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The method for accelerating ions and electrons in the field-reversed configuration using odd-parity
rotating magnetic fields (RMFs) in the ion-cyclotron range-of-frequencies (ICRF) is studied. The
approach is based on long, accurate numerical integration of Hamilton's equations for single-particle
orbits. Rapid ion heating to thermonuclear conditions occurs in <0.1 ms in a modest-sized FRC.
Strong variation of the magnetic-field strength over the confinement region prevents a true cyclotron
resonance, resulting in stochastic though effective heating. Lyapunov exponents are computed to
demonstrate chaotic orbits. Electrons are also effectively heated in this frequency range, primarily
by a mechanism involving trapping in the wells of the azimuthal electric field. Odd-parity RMF
promotes oppositely directed ion and electron motion near the minor axis, appropriate for
supporting the plasma current. © 2002 American Institute of Physics. [DOI: 10.1063/1.1459456]

I. INTRODUCTION

As a fusion reactor, the field-reversed configuration®
(FRC) has attractive features, notably a linear magnet geom-
etry and high-8 operation (B=plasma pressure/magnetic
field pressure). The latter is essential for burning advanced,
aneutronic fuels, which would considerably ease important
engineering and environmental problems.? Several physics
challenges remain for the FRC to be developed into a prac-
tical fusion device: adequate energy confinement, stability
against the internal tilt mode,® and practical methods to sus-
tain the plasma configuration and heat the ions to fusion-
relevant temperatures, suitable for the relatively compact
FRC.*

This paper examines the use of a new class of rotating
magnetic fields (RMFs), those of odd parity about the
midplane,>® to accelerate both ions and electrons. Odd-parity
modes are studied both because they may improve energy
confinement by maintaining field-line closure and because
they have alocal maximum in the induced azimuthal electric
field at the midplane. The latter property is shown to be
important to heating.

Even-parity RMFs have been successfully used, particu-
larly in rotamak devices,® to make plasma, drive toroidal
current, and obtain field reversal. In studies of current drive
in rotamaks,® usually only electron mation has been consid-
ered because the RMF frequency o has been chosen to be
large compared to the ion-cyclotron frequency in the field of
the RMF, and the resulting ion motion was thus therefore
assumed to be a mere quiver, not of practical importance.
However, » may be comparable to the ion cyclotron fre-
quency (2; in the main confining magnetic field. This results
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in effective ion heating across a broad resonance, which we
further investigate here for the case of odd parity.®

Perhaps it is not surprising that the most effective RMF
frequency for accelerating ions is the ion-cyclotron range-of-
frequencies (ICRFs).® What is surprising is that this same
ICRF frequency range is effective at accelerating electrons,
though by a markedly different mechanism, trapping in the
wells of the azimuthal electric field. In addition to heating,
the odd-parity RMF promotes oppositely directed electron
and ion motion near the minor axis, directions that add to the
plasma current. Odd-parity current generation is, thus, by a
different mechanism than commonly evoked to explain even-
parity RMF current drive.

Previous studies of ion motion in RMFs have missed
these effects because they were of even parity and in differ-
ent regimes of frequency and duration. lon motion in infi-
nitely long'® and finite length** FRCs with even-parity w
>(); RMFs have been analyzed for durations up to 250
gyroperiods. These relatively short-time-scale studies
showed no ion heating. In marked contrast, we have exam-
ined effects of odd-parity RMFs on ion orbits in a FRC for
which w~Q; and find conditions, for laboratory-scale ex-
periments and reactors, under which ions are explosively
heated to energies sufficiently high to be fusion-relevant. For
a RMF amplitude of order 102 of the confining magnetic
field, typically more than 1000 gryo-orbits are necessary for
apprecisble heating. We note, in passing, that stability
against the tile mode is improved by energetic ions.*>*® Fi-
nally, the FRC-RMF geometry we use is fully 3D, not 1- or
2D. This fundamentally affects the types of particle orbits
possible

Most previous studies of the FRC are based on fluid
theory™>~Y" or kinetic'? simulations. This study is based on
long, accurate, numerical integration of full Hamiltonian par-
ticle orbits. To evaluate the justification of the single-particle
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approach, we consider three issues. self-consistency of the
equilibrium; collective effects on RMF penetration; and col-
lisions.

