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Abstract

In this work we provide an explicit equivalence between results from the quantum circuit and quan-

tum control models of quantum computation. While quantum computers are believed to have

significant advantages over classical computers in performing a computation, different theoretical

and physical models yield different measures of such advantages. The quantum circuit model mea-

sures the number of discrete gates from a fixed set that are required to perform a final computation,

whereas the quantum control model measures a physical time required for a system to continuously

evolve under a controllable Hamiltonian configuration. We show that the minimum time within a

fully controllable system defined by a set of drift and control Hamiltonians is equivalent to a min-

imum gate count in a circuit computation relative to an oracle, and attempt to establish this as a

preliminary framework to connect future results.

ii



Declaration

I declare that I have not violated the Honor Code during the composition of this work. This

paper represents my own work in accordance with University regulations.

I authorize Princeton University to reproduce this thesis by photocopying or by other means,

in total or in part, at the request of other institutions or individuals for the purposes of scholarly

research.

Contents

Abstract ii

1 Introduction 1

2 Prior Work 1

2.1 Quantum Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.2 Quantum Circuit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Quantum Control Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Main Result: Relating CG(U) and TU 8

3.1 Proof of Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Conclusions and Future Work 9

References 11

iii



1 Introduction

The massive field of quantum information sciences began with the realization that information

sciences, and the world itself, is quantum in nature and depends upon quantum effects. A quantum

computer is a physical device that would be able to harness such effects to perform computations,

and it has been hypothesized to be able to have significant advantages over a classical computer in

certain fields (coined as quantum supremacy in 2012 [1]). With the recent report that Google AI

Quantum achieved such quantum supremacy in late 2019 [2], research and interest in the potential

of quantum computers is sure to grow even more in the coming years.

One of the most obvious advantages a quantum computer is expected to have is in the speed

in which it is able to perform a computation - thus, exploring any aspect of quantum information

sciences involves a consideration of the time required in some quantum process. Ascertaining the

extent to which quantum supremacy could be achieved has led to a concept called the quantum

speed limit in some regimes [3]. However, with an increasing number of subfields and directions of

research, the quantum speed limit has been studied and discussed in many different contexts that

nevertheless refer to the same general principle.

It is the goal of this paper to provide a preliminary framework for unifying results from two of the

main branches of research: an implementation-inspired field of quantum optimal control, and a more

conceptually-based field of quantum circuit theory. We start with an overview of the main concepts

and previous work done in the relevant fields. Then, we use these results to provide a preliminary

framework under which settings in the two fields could be considered equivalent. Finally, we conclude

with a few pathways for future research. Throughout this paper, original mathematical results will

be proven in-depth, but standard results from quantum mechanics and quantum computation will

be presented without rigorous proof as deemed necessary. Any uncited quantum-computing results

are inspired by standard textbook Quantum Computation and Quantum Information [4], but have

been modified and translated to fit the framework presented in this work.

2 Prior Work

2.1 Quantum Computing

We begin with an overview of necessary concepts from quantum mechanics and quantum computing.

A classical computer manipulates bits, each of which is in one of two binary states. On the other

hand, a quantum computer manipulates qubits, each of which can be in a superposition of the two
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states. In general, we can define an N -dimensional quantum state:

Definition 2.1. An N -dimensional quantum state |ψ〉 is a superposition of N basis vectors in CN ,

written as a unit vector in the form |ψ〉 =
∑N
j=1 αj |j〉 such that αj ∈ C,

∑N
j=1|αj |2 = 1.

Definition 2.2. A qubit is a system represented by a 2-dimensional quantum state.

A quantum computer operates on some N -dimensional quantum system in order to perform

a computation. There are two ways to do so: through a unitary transformation or through a

measurement.

Definition 2.3. The inner product of two N -dimensional quantum states |ψ〉 =
∑N
j=1 αj |j〉 and

|φ〉 =
∑N
j=1 βj |j〉 is defined as 〈ψ|φ〉 =

∑N
j=1 α

∗
jβj. We write ‖|ψ〉‖2 = 〈ψ|ψ〉.

Definition 2.4. A unitary transformation is a linear map U : CN → CN such that U†U = IN ; note

that a unitary transformation preserves inner products, such that if |ψ′〉 = U |ψ〉 and |φ′〉 = U |φ〉

then 〈ψ′|φ′〉 = 〈ψ|U†U |φ〉 = 〈ψ|φ〉.

As a result, a unitary transformation maps an N -dimensional quantum state to another N -

dimensional quantum state. Whereas a unitary transformation can change the state of a quantum

system, this precise state is inaccessible; instead, one can only access properties called observables.

Definition 2.5. An observable is a physical quantity of a quantum system that can be measured

(accessed).

If an observable of a quantum system can attain N possible values, then the state of the N -

dimensional quantum system can be written with respect to an orthonormal eigenbasis, where each

value is an eigenvalue corresponding to an eigenvector.

