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Abstract

I investigated fast ion slowing-down using the LSP particle simulation code
with the goal of studying the slowing-down rates of very high-energy ions in
a background plasma, with and without magnetic fields. In the simulations, I
inserted fast ions as a homogeneous and isotropic plasma. I encountered and
studied a couple of issues involving the LSP simulation code. I am especially in-
terested in the physical implications of LSP’s use of “clumped” macro-particles,
and I have tested and analyzed the effects of macro-particle clumping on the
physical behavior of these systems.

1 Introduction

In addition to its intrinsic interest as a basic characteristic of the behavior of plas-
mas, the rate at which fast ions slow down in a background plasma has a number
of practical applications. In the context of a magnetic confinement device, fast ion
slowing-down is relevant to the study of heating schemes (such as neutral beam injec-
tion and RF heating) that produce a number of very high-energy particles in a cooler
plasma. However, this study has focused on a different application: understanding
the behavior of high-energy fusion products. In the context of a field-reversed con-
figuration, the slowing-down rates of fusion products are important to the problems
of power and particle control. Essentially, I would like to understand where and how
quickly hot fusion products will deposit their energy.

Rates of fast ion slowing-down are actually quite well-understood under certain
conditions. This study is intended to explore areas of the plasma parameter space
that are less well-studied and that are particularly relevant to the plasma in an FRC.
In particular, I am interested in cases where the magnitude of the fast ion velocity
vf exceeds that of the thermal electron velocity ve, and I am interested in cases in
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which the ambient magnetic field is strong enough that one or more species’ gyroradii
ρL are less than the Debye length λD, because one might expect that to change the
slowing-down rate.

2 Computational Concerns

2.1 LSP and Particle-in-Cell Codes

To study this problem, I used a particle simulation code called LSP. LSP is a particle-
in-cell code. Generally speaking, that means that the code discretizes certain quan-
tities and only tracks them on a finite number of lattice points. [1] This allows the
code to track things like charge densities at many fewer individual points. The al-
gorithm further simplifies the system by “clumping” together particles into larger
macro-particles. For instance, if there are ten identical particles that are very close
together, the code might instead consider a single macro-particle with ten times the
charge, ten times the mass, ten times the energy, and so on. Some of the details of
LSP’s algorithm have important implications for this study.

2.2 Cell Size and Self-Heating

LSP allows the user to control the cell size of this discrete lattice. In order to minimize
running time, I would like to minimize the number of lattice points that I have to
keep track of, so it is preferable to use cell sizes that are as large as possible. However,
there is a limit to how large the cells can be before the simulation will stop behaving
itself. In particular, if the cell size ∆x exceeds λD, there is a risk of encountering
a nonphysical self-heating effect in which particles will appear to gain energy from
nowhere. There are configurations of the LSP algorithm that can avoid this effect even
for large ∆x, but in this study I have elected to keep ∆x ≤ λD/7. This way, I have
the freedom to change the settings of the algorithm without having to worry about
self-heating. Because λD ∝

√
T/n, higher-density and lower-temperature plasmas

are more computationally demanding to simulate.

2.3 Macro-Particles and Clumping

One part of the algorithm that is very important to its physical behavior is its use of
macro-particles. If ς particles of a species are being lumped together for each macro-
particle, that transforms the charge Z, mass m, temperature T , and density n of the
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particles in the species as follows:

Z → ςZ

m→ ςm

T → ςT

n→ n/ς

Most of these substitutions are intuitively clear. However, it may be worth mentioning
that the temperature substitution is justified because the macro-particle inherits the
combined energies of its constituents, and kinetic energy is proportional to T . [4]

Many of the physical quantities that are most important to the behavior of a
plasma are preserved by this transformation, including the Debye length, gyrofre-
quency, plasma frequency, thermal velocity, and the ratio β of plasma pressure to
magnetic pressure. [3] However, some physical parameters — including the slowing-
down rate of fast ions — are not preserved by this transformation. I deal with this
issue more fully in Section 3.5.

2.4 Collision Flags

One issue that has given me some trouble is the settings within LSP that govern
particle collisions. In the LSP code, it is necessary to decide whether or not to
manually turn on collisions for the different particle species. When the collision flags
are on, LSP automatically simulates the expected results of interactions between
distributions of particles within each cell. The details of how this is implemented are
described in [6].

