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Abstract: We describe a particle advance algorithm for particle-in-cell simulation of highly magnetized charged particles 

that relaxes the time step constraint due to cyclotron motion. The method preserves the correct cyclotron radius for large 

time steps and corrects for magnetic field gradients without requiring explicit calculation of the particle magnetic moment. 

Application of the algorithm is illustrated with electron and ion single particle orbit calculations in a field reversed 

configuration with rotating magnetic fields. This technique is efficient and applicable to massively parallel simulation. 
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I. INTRODUCTION 

 Charged particle orbits in a magnetic confinement device 
such as the field-reversed configuration (FRC) are complex 
and chaotic and require a highly accurate solution technique. 
Standard explicit particle-in-cell (PIC) techniques making 
use of the Boris push [1] do not properly describe particle 
orbits when the product of the cyclotron frequency and time 
step t is significant. While largely accurate in the 
calculation of E B drift velocities, explicit PIC over predicts 
the cyclotron radius and under predicts the gradient B drift 
and mirror force with errors scaling roughly as the square of 

t. Here, we describe an efficient algorithm that can 
greatly relax this constraint and is applicable to massively 
parallel simulation codes. 

 The magnetic implicit (MI) algorithm described here has 
similarities to one described by Vu and Brackbill [2] in that 
the motion of a charged particle in an electromagnetic field 
is calculated with the position and relativistic momentum of 
the particle calculated at the same time level. Recently, 
Cohen, et al., [3, 4] have reported on a large time step mover 
which interpolates between a conventional Boris push and 
particle dynamics in the drift approximation. As with these 
two algorithms, the MI method preserves the correct particle 
cyclotron radius for large time steps ( t >> 1). MI differs 
from these previous schemes in that there is no required 
explicit calculation of the particle magnetic moment or 
additional field calculations to determine the local transverse 
and longitudinal magnetic field gradients. In addition, the 
usual magnetic field rotation matrix is modified to conserve 
energy and corrects for the mirror force in regions where a 
significant longitudinal magnetic field gradient exists. After 
the particle momentum is advanced, an effective velocity 
which includes a correction for particle drift in a transverse 
magnetic field gradient is calculated and used to advance the 
particle position. To illustrate the application of the 
algorithm, we present results of electron and ion single 
particle orbit calculations in an FRC with an odd-parity 
rotating magnetic field [5, 6]. 
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II. TWO-STEP MI PARTICLE MOVER 

 We assume electric and magnetic fields E(x,t) and B(x,t) 
as functions of position and time. (In general, these may be 
functions of the positions and momenta of the charged 
particles.) At time tn we have the position r(tn) and 
momentum p(tn) [   (tn) (tn)] of the charged particle. For 
convenience in what follows, we will drop the vector 
notation and absorb q/mc into E and B so that they have 
units of s

-1
. In the MI algorithm, particle advance is achieved 

using a two-step predictor-corrector procedure. First we 
define the vectors 
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and the standard rotation matrix M1 for the predictor step: 
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 The predicted values of particle position and momentum 
at time tn+1 are obtained according to 
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 We use the tilde (~) to denote predicted values at tn+1 to 
be used in the corrector step below. 

 Making use of r  we calculate predicted values of E and 

B as 

   

E = E r , t
n+1( ) ,

B = B r , t
n+1( ).

    

        (6) 

 For the corrector step, centered values of the fields and 
particle relativistic factor  are required and these are defined 
according to 
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 Prior to the final particle advance, we transform to a 
reference frame (denoted by primes) in which B(tn+1/2) is 
along the z-axis. This is carried out using a standard 
transform matrix T and indicated schematically below: 
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 We will also need 
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 Now we define the rotation matrix M2 in terms of 
B(tn+1/2), 
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where 
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 In Eq. (10), 
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 The factor  in Eq. (10) accounts for the mirror force on 
the particle due to the longitudinal field gradient and is 
discussed below and illustrated in Sec. III.c for electron 
motion in an FRC. 

 The corrector step advance of the particle momentum 
proceeds as follows: 
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 The factor  in matrix M2 is specified according to 
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which insures that |w (tn+1)| = |U | so that 
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and energy is conserved in the corrector step push. 