The equilibrium used here is that of Solov’ev, based on
the assumption of a scalar pressure p with dp/dW¥ constant
inside the separatrix and vanishing outside, where W is the
poloidal magnetic flux.*® This may not be consistent with a
population of large-orbit ions. Based on the results described
herein, we expect that the qualitative features of our results
should be insensitive to the detailed equilibrium. Verification
by means of a self-consistent equilibrium is beyond the
scope of this work. A related question concerns the effects of
an electrostatic potential ¢(W). We have explored the effects
of such afield and found that, even for values to =10 keV,
negligible changes occur in the general features. A potential
of this size would cause an EXB drift speed about 0.01
times the RMF speed wr .

Certain theories® predict that the RMF penetration is
controlled by the ratio of two dimensionless numbers, y (the
ratio of electron-cyclotron frequency in the RMF field to the
electron—ion collision frequency) and A (the ratio of the
separatrix radius to the classical skin depth). When y/\
>1.2, good penetration is predicted. For the reference FRC
(RFRC) described below y/A~5. Recent even-parity
experiments'® have shown a lack of full RMF penetration.
Since RMF penetration is acritical issue, it isimperative that
both theory and experiment be applied to this problem. To
date, no odd-parity RMF/FRC experiments have been per-
formed.

Collisions can be neglected if the ratio of system sizerg
to mean-free path \ is small, i.e., rg/A<<0.1. For Coulomb
collisions, this corresponds to £2/n;rs>10", where r is
the separatrix radius of the FRC, &, is the minimum ion
energy, and n; is the plasma density (CGS units except in
energy in eV). At n;=10%, £,=100 for a 10 cm radius
device. Since \ scales as £2, rapid acceleration by the RMF
will cause collisions to be negligible over a much longer
trajectory if this condition is satisfied initially.

The studies described here show that, for many initial
positions in phase space, small changes in initial conditions
produce rapidly divergent trajectories, the defining character-
istic of chaotic dynamics.** Computation of Lyapunov expo-
nents confirms, clarifies, and quantifies this observation and
provides understanding of the scaling of this property. The
development of chaotic orbits isimportant in enhancing ther-
malization of the energy supplied by the RMF and to stabil-
ity.

The remainder of this paper is organized as follows. Sec-
tion 11 gives equations governing the fields of the FRC and
the RMF and the equations of particle motion and describes
the numerical procedure for integrating them. Section 111 de-
scribes the behavior ions in these fields, while Sec. 1V de-
scribes electrons. Section V discusses the divergence of
neighboring orbits and the computation and scaling of
Lyapunov exponents. Section VI summarizes and discusses
the results.

A. H. Glasser and S. A. Cohen

II. BASIC EQUATIONS

This section presents the equations for the particle orbits,
discusses the numerical procedure for integrating them, and
gives expressions for the FRC confining field and the RMF.

The Hamiltonian for a nonrelativistic particle in an elec-
tromagnetic field is given by?

H(ai,p)=[(p,—eA,)?+(p,—eA,)?
+(py—eV)?r?)2m+eg, (1

where q;=(r,z,¢¢) are cylindricad coordinates, p;
=(pr,p;.p,) are the corresponding canonical angular mo-
menta, e is the charge on the particle, A is the vector poten-
tia, ¥=rA,, ¢ is the electrostatic potentia, and al units
are in Sl. Hamilton's equations are given by

. oH . JH

qi=—, Pi=——, (2)
Ip; dQ;

where dots denote time derivatives.

