FLUX FUNCTION

We begin with the two-dimensional case, on the y–z plane at
/ ¼ 0, using Cartesian co-ordinates. Adding an odd-parity perturba-
tion, Eq. (4), to the FRC field gives the projection of the field lines onto
the y–z plane as

By ¼ B0
yz
z2s
� aB0kz; (5a)

Bz ¼ B0 1� 2y2

r2s
� z2

z2s

 !
� aB0ky: (5b)

Normalizing by B0, the parametric field equations become

dy
dt
¼ yz

z2s
� akz; (6a)

dz
dt
¼ 1� 2y2

r2s
� z2

z2s

 !
� aky: (6b)

Only the parametric relationship between y and z is required;
hence, t may be eliminated. Scaling by 1=z changes each vector’s
length and not its direction; the new vectors remain tangent to the field
line. In other words, we are now expressing r and z in terms of
s ¼

Ð
zdt. Defining S ¼ z�2s

Ð
zdt; Y ¼ y=rs; Z ¼ z=zs; A ¼ akz2s =rs,

and m ¼ rs=zs provides the dimensionless form of Eqs. (6), the new
field lines

dY
dS
¼ Y � A; (7a)

Z
dZ
dS
¼ ð1� 2Y2 � Z2Þ � Am2Y : (7b)

The solution of Eq. (7a) is

Y ¼ CeS þ A: (8)

Replacing Y in Eq. (7b) gives

Z
dZ
dS
¼ ð1� 2A2 �m2A2Þ � Z2 � Að4þm2ÞCeS � 2C2e2S: (9)
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Defining I ¼ ð1� 2A2 �m2A2Þ andM ¼ Z2 � I rewrites Eq. (9) as

1
2
dM
dS
þM ¼ �ð4þm2ÞACeS � 2C2e2S:

Using superposition of particular and homogeneous solution yields

M ¼ �W=ðC2e2SÞ � 2
3
ð4þm2ÞACeS � C2e2S;

where W is an arbitrary constant. Replacing M with Z2 � I and C2e2s

with Y–A gives

W ¼ ðY � AÞ2 I � Z2 � ðY � AÞ2 � 2Að4þm2ÞðY � AÞ
3

� �
:

After some algebra, we write the flux function as W ¼ ðY � AÞ2ðJ
�ðY þ Að1þm2Þ=3Þ2 � Z2Þ, where

J � 1� a2k2r2s
9

z2s
r2s
þ 1

 !
2z2s
r2s
� 1

 !
: (10)

The flux function is then scaled for dimensional constants, inserting
B0r2s =2, and finally rewritten in the dimensioned form w ¼ B0r2s W=2:

w ¼ B0

2
ðy � akz2s Þ

2 J � y þ akðz2s þ r2s Þ=3
rs

� �2

� z
zs

� �2
 !

(11)

is called the “modified flux function” (MFF). This is not an actual
magnetic flux through a surface as the previously defined flux func-
tion. The MFF is a mathematical construct whose contours describe
the projection of the field lines onto y–z plane. As we will see in Sec.
IV, the modification gives us important physical results. The validity
of the modification is demonstrated in Fig. 1. Note that for a ¼ 0 or
k¼ 0, the MFF reduces to the previously defined flux function equa-
tion projected to y–z plane.

IV. CLOSURE AND SHAPE OF CONTOURS
OF MODIFIED FLUX FUNCTION

The modified flux function provides quantitative results for field
structure geometry changes. First, we find the two-dimensional gradi-
ent of MFF,rw ¼ ðwy;wzÞ. We could have simply calculated the gra-
dient and Hessian of the unperturbed function to understand stability
of the system. However, we want to extract more information than
just qualitative statements on the stability of the system, such as when
the system becomes unstable, what are the new critical-point locations,
and if there are other critical points hidden in the system. For these, a
cumbersome calculation of the gradient and Hessian of perturbed field
is necessary. After doing the necessary calculations, we find that

wy ¼ B0ðy � akz2s Þ 1� 2y2

r2s
� z2

z2s
� aky

 !
¼ Bzðy � akz2s Þ; (12a)

wz ¼ �B0ðy � akz2s Þ
2 z
z2s
¼ �Byðy � akz2s Þ: (12b)

