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ABSTRACT
The RMF (Rotating Magnetic Field) code is designed to calculate the motion of a charged particle in a given electromagnetic field. It inte-
grates Hamilton’s equations in cylindrical coordinates using an adaptive predictor-corrector double-precision variable-coefficient ordinary
differential equation solver for speed and accuracy. RMF has multiple capabilities for the field. Particle motion is initialized by specifying
the position and velocity vectors. The six-dimensional state vector and derived quantities are saved as functions of time. A post-processing
graphics code, XDRAW, is used on the stored output to plot up to 12 windows of any two quantities using different colors to denote successive
time intervals. Multiple cases of RMF may be run in parallel and perform data mining on the results. Recent features are a synthetic diagnostic
for simulating the observations of charge-exchange-neutral energy distributions and RF grids to explore a Fermi acceleration parallel to static
magnetic fields.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0101665

I. INTRODUCTION

At the basic level, the motion of charged particles in plasmas
must be understood by single-particle motion driven by the fields
present at the particle at each instant. Particle-in-cell codes do
this self-consistently, but are computationally expensive and time-
consuming, evaluating the time evolution of billions of interacting
particles. Test-particle codes, single-particle codes, are far quicker.
They are highly accurate when the simulation time scale is far shorter
than MHD or resistive time scales conditions often found in high
temperature plasmas.

To aid the design of plasma diagnostics, analyze their results,
and understand the physics of particle motion in complex fields,
the Rotating Magnetic Field (RMF) code was written to calcu-
late the trajectory of a charged particle in a specified electro-
magnetic field. The RMF code integrates Hamilton’s equations
in cylindrical coordinates using the adaptive predictor-corrector
Double-precision Variable-coefficient Ordinary Differential Equa-
tion (DVODE)1 solver module for speed and accuracy. RMF has

multiple capabilities for the field: a Hill’s vortex model2 and a
numerical Grad–Shafranov solution3,4 for a Field Reversed Config-
uration (FRC); a rotating magnetic field;5 mirror coils; wires along
the z-direction; static electrostatic fields normal to flux surfaces;
and oscillatory magnetic-field-perpendicular grids to explore Fermi-
acceleration physics.

Analyses include the computation of time-evolving energy his-
tograms, Poincaré puncture plots, fast Fourier transforms of the
energy, and Lyapunov exponents.6 Recent features include a syn-
thetic diagnostic for simulating the observations of charge exchange
neutrals7 and an array of grids to enable the study of a new form of
Fermi acceleration.8

Particle motion is initialized by specifying the position (r,ϕ, z)
and velocity using energy in eV and spherical angles about the
z-direction. The six-dimensional state vector and many derived
quantities are saved as functions of time. Time is measured in units
of cyclotron periods for a selected magnetic field. A post-processing
graphics code, XDRAW, is then used to plot up to 12 windows of
any two quantities using different colors to denote successive time
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intervals. XDRAW provides extensive interactive features to zoom,
digitize, compute slopes and ratios, and save postscript files. A single
RMF simulation takes a few seconds. Multiple cases of RMF may be
run in parallel and post-processing data mining run on the results.

II. HAMILTON’S EQUATIONS OF MOTION
The central feature of the RMF is numerical integration of

Hamilton’s equations for the motion of a charged particle in a
given electromagnetic field. The Hamiltonian is given in cylindrical
coordinates by

H(r, z,ϕ, pr , pz , pϕ, t) = 1
2m
[(pr −

q
c

Ar)
2
+ (pz −

q
c

Az)
2

+ 1
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q
c

rAϕ)
2
] + qφ, (1)

where pi are the conjugate momenta, q and m are the charge
and mass of the charged particle, A is the magnetic vector
potential, and φ is the electrostatic potential. The corresponding
equations of motion are given by
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ṗr =
q
c
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∂Az

∂r
+ ϕ̇ ∂

∂r
(rAϕ)] − q

∂φ
∂r
+mrϕ̇ 2,
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They constitute a sixth-order coupled system of nonlinear ordi-
nary differential equations. These equations are integrated numeri-
cally with DVODE set to a specified tolerance, typically 10−12 in the
H per step. (A long simulation, τ ∼ 104, would have an accumulated
error in H below 10−6.) The results are visualized with the XDRAW
graphics code, which draws contour plots, including of the field, and
plots of multiple curves of any two variables.

