
A Reordering Approach to Numerical Analysis
of Boundary Value Problems

Carl Boettiger

August 18, 2006

1 Statement of problem

Boundary value problems (BVP) are encountered in nearly every application
of mathematical modeling, from plasma physics to biochemistry to socio-
economic models. In complicated systems, finding analytic solutions often
becomes impractical or impossible. Consequently, a vast array of powerful
numerical techniques have been developed over the past century to determine
approximate solutions using a computer. Despite this development, modern
problems remain very demanding, and can not only face limitations of com-
puting power but also limitations inherent in the equations themselves. We
propose and develop an entirely novel approach to sidestep such inherent
problems.

This class of BVP’s is composed of those whose solutions have a high
degree of fine structure, (figure 1). Numerical problems must be discretized
on a finite mesh or grid of points, and highly structured functions require
a very fine mesh to resolve that structure. Not only is such a fine mesh
computationally expensive, but will also force many traditional approaches
to become ill-conditioned to produce inaccurate solutions. In order to escape
this difficulty, we transform the problem into a space where it can be solved
on a much coarser mesh.

2 Approach

Imagine for a moment that solution to the differential equation is a highly
structured function we will call f(x), Figure 1a. We discretize this function

1



(a) (b) (c)

Figure 1: A highly structured function, discretized on fine and coarse grids

into a series of points, Figure 1b. We can represent this discretization by
listing the values at each of these points, [0, .26. 50, . . . ] as the components
of a vector !f . (Note that if we do not use a fine enough mesh, we cannot
resolve the structure, figure 1c.) We represent the grid points where these
points occur by a similar vector list denoted !x. Plotting each component of
!x against its corresponding component in !f gives us figure 1b. The essence
of our approach is to find a new space !y where !f looks less structured. This
space !y will simply be some reordering of the components in !x such that
when we plot each !y component against !f to get a plot or reduced structure,
as in figure 2. In this new space we can use a much coarser grid and still
resolve the essential structural features. Now the problem can be solved on
this coarse grid with much less difficulty than on a fine grid. Once we have
the solved the problem in this space, we simply transform back to the !x space
to recover our final answer. The challenge, then, is to find the appropriate
choice for a !y space.

The implementation of this approach is as follows. We begin with a
discritized differential equation of the form

L!f = !g (1)

Here L represents a linear combination of differential operators, perhaps
a d2

dx2 +b d
dx +c, and !g represents the given inhomogeneity and specified bound-

ary conditions. The task is to determine values for !f . We assume that !f is
highly structured, and consequently the discretized problem has been defined
on a suitable fine grid !x with a large number of N points (that is, the vectors
are of dimension N). We postulate the existence of an operator (permuta-
tion matrix) P such that P!f is much less structured as discussed above. Since

2



Figure 2: Reordering the structured function in Figure 1 allows a coarse grid
approximation, indicated by the red stars.

PT P = I we can rewrite the equation,

LPT P!f = !g (2)

With P!f being less structured by assumption, we need not specify P!f
(the image of !f in the !y space) at every point on the fine mesh. We instead
approximate this by taking its values at only a few M points, !f ′ (such as the
highlighted points in Figure 2) and then smoothly interpolating the points
in between by means of the operator Ω, that is, Ω!f ′ ≈ P!f . Introducing this
approximation into equation (2) gives us

LPT Ω!f ′ = !g (3)

Now the only unknowns are the few M points in !f ′, rather than the
many N points in !f , and consequently the problem is much easier to solve.
Several methods are possible, perhaps the most obvious being a least squares
solution. The advantage in this is two-fold. Not only are there now many
fewer equations to solve (at the cost of three sparse matrix multiplications),
but although the original operator L will tend to be nearly singular for large
N , the new operator A := LPT Ω should be well-conditioned.

Thus far we have proceeded under the assumption of an appropriate P
such that the approximation made above will be satisfactory for small M .
The real task now is to find such a P. This is accomplished iteratively by
means of a genetic algorithm. The process begins with a “population” of 100
random guesses for permutations P. Each permutation is tested in solving

3



equation (3), giving a corresponding guess for !f ′. Then both the permuta-
tion and its corresponding guess for !f ′ are inserted into the right hand side
of equation 3, which determines an estimate for the values of !g. Since the
vector !g is already known, we can it to this estimate to give a metric on
which to assess how good was the initial guess P. This process is repeated
for each of the 100 random guesses of P, and each are assigned a score based
on the metric described. The score functions as a “fitness” for each member
of the population, determining the probability that it will “survive” (repro-
duce) in the next “generation.” Those that survive to the next generation
have some probability of having a “mutation” occur, slightly modifying the
permutation, as well as the chance of a “crossover,” where a section of the
permutation is replaced with the sequence of another permutation (duplicate
values are eliminated and missed values added to the end). In this manner,
the population changes stochastically, selecting for better and better per-
mutations that emerge as a result of these mutations and crossovers. The
algorithm terminates after a fixed number of generations or when several
successive generations no longer improve the population fitness.

3 Advances and Current Status

We have demonstrated that the genetic algorithm is capable of finding ac-
ceptable permutations on a variety of model problems that are difficult or
impossible to solve using existing algorithms, such as MATLAB’s boundary
value problem solver, bvp4c. Furthermore we determined that any existing
algorithms relying on standard approaches such as finite elements or finite
differencing will result in near-singular matrices on the problems considered,
leaving shooting techniques as the only commonly employed viable alter-
native. Like each of these traditional approaches, the computational time
required for to solve the equations should scale linearly with N , although the
convergence of the genetic algorithm appears to have a steeper dependence.

The technique outlined here and the crucial result that a relatively simple
search algorithm (the basic genetic algorithm) can find adequate permuta-
tions provides many possible directions for further development. Several of
these have been explored with varying success and the work is currently
proceeding towards publication.

4