I have heard somewhat different advice from different experts (Dr. Adam Sefkow
and Dr. Dale Welch) as to whether or not the collision flags should be turned on in
simulations like ours. For most LSP simulations, the collision flags are necessary for
the code to be able to simulate collisional behavior, and turning on the flags would not
change the simulation if they were not needed. However, my simulations are unusual
in that they resolve the Debye length — the side length of a cell never exceeds λD/7.
Correctly simulating collisional behavior while using very small cell sizes is a little bit
more complicated. Dr. Welch has warned that when using sufficiently small cell sizes,
the collision flags are undesirable and can introduce artificial over-counting effects.

If the cell sizes were fine enough that these simulations were actually resolving
the inter-particle spacing (which varies depending on the density being used, but
which will be far smaller than a Debye length), then the situation would be more
straightforward. It would no longer make sense to think of the contents of each cell as
being thermal distributions of particles, and the important physics would all be in the
interactions between cells, so there would be no need for collision flags, and any effects
introduced by those settings that were intended to account for collisions within each
cell would be non-physical. However, in these simulations, we are resolving λD but
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we are not resolving the inter-particle spacing. This means that important collisional
interactions could potentially be taking place both within and between cells. It is
unclear exactly how fine the cell resolution has to be before the effects introduced by
the collision flags are no longer physical.

I ran a variety of simulations with and without the collision flags, and the results
suggested in a couple of ways that our simulations should have the collision flags
turned off. For one thing, the scaling of the fast ion slowing-down rate with fast ion
charge Z was very strange when I turned on the collision flags; with no flags, there
was energy loss proportional to Z2, but with the flags on the scaling was apparently
exponential in Z. This did not seem physically reasonable. I also found that without
the collision flags, the energy lost by the fast ions was very closely matched by energy
gained by the background electrons. When the collision flags were turned on, this was
no longer the case; in these runs, energy lost by the fast ions was often unaccounted
for. When we turned on the collision flags, the slowing-down rate always increased.
For higher-density runs (with electron number density at 1011 per cc), the runs with
the collision flags on were faster by a factor of about two. For the lower-density
runs (electron number density at 1010 per cc) the increase was often larger, although
typically within a factor of ten. This means that even if I have made the wrong
decision about the collision flags settings, my results should produce a lower bound
for the slowing-down rate.

2.5 Energy Conservation

The nature of the particle-pushing algorithms that can be used in this kind of code is
such that you can conserve energy or you can conserve momentum, but you cannot
conserve both. [1] I chose to use an energy-conserving algorithm, but that doesn’t
necessarily mean that the energy conservation is perfect. This is, after all, a digital
system, so given the very large number of interactions being simulated, I would like to
make sure that I do not have to worry about rounding errors or any other numerical
effects.

Before I started to try to simulate the actual slowing-down times of the fast ions,
I spent a significant amount of time simulating background plasmas of protons and
electrons on their own in order to measure the precision with which the algorithm
conserves energy. These measurements matter because I would later be looking at
very small variations in the fast ion energy; I needed to be sure that any energy loss
that I observed was actually physical rather than some numerical artifact.

These measurements were taken with simulated plasmas containing equal numbers
of electrons and protons. Over the time scales measured, there was not significant
energy transfer between the two particle species. I tested a variety of number densities
and a variety of electron temperatures; the cold protons were always left at 1 eV. Tests
with varying electron temperatures are shown in Figure 1; tests with varying plasma
densities are shown in Figure 2. The electrons always had a higher temperature, but
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1e 7Energy Loss with Varying Initial Electron Temperature

Figure 1: The fraction of initial energy not accounted for, per nanosecond. In all of
these runs, the number densities of ions and electrons are both 1011 per cc. The ion
temperature is fixed at 1 eV.

there was no significant energy transfer between the two particle species. When not
noted otherwise, these simulations used 0.5 cm by 0.5 cm two-dimensional boxes of
plasma with periodic boundary conditions.

When I varied number density, I left the electron temperature at 100 eV. I tested
number densities (always held equal for the two species) between 1010 and 1013 par-
ticles per cubic centimeter.

In the regimes that I am interested in (with electron temperatures on the order
of 100 eV and number densities not exceeding 1012 per cm3) the energy conservation
is good at least to a part in 107 per nanosecond, and is often good to something
more like a part in 108. The energy conservation behavior at higher energies shows
some unexpected behavior, with energy loss rates peaking at about 9 keV and then
abruptly dropping. It is possible that this has to do with the size of the system and
the way in which the Debye length scales with temperature. The system has a side
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Fractional Energy Loss as a Function of Number Density

Figure 2: Fraction of the initial energy not accounted for, per nanosecond. The
number densities of ions and electrons were held equal. The electron temperature is
100 eV and the ion temperature is 1 eV.
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length of 0.5 cm, and the Debye length first exceeds one half of the system size at
about the electron temperature of the peak (actually at just over 11 keV).