Equation (2) constitutes a 6th-order nonlinear system of
ordinary differential equations (ODEs). We integrate these
equations with a Fortran 90 code RMF, using LSODE,?! an
adaptiv;e multistep method, typically with arelative tolerance
of 1077,

For the confining FRC field, we use a Solov’ ev model,?
for which the scalar plasma pressure p(WV) is a linear func-
tion of W inside the elliptical separatrix,

I.2 r2 22 r2 ZZ
‘I’=\I’O(2)(l_2_2) for 7+7<1, (3)
S rS S r.S S

where rg is the radius of the separatrix on the midplane z
=0, z¢ is the axia position of the X-point on the axis r
=0, and we use k=z4/r ¢ to denote the elongation. Outside
the separatrix, we use the solution of Zakharov and
Shafranov,*® for which p(¥)=0. The magnetic flux ¥ is
positive inside the separatrix, negative outside, and vanishes
on the separatrix. Figure 1(a) shows contours of constant V.
While this model field is not self-consistent with the particle
orhits we study, we believe that it gives a good qualitative
understanding of the orbitals. More general FRC equilibrium
fields could be treated, but we have not done so.

The magnetic field associated with Eq. (3) is given by

B=VXA=VW¥XVé. (4)

Figure 1(b) shows contours of constant |B|. It vanishes at the
X-points, r=0, z=*z;, ¥=0, and at the O-point, r=r,
=r4/\2, z=0, ¥ =W /4. Since there is no toroidal mag-
netic field, the magnetic field strength B itself vanishes at
those points. B has a maximum B, the axia field at the
midpoint r=z=V¥=0; the constant in Eq. (3) can be ex-
pressed as W o= B,r2/2.

A particle with sufficiently small Larmor radius remains
near a surface of constant W. The field on the midplane is

B.—0 B—+2voly 4V " (5)
T T2 W,

S

while the field at the extrema of the flux surface is
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FIG. 1. (Color) Contour plots of FRC model equilibrium, Egs. (3) and (4).
Note different scales for r and z in cm. (a) Magnetic flux W. (b) Field
strength |B|. While |B| is continuous, its gradient is discontinuous across the
separatrix due to the discontinuity in the current there.
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For a flux surface near the O-point, ¥ —WV¥ /4, R— 2k,
while one near the separatrix, ¥ —0, R—o. This large

variation of field strength has a major effect on the particle
orbits, as is shown in Sec. I11.

lon and electron acceleration . . . 2095

A nonvanishing electrical charge on the plasma may pro-
duce an electrostatic potential ¢(W). We have tested the
effects of such a potential and found it to cause small E
X B rotation, but not change other interesting features of the
orbits. We will not discuss it further.

The vector potential A for the RMF satisfies the vacuum
condition, VX (VXA)=0 and the gauge condition V-A
=0. There are two classes of solution, those whose trans-
verse magnetic fields B, and B, have odd and even parity,
respectively, about the midplane z=0. The odd-parity solu-
tions are given by

A={A; A, A} =(2B,/k){lo(kr)cos kz sin ¢,
—14(kr)sin kz sin ¢,1(kr)cos kz cos i}, (8)

where By is the amplitude of the odd-parity RMF, = ¢
—wt+ g is the phase of the RMF, o is the RMF angular
frequency, and |, is a modified Bessel function. We consis-
tently use a right-handed coordinate system in the order
given in Eq. (8). For an even-parity RMF, the cos kz and
sin kz factors are exchanged, the sign of A, is changed, and
the amplitude is denoted B, . In our computations, we choose
k= m/2zg, corresponding to 1/2 wavelength between * z,.

Previous studies (except those of Cohen et al.>%) have
considered only even-parity RMFs. Odd-parity RMFs have
two advantages: they avoid opening the magnetic field lines,
potentially improving confinement; and they have their peak
induced azimuthal electric field at the midplane instead of
the X-point, permitting particle acceleration in a magnetic-
field-free region. We limit this study to odd-parity RMF.