 We now calculate a drift velocity correction due to the 
transverse gradient of B in the primed coordinate frame. It 
can be shown that on average over a large number of time 
steps, the following expressions give the correct drift 
velocity corrections for moderate (this will be quantified 
below) transverse magnetic field gradients: 
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 We define an effective velocity 
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and advance the particle position according to 
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c t.          (19) 

 The final step is transformation back to the lab frame 
using the matrix T

-1
. 

 The parallel dynamics portion of the MI algorithm was 
tested extensively with single particle orbit calculations in a 
model magnetic field of the form 

   

B
x
=

B
0

2

x

L
,

B
y
=

B
0

2

y

L
,

B
z
= B

0
1+

z z
0

L
,

 



38    The Open Plasma Physics Journal, 2010, Volume 3 Genoni et al. 

where B0 is the characteristic magnetic field strength and 
scale length L|| ( = | ||B/B|) is a measure of the strength of the 
longitudinal field gradient. The particle was injected into the 
mirror field configuration with initial velocity components 
v

0
 and vz

0
 and its motion followed until its longitudinal 

velocity reversed and the particle returned to its initial 
position. The velocity and magnetic field parameters were all 
varied over an order of magnitude, and the orbits calculated 
with the MI algorithm compared to “exact” calculations with 
a fourth-order Runga-Kutta (RK4) differential equation 
solver with adaptive step size control and a relative error 
tolerance of 10

-9
. It was found that the MI solver reproduced 

the correct particle motion for large time steps ( t >> 1) 
with the restriction that the product of vz

0
t < 0.05 L||. 

 For particle motion in a transverse magnetic field 
gradient, it was found that the maximum allowable time step 
is limited by the ratio rL/L  where rL is the cyclotron radius 
and L  ( = | B/B|) is a measure of the strength of the 
transverse gradient. As one would expect, the larger the 
ratio, the smaller the time step required to accurately 
reproduce the correct transverse particle drift. Table 1 
summarizes the results from a large number of MI 
calculations for magnetic fields of the simple form Bz = B0  
(1 + x/L ). 

Table 1. Approximate Values of Maximum Allowable Time 

Step for Various Values of rL/L  

 

rL/L  ( t)max 

0.10 3 

0.05 6 

0.02 15 

0.01 30 

 

 An illustration of the calculation of transverse electron 
drift in a reversed field configuration magnetic field is given 
in Sec. III.d. 

III. PARTICLE ORBITS IN A FRC WITH ROTATING 
MAGNETIC FIELD 

 References [5] and [6] present a detailed study of ion and 
electron heating in the FRC with an odd polarity rotating 
magnetic field (RMFo) which is being considered for fusion 
reactor application. In this section, we present a few results 
for electron and ion orbits in such a field configuration 
calculated using the MI particle mover algorithm described 
in the previous section. In each case, MI results will be 
compared to results obtained with the RK4 solver. Specifics 
of the FRC confining field and the RMFo are discussed 
below. Results presented in Secs. III.c and III.d are for the 
magnetostatic FRC only, and illustrate the calculation of 
electron motion in regions of longitudinal and transverse 
magnetic field gradients. Electron and ion heating in an 
RMFo are also considered in Secs. III.e and III.f, 
respectively. 

a. Confining FRC Field 

 Following Refs. [5, 6], we use the Solov’ev model based 
on the assumption of a scalar pressure within the plasma. 

The azimuthally symmetric equilibrium fields within the 
plasma can be derived from the vector potential A  given by 
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where r and z refer to a standard (r, , z) cylindrical 
coordinate system (see Fig. 1), and rs and zs determine the 
radial and longitudinal extent of the rotating ellipsoidal 
plasma. Ba is the maximum field at r = z = 0. The vector 
potential in Eq. (20) derives from a rigid-rotor (linear in r) 
plasma current density. External to the plasma, we use the 
solution for the fields presented in [7]. 

 

Fig. (1). The FRC coordinate system used in the orbit calculations. 

b. Odd-Parity Rotating Magnetic Field 

 The RMFo fields used here are derived from the vector 
potential given by 
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where  =  - t, Bo is the amplitude of the RMFo with 
angular frequency , and k determines the wavelength in z. 
(The vector potential of Eq. (21) may be obtained by setting 
the phase 0 = /2 in Eq. 8 of Ref. [5].) 