3 Theory of Fast Ion Slowing-Down

3.1 The Classical Result

Goldston and Rutherford derive the result that the rate of fast ion slowing-down in
a plasma due to Coulomb collisions is given [2] by

dW

dt
= −Z

2e4 log Λ

21/2πε20

(
nem

1/2
e W

3π1/2mT
3/2
e

+
m1/2

4W 1/2

∑
i

niZ
2
i

mi

)
.

Here, quantities presented without a subscript correspond to the fast ions, those with
the subscript e correspond to electrons, and the parameters of the thermal background
ions are indexed by i (the sum allows for the case in which there are multiple species).
log Λ is typically about 20 for most plasmas; it is called the Coulomb logarithm, and
it is discussed in Section 3.3. This result does not take into account other possible
factors, such as instabilities in the plasma.

In the expression for dW/dt, the term due to interactions in background electrons
goes like W and the term due to interactions with background ions goes like W−1/2.
Because of this, either the slowing term due to the ions or the term due to electrons
will usually dominate. As the fast ions get more energetic, the electron term gets
more important and the background ion term diminishes. I define the critical energy
Wcrit as the fast ion energy at which the electron and ion slowing-down terms are
equal. A little bit of algebra gives us

Wcrit =

(
3

4ne

√
πm3T 3

e

me

∑
i

niZ
2
i

mi

)2/3

If W is significantly larger than Wcrit, we can ignore the background ion slowing term.
Conversely, if W is significantly smaller than Wcrit, we can ignore the electron term.

3.2 High- and Low-Energy Regimes

If we have either W � Wcrit or W � Wcrit, then we can simplify the our slowing-down
equation to get

dW

dt
=


−Z

2e4nem
1/2
e log Λ

mε20
√

18π3T 3
e

W : W � Wcrit

−Z
2e4 log Λ

4πε20

√
m

2W

∑
i

niZ
2
i

mi

: W � Wcrit
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This allows us to explicitly solve for W (t) in the high- and low-energy regimes.

W (t) =


W (0) exp

(
−Z

2e4nem
1/2
e log Λ

mε20
√

18π3T 3
e

t

)
: W � Wcrit(

W (0)3/2 − 3Z2e4 log Λ

8πε20

√
m

2

∑
i

niZ
2
i

mi

t

)2/3

: W � Wcrit

In fact, it is possible to get a general solution for W (t), but the result is sufficiently
unpleasant that I will omit it here.

For the purposes of understanding the behavior of fusion products in an FRC, I
am mainly interested in the case in which the fast ion energy W � Wcrit. In the above
expressions, W refers to the energy of an individual fast ion particle rather than to
the combined energies of all fast ions in the system. However, for the high-energy
regime, the expressions for dW/dt and W (t) are linear in energy, so they describe
the decay of the total energy Wtot of all fast ions in the system just as well. If this
is written as W (t) = W (0) exp (−t/ts), the characteristic decay time ts will be the
same whether W refers to the energy of an individual fast ion or the energy of all
fast ions in the system. Because of this, it is often convenient to present our results
as measurements of a decay constant α = 1/ts, where the theory predicts that for
W � Wcrit,

dW

dt
= W (0) exp (−αt)

α =
Z2e4nem

1/2
e log Λ

mε20
√

18π3T 3
e

The same is not true of the low-energy regime, in which dW/dt ∝ W−1/2.
When discussing the “characteristic” slowing-down time ts, it is important to

remember that ts is not the total amount of time required for a fast particle to slow
to thermal velocities. Rather, it is the amount of time that it takes for the particle’s
energy to be reduced by a factor of e in the high-energy regime. In fact, it is also
possible to compute the total expected time for a fast ion to slow to thermal velocities.
This total time τ is given [5] by

τ =
ts
3

log

[
1 +

(
W

Wcrit

)3/2
]
.

3.3 The Coulomb Logarithm

The Coulomb logarithm log Λ is a parameter which introduces a certain amount of
uncertainty into any calculations of dW/dt. The Coulomb logarithm shows up in our
expression for dW/dt because of its relationship with Coulomb collisions.
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If I try to derive dW/dt by thinking about energy losses from Coulomb collisions
(an exercise that I won’t go through here but which is presented nicely [2] by Goldston
and Rutherford), it turns out that the rate of energy loss diverges unless I assume
that there is some maximal range beyond which Coulomb collisions are not important.
More specifically, I need to put an upper bound on the impact parameter, which is
the distance of closest approach of the unperturbed particle trajectories. Happily,
this makes good physical sense, because Debye shielding should prevent very long-
range interactions between particles in the plasma. In the resulting calculation, a
term emerges that depends logarithmically on a parameter (which we call Λ) that
is defined as the ratio of the maximal impact parameter and the impact parameter
associated with right-angle scattering. The problem is that there isn’t an immediately
obvious way of computing Λ, since there is no nice way of computing that maximal
impact parameter (except that it should look more or less like the Debye length).