In the absence of a RMF, the Hamiltonian, Eq. (1), is
independent of ¢ and t, and therefore the angular momentum
p, and the energy H are separately conserved. In the pres-
ence of aRMF, azimuthal symmetry islost but H depends on
¢ and t only through = 6— wt. It follows® that the trans-
formed Hamiltonian

is conserved, dK/dt=0. K may be interpreted as the energy
in the rotating frame of reference.* We use this conservation
law in two ways: by monitoring the relative change in K over
a long integration, we verify the precision of our numerical

FIG. 2. (Color) Ion orbit without RMF. Spatial dimensions are in cm. Color is used to divide the orbit into 20 distinct time intervals and cross-correlate these
intervals among the figures. (a) Projected on the poloidal plane; (b) viewed along z-axis; (c) axial position z vs scaled time 7.
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FIG. 3. lon orhit without RMF, (&) axial position z vs scaled time 7, (b) projected onto poloidal plane; (c) logyq of the ratio of the Larmor radiusr_ to the local
radius of curvature of the magnetic field line r vs scaled time 7; (d) ratio of magnetic moment w to its initial value w vs scaled time 7.

method; and we show in Sec. |V that the inward and outward
drift of a particle can be understood in terms of this conser-
vation law.

IIl. ION ORBITS

In this section we present results for ion orbits, first
without and then with odd-parity RMF.

Figure 2 shows an example of deuterium-ion motion in
the FRC without RMF. In this and other figures, the FRC has
magnetic field strength B,=2 T, separatrix radiusr ;=10 cm,
X-point position z;=50 cm, elongation x=5. The deuteron
energy is 100 eV. Color is used to divide the orbit into 20
distinct time intervals and cross-correlate these intervals
among the figures. While Fig. 2(a), the orbit projected onto
the poloidal (rz) plane, suggests that the orbit circulates
regularly around a flux surface, Fig. 2(b), the orbit viewed
aong the z-axis, shows a more complicated, erratic aspect of
the orbit. Figure 2(c) shows axia position z vs scale time 7
=t/ty, normalized to a cyclotron period to=27/();;=65.6
ns in the peak magnetic field B,, with Q;p=q;B,/m;. It
again indicates erratic motion. Over the time interval 7=2

x10% t=1.31 ms, the relative tolerance used by LSODE is
10~° and the accumulated relative numerical error in the
conserved transformed Hamiltonian K is 1.2X 1077,

This erratic behavior can be understood in terms of
Speiser collisions,®? i.e., a breakdown in the conservation
of the adiabatic invariant magnetic moment w=mv?/B,%
where v, is the particle velocity transverse to the magnetic
field. Equation (7) shows that the field strength B drops by
more than a factor of 2«x= 10 in going from the midplane to
the extrema of the flux surface. Just as the particle rounds the
sharp curve in the magnetic field line at its z-extrema, the
drop in B causes an increase in the Larmor radius r
=v/();, itsratio to the local radius of curvature of the mag-
netic field line r; exceeds 1, and conservation of w islost. In
field-reversed regions, w is not conserved for much smaller
values of r_/r., to 0.03.

Figure 3 shows a closer view of the orbit during the
initial time interval, up to 7=10°. Figure 3(a) shows the
axial motion, indicating that the particle occasionally gets
trapped in the magnetic wells at the extrema. Figure 3(b)
shows a close-up view of the orbit near the extremum. Far
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FIG. 4. (Color) lon orhit with RMF, energy vs scaled time 7. (a) Full run;
(b) initial interval.

from the extremum, the Larmor radius is small and the radius
of curvature is large, whereas near the extremum the reverse
is true. Figure 3(c), logyor /1 Vs 7, shows that the Larmor
radius is much less than the radius of local curvature of the
magnetic field line far from the extrema, but exceeds it near
the extrema. Figure 3(d) shows that the ratio of w toitsinitial
value is well-conserved between extrema, goes through large
jumps near the extrema, and changes by order unity after the
jumps. Oscillations in w about a fixed value are a result
dropping higher-order corrections to the asymptotic series
for the adiabatic invariant, but secular jumps are significant.
The absence of alarge, nearly-uniform magnetic field in the
FRC, compared to a tokamak, is thus found to make the use
of the guiding-center approximation invalid, even for particle
energies considerably less than 100 V.

