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Research Context

@ Control chemical systems by passing them through an electric field.

@ Optimize reaction yield, drive molecule to target energy level, etc.

@ Shape the electric field to achieve this goal, assuming system follows
dynamical equations.

@ Dynamical equations can be classical or quantum.
o Previous work assumes quantum mechanics (Schrédinger's equation).
@ | assume classical mechanics (Hamilton's equations).
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Image from Professor Herschel Rabitz, Princeton University, CHM 510, Fall 2010.
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Optimal Control Formulation

@ Assume some chemical system with specified goal at final time T.

o Use a cost functional J to specify the goal.
o Let z(t) denote the state of the system at time t, a 2n x 1 vector.

@ Let €(t) be the control field at time t.

min J = F(z(T)) (1)
s.t. 2= f(z(t),€(t)) (2)
2(0) = z (3)

@ For instance, F = z(T)"z(T).

@ Dynamic equation f either Schrédinger's equation or Hamilton's
equations.

@ An optimal control history € produces z(T) that globally minimizes

J.
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Search Algorithms and Quantum Results

@ Compute optimal fields using optimal control theory.
@ Start with an initial field and use gradient search.

@ Problem with gradient search: gets stuck in local minima.

@ Assume fully controllable systems: with appropriate control, can
get from given initial state to any final state at time T.

@ In controllable quantum systems, gradient search never gets stuck.
@ What about controllable classical mechanical systems?

Image copyright Professor Robert F. Stengel, Princeton University, MAE 546 Spring 2010.
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Classical Analysis: Zero Gradients

Gradient of the cost functional with respect to the control:

5 0J 6(T)
5e(t) — 02(T) 0e(D) )

@ At critical points, this equation is O for all t.

@ Also assume regularity: { 5e(0) | t e |0, T]} is surjective.

@ In other words, this infinite set of vectors, indexed by time, contains
2n linear independent vectors.

oJ

° Then since 7,77y is independent of ¢ in (4), at critical points

az(T) =0.
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Classical Analysis: Defining the Cost Functional

From the previous slide, we have

oJ
0z(T)

~0. (5)

@ Define an observable O, a function of the state (e.g. O = z).
@ Let O be an r x 1 vector-valued function.
@ Suppose we want this observable to reach a target value O;.
Then define
=[0(2(T)) — 0] [0(2(T)) — O] (6)

Taking the derivative, (5) gives

Tao

2[0(2(T)) — O] =0 (7)
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Critical Points as Global Minima

From the previous slide,

T@O

2[0(2(T)) — O] =0 (8)

dao

Note that [O(z(T)) — O¢]" is a 1 x r vector an an r x 2n matrix.

_ 00 ;
@ Suppose M = = is an r-rank matrix.

@ Then MMT is an r x r matrix of rank r, and therefore invertible.
80
2[0(2(T)) - Or]T MT(MMT)~t = oMT(MMT)~H, 9)

SO

[0(z(T)) — 0:]" =0, i.e. O(z(T)) = O; (10)
and J is globally minimized.

@ For instance, target states or scalar O.
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Numerical Example

@ State z = (g, p): position and momentum.
@ Target and final states (g, p) = (0,0) and (1.728e-5,-4.50e-6).

Control Field vs. Time, q(T) =0, p(T) =0 Vs q and p vs. Time, q(T) =0, p(T) =0
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Figure: Control field evolution. Figure: Final position and momentum

trajectories.
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Past, Present and Future Work

@ Lots of other numerical simulations—none revealed a local trap!

@ Multi-particle systems.
@ Scalar objective.
o Partial target state (e.g. target g but no target p).

@ Hessian derivation and analysis: very similar to quantum
expressions.

@ Preliminary study of singular (non-regular) controls.

@ Currently studying non-deterministic systems: initial state spread
over a probability distribution.

Future research directions:
@ Singular controls.
@ Infinite-dimensional systems.

@ Non-controllable systems: these have traps on the quantum side.

Carlee Joe-Wong (PPST) Classical Control Landscapes October 14, 2010 9/10



Questions?

Image from Wikipedia, http://en.wikipedia.opg/wiki/File:Laser_play]pg. Taken by Jeff Keyzer, San Franc
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