Different sources give different estimates for Λ and log Λ. The NRL plasma for-
mulary [3] states that for interactions between electrons and ions,

log Λ =


23− log (n

1/2
e ZT

3/2
e ) : Time/mi < Te < 10Z2 eV

24− log (n
1/2
e T−1

e ) : Time/mi < 10Z2 eV < Te
30− log (n

1/2
i T

−3/2
i Z2µ−1) : Te < TiZme/mi.

Here µ is the mass of the fast ion in units as a multiple of the mass of a proton. In my
calculations, I will use the NRL results, since they are the most detailed that I have
found. However, Goldston and Rutherford [2] instead give that Λ ∼ (12π/Z)neλ

2
D ∼

3T/Ze2. This scaling is not fully consistent with the NRL results for any of the three
regimes listed. Other sources give slightly different results. This suggests that any
estimate I make for Λ introduces a certain amount of uncertainty into the results for
quantities like dW/dt. The NRL formulary itself suggests that its own results for log Λ
will only be good to within about ten percent. Fortunately, dW/dt scales with log Λ
rather than with Λ itself, so we can tolerate a certain amount of uncertainty in Λ. As
Goldston and Rutherford point out, log Λ stays within a factor of two even for very
large changes in the characteristics of the plasma. As such, I can expect estimates
of log Λ to introduce some error into our calculations, but even a catastrophically
bad estimate should not be responsible for more than perhaps a factor of two in the
slowing-down rate. If there are discrepancies larger than that between our predictions
and our simulations, we must look elsewhere for the culprit.

3.4 Complications in an FRC-like Plasma

The plasmas found in a field-reversed configuration have two particularly important
characteristics that make them unusual. The first is that vf > ve; that is, the plasma
contains fast ions that have such high energies that they actually move more quickly
than the thermal electrons, despite the large difference in mass. For instance, one
of the products of D-3He fusion is 14.7 MeV protons. These protons may be about
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1800 times more massive than the electrons in the plasma, but if the electrons have
energies the range of hundreds of electron-volts, the energy difference is a factor of
order 105, and the fast ions will have larger velocities. Ordinarily — i.e., for a plasma
in which the difference particle species have similar energies — I would expect ion
velocities to be far smaller than electron velocities, so the ions can react only very
sluggishly to motion of the electrons. Therefore, the basic behavior of a plasma like
the ones studied here may exhibit unconventional behavior.

Another important characteristic of an FRC-like plasma is the very large magnetic
field. FRCs are very high-β devices, and the magnetic fields can be strong enough
that a particle’s gyroradius ρL can be smaller than the Debye length. In the regime
where ρL < λD, it is possible that the magnetic field can have such a large effect
on individual particle orbits that it actually disrupts the shielding behavior of the
plasma.

3.5 Predicted Corrections Due to Particle “Clumping”

In the high-energy regime where W � Wcrit, the coefficient α of the exponential decay
had the dependence α ∝ Z2nem

1/2
e /mT 3/2. When particles are grouped together to

form macro-particles, the quantity α is not preserved; if each fast ion macro-particle
represents ςf real ions and each electron macro-particle represents ςe real electrons,
then we can compute the dependence of the slowing-down rate on ςe, ςi, and ςf . If I
simply apply the prescription from Section 2.3 directly to our earlier results (sending
Z → ςZ, m→ ςm, and so forth), I should expect α ∝ ςf/ς

2
e and ts ∝ ς2

e /ςf . However,
this result is not quite right. My results from the previous section all assume that each
electron has charge e; there are no Z2

e terms in those equations because in a physical
system, we always expect Z2

e = 1. If I had kept those terms instead of setting them
equal to one, I would have found that

dW

dt
= −Z

2e4 log Λ

21/2πε20

(
neZ

2
em

1/2
e W

3π1/2mT
3/2
e

+
m1/2

4W 1/2

∑
i

niZ
2
i

mi

)
.