Figures 4—6 show the orbit of a deuteron with the same
initial conditions and duration as the previous one, but with
odd-parity RMF applied at w=7.66X10" s 1=80% 0,
and amplitude B,=2% 103 T=0.1% B,. Figure 4 shows
the important result, that the particle energy rises from its
initial 100 eV to 10 keV in a very short time, 7=200, t
=13 us, to a maximum >80 keV, well into the regime of
thermonuclear interest, even for advanced, aneutronic fuels.
The rate of energy gain is d&/dt=qE-v, whose sign and
magnitude depend on the relative orientation of the electric
field E and the particle velocity v. During intervals of rapid
energy rise, these vectors remain aligned for a time of order
half a cyclotron period. In other time intervals, the energy
falls as the deuteron returns energy to the RMF when these
vectors are anti-parallel.

lon and electron acceleration . . . 2097
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FIG. 5. Ion orbit with RMF, projected onto poloidal plane. (a) Initial time
interval; (b) fina time interval.

Figures 5 and 6 show the orbit during the first and last
timeintervals, 0<7<100 in green and 19 900<7<20 000 in
magenta. In the initia interval, with energy in the range 50—
250 eV, the Larmor radius is very small. In the last interval,
with energy in the range 30—60 keV, the Larmor radius is
about r /3. In spite of the large excursions, the particle does
not escape confinement. The large Larmor radius orbits are
betatron type rather than cyclotron. Betatron orbits may be
effective at stabilizing the tilt mode.*>*® For numerical runs
with the same initial conditions but 10 times longer dura-
tions, the maximum energy attained, &,, does not increase.
However, if the deuteron is initiated with an energy above
Ewv, say 100 keV with all other conditions unchanged, the
particle energy does not (or rarely) fall below &y . As shown
later, &y depends on the strength of the RMF field, the sepa-
ratrix radius, and the main field strength.®

To elucidate the mechanisms of ion acceleration by the
odd-parity RMF, Fig. 7 shows scatter plots of the rate of ion
energy gain transverse and paralel to the loca magnetic
field, as a function of the axial position z and the ratio of the
local ion-cyclotron frequency ; to the RMF frequency w.

FIG. 6. (Color) lon orbit with RMF, viewed along the z-axis.
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FIG. 7. (Color) Scatter plots of transverse and parallel energy gain. (a) Transverse d&/dt vs axia position z (b) paralel d&/dt vs axial position z; (c)

transverse dé/dt vs Q; /w; (d) paralel d&/dt vs Q;/w.

While these plots show points along a single orbit, the points
are not connected by continuous lines, but are intended to
show the correlation between the variables on the abscissa
and the ordinate. The induced electric field which accelerates
the ions is E= — gA/dt, with A given by Eqg. (8). The con-
centration of d&/dt at asmall z, =15 cm, seen in Fig. 7(a),
is a consequence of the cos kz factors in A; and A,. This
localization of heated ions near the mid-plane is an attractive
property of odd-parity RMF. By contrast, the parallel d&/dt
isseenin Fig. 7(b) has a peak away from z=0, though not as
far as predicted by the sin kz factor in A, .

Figures 7(c) and 7(d) show the dependence of the trans-
verse and parallel d&/dt onthe Q);/w. Thetransversetermis
nearly uniform from 0.1 to 1. There is a second, less wide
band from 1.1 to 1.25. The 1.25 value corresponds to the two
interactions of the separatrix with the midplane, at r=0 and
rs and z=0; the mechanism for this is not well understood.
By contrast, the paralel d&/dt is peaked at very low values
of Qj/w but vanishes at 0, where the z component of the
electric field vanishes. The peak at 0.04 is of order the axial
bounce fregquency.