Setting the gradient to 0 gives the critical points. An easy-to-spot
solution is y ¼ akz2s . This means that the critical points of the first
type lie on the line ðy; zÞ ¼ ðy0; zÞ, where we defined

y0 ¼ akz2s :

The other solution where y 6¼ akz2s requires wz ¼ 0 and thus z¼ 0.
Using z¼ 0 on wy ¼ 0 with the condition y 6¼ akz2s requires

1� aky � 2
y
rs

� �2

¼ 0:

Solving this gives two possible values for y and the two isolated critical
points of second type ðy6; 0Þ. y6 is found by solving the stated qua-
dratic equation and is given as follows:

y6 ¼ �
akr2s
4

6 rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
þ a2k2r2s

16

r
: (13)

To understand the nature of these critical points, we have to find
the determinant of the Hessian matrix of the MFF. The Hessian matrix
is given by

Hwðy; zÞ ¼
wyy wyz
wzy wzz

� �
:

The trace of the Hessian matrix is Tr½Hw	 ¼ wyy þ wzz and the deter-

minant of the Hessian matrix is det½Hw	 ¼ wyywzz � w2
yz . After the

necessary calculations, we find their closed forms

FIG. 1. Verification that the modified flux function aligns with projection of field lines
on y–z plane. In the top figure, exact perturbation from Eq. (3) was used to plot the
field lines. The lower figure plots MFF derived from the approximated perturbation
from Eq. (4). They result in the same closed curves. One half of FRC expands,
while the other half contracts. The separatrix shifts in the direction where the con-
tours expand. Here, rs ¼ 1; zs ¼ 2; B0 ¼ 1; a ¼ 0:2, and k¼ 0.3.
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Tr Hwðy; zÞ
� �

¼ B0 1� z2

z2s
þ 4akz2s y

r2s
� y2

z2s
� 6y2

r2s

 !
; (14)

det Hwðy; zÞ
� �

¼ �B2
0

z2s
ðy � akz2s Þ

2Dðy; zÞ; (15a)

Dðy; zÞ � 1þ a2k2z2s þ
3z2

z2s
� 6y2

r2s
þ 2aky

2z2s
r2s
� 1

 !
: (15b)

It is easy to see that the critical points on the line ðy; zÞ ¼ ðakz2s ; zÞ
have det½Hw	 ¼ 0 (Fig. 2). So, the Hessian is a semi-definite, and all
critical points of the first type are degenerate critical points.12 They
form a critical manifold, which we define as the separator line.12 In
general, the critical manifolds are unstable when perturbed and turn
into a sequence of isolated critical points. However, as we see here, the
gradient and Hessian remain 0 on the separator line regardless of a of
the perturbation. So, as the critical manifold, or as we defined it, the
separator line is stable under odd perturbation. The critical points of
second type have det½Hw	 6¼ 0. If Dðy; zÞ > 0, then det½Hw	 < 0 and,
thus, the point is a saddle point. If Dðy; zÞ < 0, then det½Hw	 > 0 and
the point is a local maximum/minimum. If it is local maximum, then
the Hessian has a negative trace; otherwise, it has a positive trace.
Given its importance, we label the quantity as D(y, z) characterizer.

We should note now that we are going to use the word “critical
points of the first type,” “points from separator line,” and “degenerate
critical points” interchangeably. We will also use “critical points of the
second type” and “isolated critical points” interchangeably.

We summarize the discussion in the following table (Table I).
The following table is true for the critical points of the second type.

The trace of the Hessian and characterizer of the critical points of
the second type are

Tr Hwðy6; 0Þ
� �

¼ �2B0 1þ r2s
4z2s

 !

� 1þ ak rs þ
2z2S
rs

� �
akrs
4

7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
þ a2k2r2s

16

r ! !
;

(16)

Dðy6; 0Þ ¼ �4
1
2
þ a2k2r2s

16

� �
6ak rs þ

4z2s
rs

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
þ a2k2r2s

16

r
: (17)

For arbitrary a > 0; Dðy�; 0Þ < 0 and Tr½Hwðy�; 0Þ	 < 0. So,
the lower critical point of second type is always a local maxima. In
addition, for small enough a, Dðyþ; 0Þ < 0 and Tr½Hwðyþ; 0Þ	 < 0
are also true. So, for small enough a, both critical points of second type
are local maxima. Hence, the immediate contours near the critical
points of the second type are closed.12 Similar results have been found
in the context of tokamak equilibria in the presence of current rever-
sal.13 We can go further and prove the following two theorems (the
proofs of these theorems can be found in Appendix C).