With the inclusion of the additional Z2
e term, we instead find that α ∝ ςf , with no

explicit dependence on ςe.
In the low-energy regime in which W � Wcrit, instead dW/dt ∝ ς2

f . Then the
fractional rate of energy loss goes like (dW/dt)/W (0) ∝ ςf . Even in this regime,
where interactions with background ions are important, the number of background
ions per macro-particle does not directly affect the results.

The quantities ςe and ςf are both straightforward to compute, so it might initially
seem like it should be easy to recover physically “correct” results from our simulations
simply by removing a factor of ςf . However, there are still a few things to be careful
of. The first thing that needs to be checked is the critical energy. The solution
W (t) = W (0) exp (−αt) is only valid when W is significantly larger than Wcrit, and
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in fact, Wcrit is itself not preserved by particle clumping. It turns out that Wcrit ∝ ςf .
However, this expression may be slightly misleading, since the energy per macro-
particle will also scale with ςf . The above expression describes the critical energy
of a simulated macro-particle; the effective critical energy for the fast ions before
clumping would not depend on ςf , since the energy per macro-particle goes up by the
same factor that Wcrit does. Therefore, if the “real,” physical parameters of a system
place it well within a regime where I can ignore the slowing due to thermal ions, the
version of that system simulated in LSP should still have W � Wcrit.

There are a couple of additional effects that might further complicate this picture,
and not all of them resolve themselves so cleanly. Macro-particle clumping changes a
couple of other parameters of the system, including the average separation between
two particles and the rate of inter-particle collisions. The slowing-down rate does
not explicitly depend on either of these quantities, but they might still be important.
LSP discretizes both time and space; if the collision rate changes, that could conceiv-
ably change whether or not the time step size is adequate, and if the inter-particle
separation changes but the spatial cell size does not, the algorithm might behave
differently.

Another possible effect involves the relative masses of different particles. Physi-
cally, the electrons should be much less massive than the fast ions. This has significant
consequences for the tendency of the particles to transfer energy and momentum. [2]

However, if the particles are clumped into macro-particles in such a way that ςe � ςf ,
it could be that the electron macro-particles are no longer much less massive than
their fast ion counterparts. This would make the previous predictions for dW/dt
inaccurate.

4 Measurements of Slowing-Down Times

4.1 Overall Approach

Some of my earlier efforts at measuring the slowing-down times involved injecting a
beam of fast ions into a homogeneous background plasma of protons and electrons.
However, for most of my simulations, I used a different approach, and instead in-
serted the fast ions with homogeneous position and velocity distributions. The latter
approach has a couple of different advantages. First, it allows me to avoid instabil-
ities like the two-stream instability that can arise in different configurations (such
as a directed beam of fast ions). Second, it may more accurately reflect the condi-
tions inside an FRC, since the high-energy fusion products will not naturally move
in any particular direction and will be spread relatively evenly throughout a region
of plasma.
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4.2 Tests of Particle Clumping Effects

In order to investigate the quantitative effects of macro-particle clumping, I ran sim-
ulations with a variety of values of ςe and ςf (and otherwise identical physical param-
eters). In these simulations, I had ne = ni = 1011 per cc, and nf = 108 per cc. The
fast ions started at 107 eV, the background ions started at 1 eV, and the electrons
started at 100 eV. I increased the fast ion charge to 100 times that of a proton in
order to increase the slowing-down rate. This was intended both to make dW/dt
measurable in a shorter simulation and to make it easier to separate out the “overall”
slowing-down rate from background fluctuations in the fast ion energy.

I simulated a two-dimensional box of plasma with a side length of 0.5 cm, divided
into 22,500 cells each with a side length of 1/300 cm. When I varied ςf , I maintained
256 electrons per cell and 64 background ions per cell — that is, ςe ≈ 4340 and
ςi ≈ 17361. Some of these results are shown in Figures 3 and 4. The fast ion energy
has W (0) = 15 MeV and Wcrit = 1480 eV, so we should be easily within the high-
energy regime.

The experiment was designed to measure the decay coefficient α for the high-
energy regime. Since I was measuring very early times (typically under 30 ns), dW/dt
is virtually constant during the simulated interval. Because of this, my measurements
of a best-fit α are functionally equivalent to measurements of the fractional energy
loss rate (−dW/dt)/(W (0)) at time t = 0. In both the high- and low-energy regimes,
(−dW/dt)/(W (0)) ∝ ςf .

The results suggest that α — that is, (−dW/dt)/(W (0)) — is inversely propor-
tional to the number of macro-particles per cell, so it follows that α ∝ ςf . More
precisely, I found that α went like the number of discrete macro-particles per cell
to the -0.95 power. This evidence is consistent with the predicted effects of fast ion
macro-particle clumping on dW/dt in either regime. It is some of the best evidence
available for the dependence of slowing-down rates on ςf . However, it is not strong
evidence one way or the other for the effects of fast ion macro-particle clumping on
Wcrit, since I would have expected the same results in either regime.