Figure 8 shows the maximum energy achieved by deu-
terion ionsin 903 runs of the RMF code with different values
of the amplitude B, and the ratio w/;o. Maximum hesting
is achieved for w/Q;y in a band of order unity about the
origin, confirming that the heating mechanism is strongly
influenced by ion-cyclotron resonance. The gap very near the

origin is due to the proportionality of the accelerating electric
field to w. Increasing the RMF amplitude raises and broadens
the whole curve. The erratic behavior of the curves is further
evidence of the stochastic behavior of the orbits.

IV. ELECTRON ORBITS

We have seen in Sec. |11 that a RMF in the ICRF is very
effective at heating ions to thermonuclear temperatures. We
seein this section that a RMF at the same frequency can also
heat electrons and drive current, by a markedly different
mechanism.

Figure 9 shows the behavior of an electron acted on by
an odd-parity RMF. The initial position is on the midplane,
z=0, with the initial radius 2% beyond the O-point, and the
initial energy is 100 eV. The RMF has a frequency w=2
X 1040 g=0.73Q;0=—7x 10" s %, in the ICRF. Figure
9(a) shows energy vs scaled time r=t/t,, normalized to an
electron-cyclotron period to=2m/Q¢o=17.9 ps in the peak
magnetic field B,, with Qg =0.B,/m,. It shows a se-
quence of periodic spikes to a maximum energy of 8 keV,
with a baseline moving erratically up to a maximum of 5
keV. Figure 9(b) shows the azimuthal angle ¢ in radians vs
scaled time 7. It shows a uniform angular velocity within 1%
of the RMF frequency, with a small stair-step motion super-
imposed on it. This congtitutes a current which can be used
to sustain the FRC.
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FIG. 8. (Color) log;y maximum energy vs w/€;q for
three values of RMF amplitude B,,.

The mechanism responsible for this behavior can be un-
derstood in more detail from Fig. 10, showing the time in-
terval 2X 10%< r<3% 10*. The peaks of the energy spikes
in Fig. 10(a) are correlated with the rapid motion in ¢, the
riser parts in the stairsteps, in Fig. 10(b). For this set of initial
conditions, the time between successive spikes is approxi-
mately half the period of the RMF. The change in azimuthal
angle between successive spikes is approximately —ar.
(Other sets of initial conditions will result in smaller or larger
steps in ¢ with commensurately smaller or larger times be-
tween steps.) The kinetic energy is found to be due almost

FIG. 9. (Color) Electron orbit with RMF. (a) Energy in eV vs scaled time 7;
(b) azimuthal position ¢ in radians vs scaled time 7.

entirely to this azimuthal component of the motion, with the
radial and axial energies much smaller. When the mean elec-
tron v 4 is synchronous with the RMF rotation, the electron is
trapped in the well formed by the azimuthal electric field,
E,=—0A,/dt = —cos . The spikes are due to moving in
one direction in the well. Overall, the betatron nature of
these near-O-point orbits is responsible for the ratchetlike
(unidirectional) behavior of the electron’s azimuthal motion.
The baseline energy is the kinetic energy when the electron
has moved away from the O-point null line and is undergo-
ing Speiser collisions at the field-line z extrema. During that
period, the electron stays at nearly constant ¢ to until the
process begins again. We note that electrons may be heated
near the field-line extrema by both the z and r components of
E, in conjunction with the effective Speiser resistivity.