Theorem 1: All contours, except the separator line, within the
ellipse from Eq. (18) are closed,

y þ akðz2s þ r2s Þ=3
rs

� �2

þ z
zs

� �2

¼ J: (18)

Theorem 2: For small enough a, such that two local maxima
exists inside the ellipse in Eq. (18), all contours outside the ellipse are
open.

Using these two theorems, we can define our separatrix as the
ellipse described in Eq. (18). Separatrix separates the closed field
lines from the open field lines. It should be noted that these theo-
rems only work if the two isolated critical points are within the
ellipse. If they are outside, the situation is different, and we have a
different separatrix.

We can find the length of the separator line contained within the
ellipse by finding the distance of intersection points. As the separator
line is ðy; zÞ ¼ ðakz2s ; zÞ, we can set y ¼ akz2s in Eq. (18) and then
solve for z to find the intersection points. Given that they have same
y ¼ akz2s and symmetric with respect to z¼ 0 axis, we can just multi-
ply the value of z to find the length of the segment. It comes out as

l ¼ 2zs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2k2z2s

2z2s
r2s
þ 1

� �s
: (19)

We now summarize our key findings of field structure for
small a:

1. The separator line separates the upper half of the closed field
lines and the lower half of the closed field line. It lies on the z-
axis in the unperturbed case. When a perturbation is added, it
shifts from y ¼ 0 to y ¼ akz2s . The flatter sections of the field
lines, those closer to the z-axis, shift more. This separator line is
stable under odd perturbation.

2. The separatrix retains nearly the same elliptical shape with the
same semi-minor and semi-major axis ratio. The area enclosed

FIG. 2. Schematic of the separatrices (ellipses), separator lines, and ellipse centers
before and after application of the perturbation. The perturbation causes the separatrix
center to go down to O0 from O, but the separator line to go up to L0 from L. The separa-
tor and separatrix are part of the same level curve w ¼ 0. The equilibrium points,
E1 and E2, move down to E01 and E

0
2. rs ¼ 1; zs ¼ 2; a ¼ 0:2; and k ¼ 0:3.

TABLE I. Classification of minima and maxima: Critical points of the second type.

Characterizer Trace Classification Closure

D< 0 Tr< 0 Local maxima Yes
D< 0 Tr> 0 Local minima Yes
D> 0 Any value Saddle point No
D¼ 0 Any value Degenerate point Uncertain
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by the separatrix is scaled by J � 1þ oða2k2Þ, second order with
respect to a and k.

3. The separator line segment, demarcated by the separatrix, has
length 2zs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2k2z2s ð2z2s =r2s þ 1Þ

p
.

4. Information about the positions of the new stable equilibrium
points, E01 and E02, can be derived from solving B ¼ 0 near the
unperturbed equilibria in y–z plane. Setting B ¼ 0 in Eq. (6)
gives us z ¼ 0 and y6 ¼ �akr2s =46rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2þ a2k2r2s =16

p
� 6rs=

ffiffiffi
2
p
� akr2s =4þOða2k2Þ. As expected, the equilibrium

points are same as local maxima derived from Eq. (13). The
equilibrium points move down by �akr2s =4.

V. OPENING OF MAGNETIC FIELD LINES: A
DISCONTINUITY

For large enough a, the field topology changes drastically. The
analysis of field topology needs to be updated for such a case. This
change may be analyzed by focusing on the upper isolated non-
degenerate point ðyþ; 0Þ. As a increases, at a critical value a
, the
upper local maximum at ðyþ; 0Þ becomes a saddle point. This happens
when the characterizer starts to become negative. The critical a
 can
be estimated by setting the characterizer, Dðyþ; 0Þ ¼ 0. Dðyþ; 0Þ is
calculated from Eq. (17),

�4 1
2
þ a2
k

2r2s
16

� �
þ a
k rs þ

4z2s
rs

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
þ a2
k

2r2s
16

r
¼ 0:

Solving for a
 gives

a
 ¼
1

kzs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2z2s

r2s

s ; (20)

where a
 is also the critical value for two other important transitions.
First, a
 is the value for which the separator line starts to move outside
of the ellipse (see Lemma 3, Appendix B). Second, at a ¼ a
, the upper
isolated critical point ðyþ; 0Þ starts to move outside of the ellipse from
Eq. (18) (see Lemma 4, Appendix B).