When I varied ςe, I maintained 64 background ion and 64 fast ion macro-particles
per cell. ςe fell between 2,295 and 30,865. Some of these results are shown in Figure
5. This means that Wcrit,eff varied between about 4.4 × 107 and 1.4 × 109 eV. In all
of these cases, W � Wcrit.

I observed that for small ςe, −dW/dt fluctuated and increased a little as the
number of electron macro-particles per cell increased. The predictions from Section
3.5 suggest that −dW/dt should not depend at all on ςe. However, as both Dr. Welch
and Dr. Sefkow have pointed out, small macro-particle counts can cause statistical
noise in LSP simulations. This could explain the variations in α for small ςe.

I also ran a few simulations with different number of background ion macro-
particles per cell. Runs with different values for ςi,th yielded identical results, to
within the expected levels of error. This was unsurprising, since the slowing-down
rate should not be sensitive to thermal ion clumping (whether or not W � Wcrit).
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1e 7 Fast Ion Macroparticle Parameter Tests

Figure 3: Tests of the fast ion slowing-down in which all physical parameters were
held fixed and the number of fast ion macro-particles per cell was varied. Here
ne = ni = 1011 per cc, nf = 108 per cc, Te = 100 eV, Ti = 1 eV, and Tf = 107 eV.
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Fast Ion Macroparticle Parameter Tests

Figure 4: Tests of the fast ion slowing-down in which all physical parameters were
held fixed and the number of fast ion macro-particles per cell was varied, presented
on a log-log scale. As in Figure 3, ne = ni = 1011 per cc, nf = 108 per cc, Te = 100
eV, Ti = 1 eV, and Tf = 107 eV.
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Figure 5: Tests of fast ion slowing-down in which all physical parameters were fixed
and the number of electron macro-particles per cell was varied. Here, as before,
ne = ni = 1011 per cc, nf = 108 per cc, Te = 100 eV, Ti = 1 eV, and Tf = 107 eV.
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4.3 Early Simulations: Scaling with Charge

One of the largest data sets measuring the slowing-down rates addressed two differ-
ent questions: how does α scale with fast ion charge, and how does α scale with
plasma density? This attempt was only partially successful at answering these ques-
tions. I collected this data before I fully understood the implications of macro-particle
clumping, so I chose (somewhat arbitrarily) to have 256 electron macro-particles, 256
thermal ion macro-particles, and 4 fast ion macro-particles per cell. When choosing
the cell size, I tried to keep the length just under λD/7, so for ne = 1010 cm−3 I
divided the system into 2,784 cells, for ne = 1011 cm−3 I used 22,500 cells, and for
ne = 1012 cm−3 I used 221,841 cells. I always set the number density of the fast ions
to nf = ne/100. Then, in order to maintain charge neutrality, I set the thermal ion
density to ni,th = (1− Z/100)ne — here, as before, Z is the charge of the fast ion in
units of the charge of an electron.

The clearest result of these simulations (and the reason why I describe them here)
is that, as the equations predict, the slowing-down rate is proportional to Z2. The
data set here demonstrates this dependence out to Z = 40; the closest quadratic
fit for each density is shown by the dotted line. In fact, the original data went out
significantly farther (and the Z2 scaling appears to continue well past Z = 40), but
I present the results of these particular simulations because they were all set up the
same way; other runs with higher Z used slightly different settings, for a variety of
reasons.

The results for number density are more complicated. The best-fit curves for each
of the densities are α = 0.13 s−1, α = 0.80 s−1, and α = 4.5 s−1 for ne = 1010 per cc,
1011 per cc, and 1012 per cc, respectively. This shows that α increases by a factor of
about six for every factor of ten increase in ne.

In the high-energy regime, I would expect the slowing-down rate to be proportional
to ne. In the low-energy regime, I would expect the rate to be proportional to ni,
which in these simulations scales along with ne. This simulations were firmly within
the high-energy regime.

Additional clumping effects do introduce a small correction to the slowing-down
rates at these different plasma densities. If I increase the densities by a factor of ten,
I immediately increase ςe and ςf by a factor of ten each. However, even though the
number of macro-particles per cell is fixed in all of these simulations, the number of
cells is not; it goes up by a factor of 9.77 between ne = 1010 cm−3 and ne = 1011 cm−3,
then by a factor of 9.86 when ne increases to 1012 cm−3. In all, then, using α ∝ ςf ,
in order to correct for the changing macro-particle settings I should reduce α at
ne = 1011 cm−3 by a factor of 1.024 and then at ne = 1012 cm−3 by an additional
factor of 1.014. This is not enough to explain the unexpected behavior of α with
growing plasma density.