In the absence of a rotating magnetic field, the fields are inde-
pendent of t and ϕ and the equations conserve the Hamiltonian H
and conjugate angular momentum pϕ. We monitor H to verify that it
is conserved to high accuracy. In the presence of a rotating magnetic
field, these are no longer conserved separately, but there is a canoni-
cally transformed Hamiltonian K = H − ωpϕ, which we monitor for
high accuracy.

Elastic or inelastic collisions are an option in RMF for which
the Hamiltonian is re-initialized after each collision. A simulation is

terminated when a particle’s trajectory extends beyond a specified
region or when the specified simulation’s duration is exceeded.

III. FIELDS
A. Field-reversed configuration

In RMF, a Field-Reversed Configuration (FRC) is represen-
ted by the Hill vortex model whose flux function, ψ, inside the
separatrix is

ψ ≡ rAϕ = ψ0(
r2

r2
s
)(1 − r2

r2
s
− z2

z2
s
) > 0

for
r2

r2
s
+ z2

z2
s
< 1,

(4)

where rs is the separatrix radius at the midplane z = 0. An O-point
(line) is at ro = rs/

√
2, ±zs are the x-point locations, and κ ≡ zs/rs is

the elongation. This satisfies a Grad–Shafranov equation,

Δ∗ψ ≡ r2∇ ⋅ ( 1
r2∇ψ)

= −8ψ0(
r2

r4
s
)(1 + 1

4κ2 ) = −r2 dp
dψ

, (5)

with ψ0 = B0r2
s /2 being the confined magnetic flux, B0 being

the magnetic field at r = z = 0, maximum pressure p0 = 2B2
0

(1 + 1/4κ2), and pressure profile p(ψ) = p0(4ψ/ψ0). The solution of
Zakharov and Shafranov9 is used outside the separatrix to enforce
non-negative pressure there. An alternative FRC representation may
be implemented in RMF: the Grad–Shafranov equation numerically
solved with specified boundary conditions.

The RMF FRC work thus far reported using Hill’s vortex model.
Landsman et al.10 examined the stability and periodicity of the three
charged-particle orbit classes11 in FRCs.12 μ, the magnetic moment,
herein defined as the perpendicular energy divided by the local mag-
netic field, was not conserved when particle orbits approached the
X-points,13 a phenomenon studied earlier in mirror
configurations14,15 and geophysical plasmas.16,17

B. Rotating magnetic field
Particles are accelerated by the induced electric field created the

rotating magnetic field. Its vector potential is derived from vacuum
conditions, ∇×∇ ×A = 0. There are two types of parity,18 depend-
ing on the field’s symmetry about z = 0. In RMF, the odd parity’s
vector potential is given by19

Ar =
2Bo

k
I0(ξ) cos kz sin ψ,

Aϕ =
2Bo

k
I0(ξ) cos kz cos ψ,

Az = −
2Bo

k
I1(ξ) sin kz sin ψ,

(6)
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while the even parity’s vector potential is given by

Ar =
2Be

k
I0(ξ) sin kz sin ψ,

Aϕ =
2Be

k
I0(ξ) sin kz cos ψ,

Az =
2Be

k
I1(ξ) cos kz sin ψ,

(7)

where Bo and Be are the odd and even magnetic amplitudes, I0 and
I1 are modified Bessel functions, k = π/2zs, ξ = kr, ψ = ϕ − ϕ0 − ωt,
and ω is the frequency of the rotating magnetic field.

Studies of the effects of rotating magnetic fields on charged
particles in FRCs revealed a number of phenomena:

1. Ions were heated to energies near mi(ωrs)2/2 when 0.2
> ω/ωci < 2 and slightly lower when −0.2 > ω/ωci > −2 for
Bo > 0.01B0 while electrons were heated to energies up to
qπr2

sωBo for lower relative frequencies, ω/ωce ∼ ∣0.001∣. There
was a Bo/B0-dependent threshold for heating.20

2. Heated ions circulated around the FRC in betatron orbits
nearly in synchronism with the RMFo.

3. High energy ions and electrons circulated in opposite direc-
tions in betatron orbits, independent of the direction of the
rotating magnetic field’s rotation.