Given that two local maxima are no longer inside the ellipse,
Theorem 2 no longer represents the system and does not help to eval-
uate the separatrix. The separatrix covers a larger region than what
would be predicted by the ellipse. Given the new situation, we have a
new separatrix, given by the Theorem 3. The detailed proof of
Theorem 3 is outlined in Appendix C.

Theorem 3: For a > a
, all contours inside wðy; zÞ ¼ wðyþ; 0Þ
are closed and all contours outside of it are open.

This means no contour is closed besides ones obeying
w > wðyþ; 0Þ. So, the new separatrix is wðy; zÞ ¼ wðyþ; 0Þ. This
curve itself is not closed, but all closed curves are part of an open set
with this new curve as the boundary. The new separatrix is no longer
smooth everywhere, specifically at the point ðyþ; 0Þ. This transition is
abrupt, modifying the separatrix equation to

wðy; zÞ ¼
0 when a < a
;

wðyþ; 0Þ when a > a
:

(
(21)

As demonstrated in detail in Sec. IV, prior to the transition, the
separatrix is a smooth ellipse. At the transition, the separatrix

develops a corner (Fig. 3). The phase transition is summarized in
Table II.

To check the theoretical derivation, a numerical analysis was
performed using the exact perturbed field from Eq. (3) with k¼ 0.3, rs
¼ 1, and zs¼ 2. Given that we have used exact equations from the per-
turbed field, there is no approximation in the result from numerical
analysis. As seen by closely inspecting the streamlines of the non-
approximated perturbed field, beyond a;
 ¼ 0:547 61, the field lines
open at the first equilibrium point in the / ¼ 0 plane. Bifurcation of
the evolving field topology is clear as variations as small as �10�5
around a ¼ 0:547 61 in the region y 2 ½�0:667 02; 0:667 04	 and z
2 ½�0:01; 0:01	 demonstrate (see Fig. 4). For rs ¼ 1; zs ¼ 2; k ¼ 0:3,
Eq. (20) gives a
 ¼ 0:5556, close to the numerical result. Most of the
difference arises from the approximation made for the perturbation
field’s dependence on r.

VI. LIMITATIONS OF THIS METHOD

MFF analysis has been able to explain most of the numerically
observed results quantitatively. However, the Solov’ev FRC with speci-
fied perturbations is an approximate system. For high values of wave-
number k, the theoretical prediction from the approximation made in
Eq. (4) starts to break down. The disagreements are not just quantita-
tive; there are qualitative changes in field structure that our theory fails
to grasp. Within a certain range of a, two nodes form, toward or from
which all field lines spiral. Numerical calculations were made using the

FIG. 3. For a > a
, the separatrix (denoted by purple) develops an x point, E01.
The lines above the x-point (orange and green) are not part of the separatrix but
are on same level set. The critical point E01 is now a saddle point, while E02 remains
a local maximum.

TABLE II. Effect of phase transition on important features of field lines: local max-
ima/minima, saddle points, and region of closed field lines.

Ratio factor a Local maxima Saddle points Region of closure

a < a
 ðy6; 0Þ None wðy; zÞ > 0
a > a
 ðy�; 0Þ ðyþ; 0Þ wðy; zÞ > wðyþ; 0Þ
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exact perturbation, Eq. (3), with a high value for the wave-number k,
something our approximated system assumed to be small. A system
with rs ¼ 1; zs ¼ 2; k ¼ 1 displays this phenomenon for
0:143 < a < 0:162. This structure begins when k exceeds a critical
value, k
 � 0:8. The nodes are not on z¼ 0, and thus, the approxima-
tion of sin kz ! kz; cos kz ! 1 is not valid in describing them unless
the wave-number k is small; information about the exact nature of clo-
sure on points outside that area cannot be extracted. Some results are
displayed in Fig. 5. Analyzing these results requires a complete solu-
tion of the perturbation equations which uses the exact perturbation
[Eq. (3)]. In the future, we would like to find the exact solution or add
additional terms from the Taylor series approximation and try to find
an analytical approach to this phenomenon.