Even considering all of these additional corrections, the fact remains that the rate
of fast ion energy loss simply does not increase as quickly as expected as the plasma
density increases. I am not certain why this is true. One possibility, suggested
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Figure 6: Slowing-down rate measured with varying background plasma density and
varying fast ion charge. Here Te = 100 eV, Ti = 1 eV, and Tf = 107 eV.
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by Dr. Sefkow, had to do with the differing time step intervals in these different
simulations. In these simulations, I set the time steps so that they were ninety
percent of the Courant limit, which is an upper limit for time steps above which the
simulations are not stable. The Courant limit for a system is proportional to the
cell size, so each increase in plasma density by a factor of ten was accompanied by
a decrease in time step by a factor of about three. After speaking with Dr. Sefkow,
I tried manually varying the time step on a series of similar, low-density runs (with
ne = ni = 103nf = 1010 cm−3). So long as I stayed under the Courant limit, I did
not see any noticeable change in my results. However, I have not done the kind
of comprehensive tests that I would need to be sure that differing time steps are
not affecting my results, and I do not fully understand the conditions under which
differing time steps can change the physical behavior of a simulation.

It is also true that the tests at different densities had different cell sizes, and it
is possible that the differing spatial resolutions had some unforeseen effects on the
behavior of the systems (this is another possibility that Dr. Sefkow suggested I should
investigate). Again, basic tests on low-density systems have not shown any noticeable
changes when I changed the spatial resolution, but it is still possible that there are
conditions under which spatial resolution is important and I have not found them
yet.

Another possibility, originally raised by Professor Cohen, is that it is a consequence
of the fact that these simulations are two-dimensional. It might not be so surprising if
a change as fundamental as the one between two and three dimensions could change
the scaling of the plasma’s behavior with a parameter as spatial as number density.

5 Conclusion

The effects of macro-particle clumping on the physical behavior of these systems has
turned out to be far more important than initially anticipated, but I now have a better
understanding of the LSP code. Going forward, there are a number of challenges to
deal with in order to be able to simulate systems that have the physical behavior we
want. The main one is the problem of collisions; it was never completely clear that
the LSP code was handling particle collisions correctly with the settings used here.
It is important that we gain a better understanding of the way in which LSP handles
collisions.

The unexpectedly slow scaling of −dW/dt with number density is also potentially
important. If −dW/dt is picking up a non-physical factor of 1.6 for every factor of
ten in the background plasma number density, that would introduce very significant
error into our measurements. It would be very interesting to see if this problem would
disappear if we switched from two-dimensional to three-dimensional simulations.

However, if we can resolve both of these two main challenges, it may still be
possible to get good measurements of fast ion slowing-down rates using LSP. The
direct effects of the clumping factors ςe, ςi, and ςf appear to be predictable enough
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that we can hope to recover the “physical” slowing-down times simply by computing
and applying the relevant correction terms (and that may be as simple as dividing
−dW/dt by ςf ) so long as we can control the secondary effects of macro-particle
clumping described in Section 3.5.
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A Appendix: Code

A.1 Sample Deck

This deck was one of a series in which I varied the number of macro-particles per cell
for each of the different species. It is a relatively late deck, with no magnetic field.

;GLSP version 6.97 : GLSP_131122

;(07/15/2014 23:07:47)

;GLSP comments --BEGIN--

;GLSP comments --END--

;GLSP compiler flags --BEGIN--

; CAR_X_Y CHARGE_DENSITY DOUBLE_PRECISION EXTENDED_PARTICLES

; MAX_CHARGE_STATE=7 MAX_SPECIES=3 MULTI_PROCESS NUMBER_DENSITIES

; PRIMARY_SPECIES=2 UNITS_LSP

;GLSP compiler flags --END--

;GLSP metric: 0 dimensions: xy

[Control]

;Time-advance

time_limit_ns 50

time_step_ns 7E-5

;Parallel Processing

balance_interval 10000

;(Diagnostic Output)

probe_output_digits 12

;(Diagnostic Output) Flags

dump_bfield_flag OFF

dump_charge_density_flag ON

dump_current_density_flag ON

dump_number_densities_flag ON

dump_rho_background_flag ON

dump_time_zero_flag ON

;(Diagnostic Output) Dump Intervals

dump_interval_ns 20000

dump_steps

1000

end

probe_interval 20

;(Diagnostic Output) Movie Controls

field_movie_interval_ns 0.10

scalar_movie_interval_ns 0.10

scalar_movie_coordinate Z 0

field_movie_components EX EY EZ
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scalar_movie_components charge_density number_densities