 In the calculations below, we follow an example from [5] 
and use rs = 10 cm, zs = 50 cm (elongation  = zs/rs = 5), and 
a peak FRC field of Ba = 2 x 10

4
 G. This corresponds to peak 

electron and ion cyclotron frequencies of 
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where mi = 2 mp for deuterium ions. 

 For the RMFo fields we take  = 0.8 ia, k = /2zs, and 
Bo = 20 G or 0.1 percent of Ba. In all cases the particle 
energy is initialized to 100 eV, except in the electron 

r

z
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transverse gradient drift case where 1-keV electrons are 
assumed. The results presented below are obviously not 
intended to be an exhaustive study of electron and ion 
heating in this field configuration, but instead were chosen as 
a limited set of illustrations of the application of the MI 
algorithm. 

c. Mirror Force on Electron 

 For this calculation, we consider the magnetostatic FRC 
confining field only, and initialize the 100-eV electron in a 
region of increasing Bz at r0 = 7.07 and z0 = -30, with initial 
velocity in the +z direction. Fig. (2) shows the z motion of 
the electron as a function of  (= eat). A time step of ea t = 
100 was used for the MI calculation, which corresponds to a 
local e t of about 63. The electron moves in the +z 
direction until turned around by the mirror Bz field. The 
second curve of Fig. (2) calculated using MI is nearly 
indistinguishable from the “exact” curve obtained from RK4. 
For comparison to a standard PIC push with large time step, 
the MI calculation without the mirror field correction [  =  
= 1 in Eq. (10)] is shown. 

 

Fig. (2). Electron motion in converging field as calculated with 

RK4 in blue, MI in red, and MI with  =  = 1 (no mirror force 

correction) in green. 

d. Electron Transverse Gradient Drift 

 We again consider the magnetostatic FRC only and 
initialize a 1-keV electron in a region of transverse magnetic 
field gradient in the x direction at x0 = 6, y0 = z0 = 0, and with 
initial velocity in the +x direction. The ratio rL/L  for these 

parameters is approximately 0.016. We anticipate cyclotron 
motion in the x,y plane with transverse drift in the y 
direction. For the MI calculation we set ea t = 50, which 
corresponds to a local e t  14. The calculated electron 
drifts are shown in Fig. (3b)  from RK4 and from MI with 
and without the d correction to the effective velocity of Eq. 
(18). The time step required to accurately reproduce the drift 
agrees approximately with the results of Table 1. The 
corresponding x-motion as a function of  is shown in Fig. 
(3a). 

e. Electron Heating in RMFo 

 In Ref. [5], it was shown that significant electron heating 
occurs for electrons initialized in the vicinity of the magnetic 
field null at r0 = 7.07, z0 = 0. We first consider the orbit of a 
single 100-eV electron initialized at x0 = 7.07, y0 = z0 = 0, 
with initial velocity v0 corresponding to 100 eV and vx = 
v0/2, vy = v0/2 and vz = v0/2

1/2
. The time step for the MI 

calculation here was ea t = 4 and was found to be adequate 
to resolve the electron motion in the combined FRC and 
RMFo fields. Fig. (4a) shows the projection of the electron 
orbit in the xy plane for eat = 0 to eat = 2  x 10

3
. In Fig. 

(4b) the same projection is shown for the time interval (0, 2  
x 10

4
). Here we see that the orbits differ from one another 

due in large part to the chaotic nature of the orbits at late 
times which was illustrated and discussed in detail in Ref. 
[5]. 