VII. GENERALIZATION OF THE MODIFIED FLUX
FUNCTION TO 3D SPACE

The three-dimensional perturbation in Eq. (4) can be solved in a
similar way. In Cartesian co-ordinates, the perturbation is written as
DB ¼ aB0ð0; kz; kyÞ and the FRC magnetic field is B ¼ �B0ðxz=z2s ;
yz=z2s ; 1� 2ðx2=r2s þ y2=r2s Þ � z2=z2s Þ. Following Eqs. (7a)–(11)
provides

dX
ds
¼ X;

dY
ds
¼ Y � A; Z

dZ
ds
¼ 1� 2ðX2 þ Y2Þ � Z2 � Am2Y ;

(22)

which can be solved using the same methods as in Sec. III. Some
of the features of the result and the nature of the magnetic field
lines are

1. In the approximation of small k, the field lines remain in the
same plane, which goes through line ð0; akz2s ; zÞ and makes slope
(arbitrary constant, c) with the x-axis, meaning x and y of a field
line follow the relationship

y ¼ cx þ akz2s : (23)

Large k causes the surface to warp, as shown in Fig. 8 of Ref. 4.
2. The field lines stay closed and remain on level sets of the MFF,

with w defined in Eq. (2) and J defined as before,

FIG. 4. The field lines near the first equilibrium point for two closely spaced pertur-
bation strengths. Top figure, a ¼ 0:547 61, closed structure; lower figure,
a ¼ 0:574 62, open structure. The field lines are calculated using one exact odd-
parity perturbation and projected on y–z plane. rs ¼ 1; zs ¼ 2; k ¼ 0:3.

FIG. 5. Formation of two nodes. When a is within 0.143 and 0.163, field lines spiral
toward or from these nodes. Here, k¼ 1, rs ¼ 1; zs ¼ 2, and this is projection of
field lines on y–z plane. Odd-parity perturbation [Eq. (3)]. This effect was only
observed for k � 0:8 or higher.
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w ¼ B0

2
u2ðJ � v2Þ;

u ¼ ðx; y � akz2s ; 0Þ;

v ¼ x
rs
;
y þ akðz2s þ r2s Þ=3

rs
;
z
zs

� �
:

3. The field lines are intersections of planes of Eq. (23) and the level
sets of MFF, w. The arbitrary constants defining a singular
field line are c 2 R and w 2 R. The level sets of w are plotted in
Fig. 6.

4. Again, the separator line is moved by akz2s in the positive y direc-
tion and the center of the separatrix is moved by akðz2s þ r2s Þ=3.
The separatrix remains nearly an ellipsoid with same ratio of
axes. The volume enclosed by separatrix is scaled by
J3=2 � 1þOða2k2Þ.

VIII. DISCUSSION AND SUMMARY

We developed a mathematical tool called the modified flux func-
tion (MFF) to understand the effects of perturbations on a Solov’ev
FRC field structure. We have confined attention to the inner region of
the FRC, near the O-point line, avoiding the region outside the separa-
trix where the Solov’ev solution is not physical. For reactor-scale
FRC’s, though the ion si value may be small,<10, where si � 0:3rs=qi,
that for electrons is large, se � 1000. Electrons follow field lines, and
associated particle and energy losses on open field lines would be
important.

The analytical results derived from the MFF have reproduced the
previous numerical observation that small odd-parity perturbation
preserves FRC field structure. In particular, the contours around the
equilibrium stay closed. Qualitative assertions about change in field
topology, e.g., movement of the center of separatrix, separator line,
and other geometric parameters, were made in the previous work.4

MFF has provided quantitative values of these quantities. Through the
use of the MFF, we identified a bifurcation of the field structure with
increasing perturbation strength and its quantitative threshold.
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APPENDIX A: POINCAR�E–HOPF THEOREM

The Poincar�e–Hopf theorem states, if A is a vector field on a
compact differentiable manifold M, then15,16X

i

indexxiðAÞ ¼ vðMÞ: (A1)

Here, we sum over the indices of all isolated critical points, xi. vðMÞ
is the Euler characteristic.

