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Research Context

Control chemical systems by passing them through an electric field.

Optimize reaction yield, drive molecule to target energy level, etc.

Shape the electric field to achieve this goal, assuming system follows
dynamical equations.

Dynamical equations can be classical or quantum.
Previous work assumes quantum mechanics (Schrödinger’s equation).
I assume classical mechanics (Hamilton’s equations).

Image from Professor Herschel Rabitz, Princeton University, CHM 510, Fall 2010.
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Optimal Control Formulation

Assume some chemical system with specified goal at final time T .

Use a cost functional J to specify the goal.
Let z(t) denote the state of the system at time t, a 2n × 1 vector.
Let ǫ(t) be the control field at time t.

min J = F (z(T )) (1)

s.t. ż = f
(

z(t), ǫ(t)
)

(2)

z(0) = z0 (3)

For instance, F = z(T )T z(T ).

Dynamic equation f either Schrödinger’s equation or Hamilton’s
equations.

An optimal control history ǫ produces z(T ) that globally minimizes
J .
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Search Algorithms and Quantum Results

Compute optimal fields using optimal control theory.

Start with an initial field and use gradient search.

Problem with gradient search: gets stuck in local minima.

Assume fully controllable systems: with appropriate control, can
get from given initial state to any final state at time T .

In controllable quantum systems, gradient search never gets stuck.

What about controllable classical mechanical systems?

Image copyright Professor Robert F. Stengel, Princeton University, MAE 546 Spring 2010.
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Classical Analysis: Zero Gradients

Gradient of the cost functional with respect to the control:

δJ

δǫ(t)
=
∂J

∂z(T )

δz(T )

δǫ(t)
(4)

At critical points, this equation is 0 for all t.

Also assume regularity:
{

δz(T )
δǫ(t) | t ∈ [0,T ]

}

is surjective.

In other words, this infinite set of vectors, indexed by time, contains
2n linear independent vectors.

Then since ∂J

∂z(T ) is independent of t in (4), at critical points
∂J

∂z(T ) = 0.
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Classical Analysis: Defining the Cost Functional

From the previous slide, we have

∂J

∂z(T )
= 0. (5)

Define an observable O, a function of the state (e.g. O = z).

Let O be an r × 1 vector-valued function.

Suppose we want this observable to reach a target value Ot .

Then define
J = [O(z(T ))− Ot ]

T [O(z(T )) −Ot ] . (6)

Taking the derivative, (5) gives

2 [O(z(T ))− Ot ]
T ∂O

∂z
= 0. (7)
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Critical Points as Global Minima

From the previous slide,

2 [O(z(T ))− Ot ]
T ∂O

∂z
= 0. (8)

Note that [O(z(T ))− Ot ]
T is a 1× r vector and ∂O

∂z
an r × 2n matrix.

Suppose M = ∂O

∂z
is an r -rank matrix.

Then MMT is an r × r matrix of rank r , and therefore invertible.

2 [O(z(T ))− Ot ]
T ∂O

∂z
MT (MMT )−1 = 0MT (MMT )−1, (9)

so
[O(z(T ))− Ot ]

T = 0, i.e. O(z(T )) = Ot (10)

and J is globally minimized.

For instance, target states or scalar O.

Carlee Joe-Wong (PPST) Classical Control Landscapes October 14, 2010 7 / 10



Numerical Example

State z = (q, p): position and momentum.

Target and final states (q, p) = (0,0) and (1.728e-5,-4.50e-6).

Figure: Control field evolution. Figure: Final position and momentum
trajectories.
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Past, Present and Future Work

Lots of other numerical simulations–none revealed a local trap!

Multi-particle systems.
Scalar objective.
Partial target state (e.g. target q but no target p).

Hessian derivation and analysis: very similar to quantum
expressions.

Preliminary study of singular (non-regular) controls.

Currently studying non-deterministic systems: initial state spread
over a probability distribution.

Future research directions:

Singular controls.

Infinite-dimensional systems.

Non-controllable systems: these have traps on the quantum side.
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