Figure 10(c) further clarifies the picture. It shows the
orbit in the plane perpendicular to the z-axis, in the frame
rotating with the angular frequency of the RMF. The electron
is seen to be trapped in the well of the wave. The spikes in
the energy occur when the electron accelerates in the well,
moving in the clockwise direction in Fig. 10(c). ¢ is a a
maximum at x=0. After moving ~ 7 radians clockwise, the
electron moves in the counterclockwise direction during its
stay near the field-line extrema. The kinetic energy of the
particle in this non-inertial frame of reference is K, up to an
unspecified constant. If this kinetic energy is sufficiently
small, the electron is trapped in the rotating frame of refer-
ence, whileif it istoo large, it can escape the well and rotate.
Conservation of K implies that, for >0, electrons move
toward the O-point if they gain energy. Electrons exactly in
phase with the RMF do not display a step-riser pattern vs ¢.
They also do not display prominent energy spikes.

Electrons near the trapping boundary can be trapped by
Speiser collisions. When they are too far from this boundary,
as when they are initialized too far from the O-point, they
remain passing in the rotating frame.
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FIG. 10. Electron orbit with RMF (a) energy in eV vs scaled time 7, (b) azimuthal position ¢ in radians vs scaed time 7; () orbit in frame rotating with the

RMF; (d) flux surface label  vs scaled time 7.

Figure 10(d) shows one more feature of the motion, the
normalized flux surface label ¥=1—-4W¥/V¥,, with ¥ the
FRC toroidal flux, Eqg. (3). W normalized such that ¥'=0 at
the O-point and ¥'=1 on the separatrix. Figure 10(d) shows
that the particle remains everywhere fairly close to the
O-point and gets extremely close to it during the energy
spikes. This behavior can be understood in terms of the con-
served transformed Hamiltonian K, Eg. (9). The angular mo-
mentum p¢:mr2¢>—q\lf is dominated by the second term
when the Larmor radius is small, so K~H + «qW¥. Depend-
ing on the sign of w, an increase in the energy H must be
balanced by either a decrease or increase of ¢ in order to
conserve K, resulting in an inward or outward drift.

Figure 11(a) shows the maximum energy achieved by
electrons in multiple runs of the RMF code with different
values of the amplitude B, and the ratio of the initial radia
position r to the O-point radius r,. Maximum heating is
achieved when the electron is initially near the O-point, with
the effective-heating distance from the O-point increasing
with RMF amplitude. Figure 11(b) shows the ratio of the
total change in the electron’s azimuthal angle, A ¢, to the

total change in the RMF phase wt, avalue of 1 being indica-
tive of trapping. Both of these figures show that increasing
RMF amplitude increases the ability of the electric field to
trap the electron.

V. ORBITAL CHAQOS

The orbits of particles in the FRC are found to be cha-
otic, even without RMF. By definition, chaos means that or-
bits with very close initial conditions diverge from each
other exponentially.!* This behavior is illustrated in Fig. 12,
showing two 100-eV ion orbits without RMF in red and blue,
respectively, with initial radia position r(t=0) differing by
one part in 10° and all other initial conditions identical. Dur-
ing the initial interval 0<7<<150, only one orbit is visible,
but then they diverge rapidly. Note that this interval is much
smaller than those used in the previous figures.

The rate at which nearby orbits diverge can be quantified
by means of Lyapunov exponents.**?® Hamilton’s equations,
Eg. (2), can be expressed compactly as
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FIG. 11. (Color) Scans of electron behavior over values of initial r/r, for
several values of the RMS amplitude B, . (a) Maximum electron energy; (b)

ratio of electron azimuthal angle change A¢ to RMF azimuthal angle
change wt.

FIG. 12. (Color) Two ions orbit without RMF. With initial radius differing

by 1 part in 10°. (a) Radial position r vs scaled time 7, (b) axial position z
vs scaled time 7.

lon and electron acceleration . . . 2101

T ain”

FIG. 13. (Color) lon orbit without RMF, Lyapunov exponents \ vs scaled
time 7.