FIG. 6. Level sets of w ¼ 0:0; 0:05; 0:2; and 0:5 for rs ¼ zs ¼ 1; a ¼ 0:5;
and k ¼ 0:4. The w ¼ 0 creates a separatrix and field lines outside of that
are open. Within the separatrix, field lines lie in the intersection of level sets and
y ¼ cx þ akz2s surfaces. The top figure is a view from above and the bottom figure
from the side.
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In our case, the vector field in which we are interested is the mag-
netic field, B. The magnetic field lines are the contours of w. So, the
magnetic fields are tangent along a closed contour of w. If the manifold
M is enclosed by a closed contour or closed magnetic field line, @M,
assuming there is no isolated critical point on the @M, we can glue two
pieces of this manifold with the same vector fields together along the
boundary. In this new manifold, B is continuous. This new manifold,
M0, is a closed orientable surface without any tori and thus has genus
g¼ 0 with Euler characteristic vðM0Þ ¼ 2� 2g ¼ 2. Given that the
vector field is the same, the critical points appear twice compared to
how many times they appear in manifold M. So, in Eq. (A1), we get,
2
P

i indexðyi;ziÞðBÞ ¼ 2. Crossing out the factor two from both sides
gives us X

i

indexðyi ;ziÞðBÞ ¼ 1: (A2)

Here, the critical points are ðyi; ziÞ and only summed over manifold
M. So, the conclusion is that if an area is enclosed by a simple closed
field line of B, equivalent to a simple closed contour of w, and criti-
cal points ðyi; ziÞ of B are inside the area, then their indices must
sum to 1. Because the contours are closed around the local maxi-
mum/minimum of w and magnetic field lines thus circle the critical
point (once) as we follow the flow of field lines around it, the critical
point of the magnetic field B that is a local maximum/minimum of
w has index 1. The critical saddle points of the magnetic field B
must be critical saddle points of w. So, the critical points of B, which
are critical saddle points of w, must have index �1.

Subsequently, if an area enclosed by a simple closed field line
of B (equivalent to a simple closed contour of w) contains
nmax; nmin; and nsaddle which are the number of local minima, max-
ima, and saddles points and no degenerate points, the following
must be true from Eq. (A2):

nmax þ nmin � nsaddle ¼ 1: (A3)

APPENDIX B: PROOFS OF LEMMAS

Lemma 1: If a contour intersects the separator line or is tan-
gent to it, then it can only be the ellipse described in Eq. (18).

Proof: Now we know that the line ðy; zÞ ¼ ðakz2s ; zÞ contains
all the degenerate critical points. If a contour intersects or is tangent
to the ellipse from Eq. (18), then in that shared point, it has w ¼ 0
due to y � akz2s ¼ 0 on the separator line. It is a contour and, thus,
must have w ¼ 0 on all its points. Given that it cannot be the sepa-
rator line itself, the other factor in w ¼ 0 must be equal to the ellipse
from Eq. (18). Q.E.D.

Lemma 2: If an open contour intersects the ellipse described
in Eq. (18) or is tangent to it, then it can only be the separator line.

Proof: If the contour intersects or is tangent to the ellipse in
Eq. (18), then it must share at least one point and given that the
value of w is 0 in that point, it must also be 0 for the contour. As
the contour cannot be the ellipse from Eq. (18), w ¼ 0 only gives us
y � akz2s ¼ 0 or the separator line. So, the contour must be the sep-
arator line. Q.E.D.

Lemma 3: For a > a
, the ellipse from Eq. (18) does not inter-
sect or touch the separator line.

Proof: From Eq. (19), we can see that the length of the seg-
ment of separator line within the ellipse from Eq. (18) is
l ¼ 2zs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2k2z2s ð2z2s =r2s þ 1Þ

p
¼ 2zs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2=a2


p
. For a > a
,

this length is imaginary and, thus, the separator line cannot touch
or intersect the ellipse as that would result in a real value for l.
Q.E.D.