 We next calculate the maximum energy transfer given to 
100-eV electrons initialized near the FRC null at r0 = 7.07, z0 
= 0. For these calculations we set y0 = z0 = 0 and initial 
positions x0 = f (7.07) with values of f between 0.88 and 
1.12. For each x0 position, we consider 128 sets of initial 
velocities given by 
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with 8 values of 0 on the interval (0, ) and 16 values of 0 
on (0, 2 ). For each orbit, the maximum energy obtained by 
the electron over the  (= eat) interval (0, 2000  2 ) was 
calculated, and at each x0 the energy was averaged over the 
128 sets of initial velocities. Results are shown in Fig. (5) as 

 

Fig. (3). The x (a) and y (b) motion (drift) of electron in transverse Bz gradient as calculated by RK4, MI, and MI with d = 0 (label MI no 

beta). 
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a function of the parameter f and excellent agreement 
between the RK4 and MI calculations is apparent. The same 
qualitative behavior is observed in figure 11 of [5]. ea t = 4 
corresponds to a time step of t = 0.0114 ns and is the 
limiting value (maximum allowable to resolve the RMFo 
frequency) for the MI calculations of electron heating. 

 

Fig. (5). With the RMFo fields, the maximum energy (average) 

given to electrons initialized near the magnetic field null in the 

FRC, as calculated by RK4 and MI. 

f. Ion Heating in RMFo 

 For the deuterium ions (mi = 2 mp) we considered a 
typical orbit for a 100-eV ion initialized at x0 = 5, z0 = 20 
with initial velocity vx = v0/2, vy = v0/2, and vz = v0/2

1/2
. The 

xy plane projection of the orbit for the time interval iat = (0, 
25  2 ) is shown in Fig. (6a) for the RK4 and MI 
calculations. A time step of ia t = 1/3 was required to 
adequately resolve the time-dependence of the RMFo. Fig. 
(6b) shows the orbit projection for the time interval (0, 1000 

 2 ). The RK4 and MI orbits are qualitatively similar but 
again differ in detail due to chaotic late time behavior. 

 We next calculated maximum energy transfer given to an 
ion initialized at x0 = 5, y0 = 0, z0 = 20, and averaged over 
128 sets of initial velocities with v0 in Eq. (23) corresponding 
to the 100-eV deuterium ion. The calculated values of 
maximum (average) energy transfer for the time interval iat 
= (0, 2000 x 2 ) were 6.55 x 10

4
 eV and 6.66 x 10

4
 eV with 

MI and RK4, respectively, in excellent agreement and 
consistent with figure 8 of Ref. [5]. 

 During the course of performing ion orbit calculations, it 
was observed that ions initialized near the z-axis had a 
significant probability of escaping the plasma region 
(defined here as reaching an r position  1.5 rs or a z position 

 1.5 zs). To illustrate this, we performed orbit calculations 
for 100-eV ions initialized at x0 = 1, y0 = 0, and eight values 
of z0 on the interval (-40, 40). At each z position, 32 sets of 

 

Fig. (4). Electron orbit in combined FRC and RMFo fields for (a) eot = (0, 2  x 10
3
) and (b) eot = (0, 2  x 10

4
) as calculated by RK4 and 

MI with eo t = 4. 

 

Fig. (6). Ion orbit in combined FRC and RMFo fields for the time interval (a) iat = (0, 25 x 2 ) and (b) iat = (0, 1000 x 2 ) as calculated by 

RK4 and MI with ia t = 1/3. 
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initial conditions were chosen corresponding to Eq. (23) with 
four values of 0 on (0, ) and eight values of 0 on (0, 2 ). 
For the interval ia t = (0, 200  2 ), it was observed that 
about  of the 256 orbits resulted in an escape as defined 
above (127 using RK4 and 130 with MI). 

IV. SUMMARY AND CONCLUSIONS 

 We have developed an efficient algorithm for highly 
magnetized charged particle motion that, within reasonable 
restrictions, allows the use of large time steps ( t >> 1) 
while preserving (on average) the correct particle gyroradius 
and energy. The method accurately accounts for transverse 
and longitudinal magnetic field gradients without requiring 
explicit calculation of the particle magnetic moment or 
additional field calculations to determine the local gradients. 
The examples given here include electron and ion motions in 
complex magnetic field configurations and dynamic 
electromagnetic fields but ignore self field contributions 
(single particle orbits only). Recent preliminary tests of 
plasmas drifting into high field solenoids including self 
fields have shown encouraging results indicating the 
algorithm is stable given resolution of the plasma frequency. 
Future work will include implementation of the scheme in a 

format that is fully implicit for the particle motion and 
relaxes both the cyclotron and plasma frequency time step 
constraints. 
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