._Jo"H 10
z= e (10)
in terms of the phase-space position column-vector z
E{r,z,¢>,p,,pz,p¢}T and the unit sympletic matrix J
={{0,1},{—1,0}}. Denote a nearby trajectory by z+ 6z, with
| 62| <|z| Equation (10) islinearized about the fiducial trajec-
tory z,

) °H
6z=Léz, L=J——-. (11)
Jz20z

It is easily seen that L is Hamiltonian, defined by the prop-

BT

nT K T T ] K K]

FIG. 14. (Color) Largest Lyapunov exponent \ vs initia r/r, for several
values of the RMF amplitude B,. (a) lons; (b) electrons.
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erty JLJ=LT. Let U denote a square matrix whose column
vectors are six independent solutions of Eq. (11). Then U
satisfies a matrix form of Eq. (11),

U=LU. (12)

If the initial conditions are chosen such that UTJU=J, then
this property is preserved because of the Hamiltonian prop-
erty of L. Such a matrix of solutions is called symplectic.

Independent column vector solutions to Eq. (12) have
the asymptotic form,

limu;(7)=ujo( 7)€", (13)
with six independent real solutions for the eigenvalues \;,
the Lyapunov exponents, and corresponding bounded eigen-
vectors u;q(t), and with the time behavior expressed in terms
of the normalized time 7 used previously. This can be solved
for the Lyapunov exponents,

Injui(7)|

P T
For the sympletic solutions to Eq. (12), the Lyapunov expo-
nents come in pairs of equal magnitude and opposite sign, so
only the positive Lyapunov exponents need to be computed.
Various methods exist for numerically separating the small-
er positive Lyapunov exponents from the larger ones, of
which the most efficient is occasional Gram-—Schmidt
re-orthogonalization.?®

Figure 13 shows the result of such a computation for the
same orbit as in Fig. 12. Convergence is slow but recogniz-
able. The three final values for the Lyapunov exponents are
15x1071, 9.2x1073, and 1.4x10°3. The effect of the
RMF is found to increase the magnitudes of the Lyapunov
exponents.

The divergence of the solutions in Fig. 12 by =150 is
understandable in terms of this exponential growth. It should
be understood that the actual magnitudes of the Lyapunov
exponents congtitute a long-time average measure of the di-
vergent tendencies and may not accurately represent the
short-term behavior shown in Fig. 12.

Figure 14 shows the behavior of the largest Lyapunov
exponent \ for 52 cases of ion and electron orbits for arange
of values of r/r, and B,. For ions with RMF, A nearly van-
ishes near the O-point, and generaly increases with RMF
amplitude and distance from the O-point. There is a similar
trend, though not so clear, for the electrons. Since the defi-
nition of \ in Eq. (14) uses the scaled time 7 for each species,
and the ratio in the magnitude between ions and electrons is
approximately proportional to the sguare root of the mass
ratio, the rate of separation of nearby orbitsis clearly related
to the thermal velocity of the particle, which also explains
the increase with RMF amplitude.

There are severa implications of these results. Compu-
tation of any particular orbit is extremely sensitive, not only
toinitia conditions, but to small changes in numerical toler-

A. H. Glasser and S. A. Cohen

ance and even differences in the details of floating point
methods between different computers. Physically, the differ-
ent trajectories of many nearby particles should contribute to
thermalization and diffusion of the particle distribution func-
tion.

VI. DISCUSSION

We have presented results of long-time, highly-accurate
numerical integration of individual particle orbits in the FRC
with an odd-parity RMF in the ICRF. These results may be
regarded as complementary to other treatments of the FRC
based on fluid, particle-in-cell, and kinetic approaches. They
show that the odd-parity RMF may provide an effective
method to heat ions to thermonuclear conditions, including
for advanced, aneutronic fuel cycles, while leaving them
well-confined. The resulting large-orbit ions may be effective
in stabilizing the FRC against the tilt instability. The RMF is
also effective at heating and driving current in the electrons.
These conclusions should warrant new experimental investi-
gations and further theoretical investigations.
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