;Numerical Checks and Reports

print_convergence_flag ON

;

[Grid]

;

grid1 ; grid 1

xmin 0.0

xmax 0.5

x-cells 150

;

ymin 0.0

ymax 0.5

y-cells 150

;

;

[Regions]

;

region1 ; region 1

;

grid 1

xmin 0.0

xmax 0.5

ymin 0.0

ymax 0.5

number_of_domains 32

split_direction XSPLIT

number_of_cells AUTO

;

;

[Boundaries]

;

periodic ; Periodic Y

from 0.0 0.0 0.0

to 0.5 0.5 1

normal Y

;

periodic ; Periodic X

from 0.0 0.0 0.0

to 0.5 0.5 1

normal X

;
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[Particle Species]

species1 ; electrons

charge -1.0

mass 1.0

migrant_species_flag off

implicit_species_flag off

particle_motion_flag on

particle_forces_option PRIMARY

transverse_weighting_flag on

particle_kinematics_option STANDARD

scattering_flag off

selection_ratio 1.0

;

species2 ; protons

charge 1.0

mass 1836.153

atomic_number 1

migrant_species_flag off

implicit_species_flag off

particle_motion_flag on

particle_forces_option PRIMARY

transverse_weighting_flag on

particle_kinematics_option STANDARD

scattering_flag off

selection_ratio 1.0

;

species3 ; fast

charge 100.0

mass 1836.153

atomic_number 1

migrant_species_flag off

implicit_species_flag off

particle_motion_flag on

particle_forces_option PRIMARY

transverse_weighting_flag on

particle_kinematics_option STANDARD

scattering_flag off

selection_ratio 1.0

;

;

[Particle Creation]

;
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plasma ; Initial electrons

from 0.0 0.0 0.0

to 0.5 0.5 0.0

species 1

movie_tag 1

unbound off

discrete_numbers 16 16 1

random off

multiple_number 1

cloud_radius 0.0

density_function 1

momentum_function 0

reference_point 0.0 0.0 0.0

density_flags 0 0 0

momentum_flags 0 0 0

drift_velocity 0 0 0

rotation off

thermal_energy 100

random_energy_function 0

spatial_function 0

movie_fraction 1.0

;

plasma ; Initial protons

from 0.0 0.0 0.0

to 0.5 0.5 0.0

species 2

movie_tag 2

unbound off

discrete_numbers 8 8 1

random off

multiple_number 1

cloud_radius 0.0

density_function 1

momentum_function 0

reference_point 0.0 0.0 0.0

density_flags 0 0 0

momentum_flags 0 0 0

drift_velocity 0 0 0

rotation off

thermal_energy 1

random_energy_function 0

spatial_function 0
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movie_fraction 1.0

;

plasma ; Fast ions

from 0.0 0.0 0.0

to 0.5 0.5 0.0

species 3

movie_tag 3

unbound off

discrete_numbers 8 8 1

random off

multiple_number 1

cloud_radius 0.0

density_function 2

momentum_function 0

reference_point 0.0 0.0 0.0

density_flags 0 0 0

momentum_flags 0 0 0

drift_velocity 0 0 0

rotation off

thermal_energy 10000000

random_energy_function 0

spatial_function 0

movie_fraction 1.0

;

;

[Functions]

function1 ; Initial density

type 1

coefficients 1E11 end

;

function2 ; Fast ion density

type 1

coefficients 1E8 end

;

;

[Probes]

;

probe1 ; number1

global number species 1

;

probe2 ; number2

global number species 2
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;

probe3 ; total_energy

energy total_energy

;

probe4 ; particle_energy

energy particle_energy

;

probe5 ; ketot1

global ketot species 1

;

probe6 ; ketot2

global ketot species 2

;

probe7 ; net_energy

energy net_energy

;

probe8 ; vxtot1

global vxtot species 1

;

probe9 ; vxtot2

global vxtot species 2

;

probe10 ; vytot1

global vytot species 1

;

probe11 ; vytot2

global vytot species 2

;

probe12 ;

energy field_energy

;

probe13 ; number3

global number species 3

;

probe14 ; vxtot3

global vxtot species 3

;

probe15 ; vytot3

global vytot species 3

;

probe16 ; ketot3

global ketot species 3
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