FIG. 1. Particle orbits in a mirror machine with a major axis in the z-direction, mirror
coils at ±30 cm, and mirror ratio R = 7. Top: projection of ion orbit on r ,z plane.
Bottom: μ (normalized to its initial value) vs time. The particle leaves the mirror
region when μ falls below 0.3.

C. Mirror and dipole fields
RMF models the field as an ensemble of circular coils, each a

filament of radius a carrying current I. A single coil, coaxial with
the z axis and centered at z = 0, creates a dipole field with vector
potential

ψ(r, z) = rAϕ(r, z) = Iar
c

M(r, z), (8)

with

M(r, z) = 4(a2 + r2 + z2 + 2ar)−1/2[(m − 2)K(m) + 2E(m)]/m,
(9)

m ≡ 4ar
a2 + r2 + z2 + 2ar

, (10)

and complete elliptic integrals

K(m) ≡ ∫
π/2

0
(1 −m sin2 ϕ)−1/2

dϕ,

E(m) ≡ ∫
π/2

0
(1 −m sin2 ϕ)1/2

dϕ.
(11)

The elliptic integrals are represented by polynomials and logs of m.
By positioning two coaxial coils at z = ±zc (with centers on

the z axis) and currents flowing in the same direction, a mirror
configuration is formed.

FIG. 2. Ion trajectory in a dipole field. Top: projection of ion orbit on r ,z plane.
Bottom: normalized μ vs time.
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The purpose of the mirror field configuration was to study the
lack of μ conservation in it. An example is shown in Fig. 1.

The particle was initially confined, as shown in Fig. 1 (top).
However, after a few axial transits, μ fell to such a low value [Fig. 1
(bottom)] that the particle was lost through a mirror throat. Changes
in μ occurred when the particle crossed the midplane. For most of
the time, the ratio ρi/Rc was small, <1%, which, according to the
common theory, should result in μ conservation. Nevertheless, μ
was not conserved. Theoretical15,21,22 and RMF studies showed the
importance of the field-parallel particle velocity.

Similar behavior, lack of μ conservation, was seen for ion
motion in a dipole field configuration [see Fig. 2].

D. Straight wire
Guiding center theory shows that near a straight current-

carrying wire a drift will develop parallel to the wire. Changes in μ
do not occur15,21,22 because a changing field curvature is required.
That occurs in FRC and mirror devices but not for a single straight
wire.

The vector potential of a single straight wire of length l is
given by

Az = −
2I
c

ln( r
a
), (12)

FIG. 3. Trajectory of a low energy ion in field of straight current-carrying wire. Top:
projection of trajectory on x–y plane. Bottom: projection of motion on r–z plane.

FIG. 4. Trajectory of a high energy ion in field of straight current-carrying wire.
Top: projection of trajectory on x–y plane. The cyclotron motion is clear. Bottom:
projection of motion on r–z plane. The drift motion is clear.

where r is the distance from the wire. As Figs. 3 and 4 show,
both high and low energy particles, those with ρ/rc ∼ 0.5 and 0.05,
show μ conservation, supporting the aforementioned theories and
strongly in contrast with the orbits in mirror machines, FRCs, and
dipoles.

IV. SUMMARY
The structure and several applications of the RMF code were

described and note was made of current uses of the RMF code as a
synthetic diagnostic for charge exchange measurements of ion
energy distributions in high-β plasmas and to simulate field-parallel
Fermi acceleration in mirror devices. Field options in the code
allow studies of particle trajectories in the fields of static FRCs,
axisymmetric mirrors, dipoles, cusps, and current-carrying wires,
with or without static electric fields having a variety of geometries.
Time-varying options include rotating magnetic fields and B-parallel
electric fields created by transparent grids in the plasma.
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