Lemma 4: For a > a
, the upper isolated critical point ðyþ; 0Þ
resides outside of the ellipse from Eq. (18).

Proof: We know from Eq. (20) that, for a > a
, the upper iso-
lated critical point is a saddle point. We also know that the ellipse
from Eq. (18) is a valid closed contour with w ¼ 0, and Lemma 3
entails that the separator line is outside of the ellipse. So, the ellipse
is a valid closed contour without any degenerate critical points
inside it and we can apply Eq. (A3).

Let us assume the upper isolated critical point is inside the
ellipse. We have two cases:

Case 1: The lower isolated critical point, which is always a
local maxima, is inside the ellipse. Then, we have
nmax þ nmin � nsaddle ¼ 1þ 0� 1 ¼ 0 6¼ 1.

Case 2: The lower isolated critical point is outside of the
ellipse. Then, nmax þ nmin � nsaddle ¼ 0þ 0� 1 ¼ �1 6¼ 1. Both
cases lead to contradictions and the lemma is proven. Q.E.D.

Lemma 5: For a > a
, the closed curve cannot contain any
degenerate critical point from the separator line.

Proof: If the area inside the closed curve contained any degen-
erate critical points, the closed curve intersects the separator line or
is tangent to it, and Lemma 1 would mean that the closed curve is
the ellipse from Eq. (18). However, Lemma 3 states that for a > a
,
the ellipse does not intersect or touch the separator line. This is con-
tradictory. Q.E.D.

APPENDIX C: PROOFS OF THEOREMS

Theorem 1: All contours, except the separator line, within the
ellipse from Eq. (18) are closed.

Proof: Now, let us assume there is an open contour, which is
not the separator line, inside the region enclosed by the ellipse.
Given that the contour is open, it must extend to infinity in some
direction and necessarily intersects the ellipse. Using Lemma 2 (see
Appendix B), we can conclude that it can only be the separator line.
This contradiction proves our theorem. Q.E.D.

Theorem 2: For small enough a, such that two local maxima
exist inside the ellipse in Eq. (18), all contours outside the ellipse
are open.

Proof: If there existed a closed contour outside of this ellipse,
then there are two cases.

Case 1: The closed contour does not contain the two local
maxima inside the ellipse. A closed contour without any critical
point inside is impossible.12 So, the contour contains at least one
critical point outside the ellipse. Outside of the ellipse, there are
only degenerate critical points on the separator line. So, the closed
contour must intersect the separator line and, due to Lemma 1 (see
Appendix B), can only be the ellipse which is a contradiction.

Case 2: The closed contour contains the two local maxima
inside the ellipse. In this case, the contour intersects the separator,
leading to the same contradiction and thus proving our theorem
through contradiction. Q.E.D.
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Theorem 3: For a > a
, all contours inside wðy; zÞ ¼ wðyþ; 0Þ
are closed and all contours outside of it are open.

Proof: For a > a
, the contours that contain the local maxi-
mum ðy�; 0Þ but do not touch the saddle point ðyþ; 0Þ are closed.12
This means that the contours inside wðy; zÞ ¼ wðyþ; 0Þ are closed.

Let us assume that a closed contour exists outside of the
wðy; zÞ ¼ wðyþ; 0Þ region. The closed contour contains the saddle
point as it is outside ofwðy; zÞ ¼ wðyþ; 0Þ region. However, it cannot
contain any degenerate critical points from the separator line because
of Lemma 5 (see Appendix B). This gives us two possible cases:

Case 1: The closed contour only contains the saddle point
ðy�; 0Þ.

Case 2: The closed curve contains the saddle point ðyþ; 0Þ and
local maximum ðy�; 0Þ.

Cases 1 and 2 contradict Eq. (A3). For case 1, there is one sad-
dle point inside the closed contour. So, nmax þ nmin � nsaddle
¼ 0þ 0� 1 ¼ �1 6¼ 1. For case 2, there is one local maximum and
one saddle point inside the closed contour. So, nmax þ nmin

�nsaddle ¼ 0þ 1� 1 ¼ 0 6¼ 1. Both cases, thus, lead to contradic-
tions. This means all contours outside of wðy; zÞ ¼ wðyþ; 0Þ must
be open. Q.E.D.
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