Definition 2.6. A measurement in the observable basis collapses a quantum state |ψ〉 =
∑N
j=1 αj |j〉,

written in the eigenbasis corresponding to the relevant observable, into one of the N eigenvectors

|j〉, with the transformation |ψ〉 → |j〉 occurring with probability |αj |2; note that in general a mea-

surement does not correspond to a unitary transformation.

Once a quantum system is measured and collapses into some |j〉, the value j of the observable

is revealed. Quantum computations are done by a series of unitary transformations followed by

relevant measurements. As a result, there are two closely related processes of interest with respect

to quantum computing: preparation of a quantum state from a given initial state, and application

of a given unitary transformation on a quantum system. In this paper we focus our discussions on
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the second process; however, we mention the relevance of the first process as well. Before we delve

deeper into two specific models for studying these processes, we direct the reader to [4, 5] for further

background on quantum computation and quantum information sciences.

2.2 Quantum Circuit Model

The most common model in quantum computing is the quantum circuit model. As per definition

(2.2), a single qubit is a 2-dimensional quantum system, with basis states represented by |0〉 and |1〉.

Definition 2.7. The state of a 2-qubit (easily generalizable) quantum system is called separable if

it can be written as the tensor product of two quantum states |ψ〉 ⊗ |φ〉.

Definition 2.8. A system is said to be in an entangled state if it is not separable.

A 2-qubit system is written as |ψ〉 = α1|00〉 + α2|01〉 + α3|10〉 + α4|11〉; in general, an n-qubit

quantum system can be written in a 2n-dimensional basis, and is therefore represented by an N = 2n-

dimensional vector.

Definition 2.9. A standard qubit measurement is a measurement of a single qubit within an n-qubit

quantum system, yielding a value of either 0 or 1 corresponding to either |0〉 or |1〉, respectively.

The state of the resulting n-qubit system becomes separable, and the collapse occurs in the

following way:

Remark 2.1. Without loss of generality, assume we measure the first qubit within an n-qubit quan-

tum system. Then, the state of the remaining n−1 qubits can be represented using 2n−1 basis vectors

v1, . . . , v2n−1 such that |ψ〉 = α1|0v1〉+ · · ·+α2n−1 |0v2n−1〉+β1|1v1〉+ · · ·+β2n−1 |1v2n−1〉. Measuring

the first qubit collapses the system into either |ψ〉 = |0〉⊗ α1|v1〉+···+α2n−1 |v2n−1 〉
|α1|2+···+|α2n−1 |2 (if the measurement

yields a value of 0), or |ψ〉 = |1〉 ⊗ β1|v1〉+···+β2n−1 |v2n−1 〉
|β1|2+···+|β2n−1 |2 (if the measurement yields a value of 1).

Definition 2.10. A k-qubit gate is a unitary transformation G : C2k → C2k acting on k qubits.

Note: if a k-qubit gate G acts on the first k qubits of an n-qubit system, then we write G := G⊗In−k,

and accordingly for any other set of k qubits.

A quantum circuit is a model of quantum computation in which an n-qubit quantum system is

acted upon by a (discrete) series of gates and standard qubit measurements. A generic quantum

circuit prepares a quantum state from a given initial state; if the circuit consists of only gates (no

measurements), the transformation is unitary and therefore can be represented by a single unitary

U .
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Definition 2.11. A set of gates G is said to be exactly universal if any (finite) unitary transforma-

tion U can be written as the product of a finite sequence of gates from G.

Definition 2.12. A set of gates G is said to be universal (or approximately universal) if for all

ε > 0 and any (finite) unitary transformation U , there exists a finite sequence of gates from G

that approximates U to within ε (the precise definition of ‘approximate’ varies; one commonly used

definition is that if the approximation is denoted UG, then ‖UG−U‖2 = sup|ψ〉∈C2n ‖(UG−U)|ψ〉‖2 <

ε).

Many results have been proven throughout the years regarding universal gate sets. A few key

results are presented here:

Theorem 2.1. (Knill 1995 [6]) Let Sk be the set of all k-qubit gates. Then, S1 ∪ S2 is exactly

universal.

Theorem 2.2. (Barenco et. al. 1995 [7]) Let CNOT be the 2-qubit gate represented by the matrix

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. Then, {CNOT} ∪ S1 is exactly universal.

Remark 2.2. There are known many finite universal gate sets, including those consisting of only

one single-qubit gate and one 2-qubit gate [4].

Remark 2.3. A set of gates G is said to be n-universal if it is universal for all Sn.

The definition of universality merely requires a finite sequence of gates to approximate a given

unitary U ; however, no restrictions are placed on the length itself.

Theorem 2.3. (Solovay-Kitaev [8]) Let G be a universal gate set, and let U be any (finite) unitary.

Then, the number of gates in G needed to approximate U to within ε scales polynomially in log 1
ε .

This important theorem yields that all universal gate sets are effectively equivalent.

Before we move on to the quantum control model of quantum computation, we remark on a few

details worthy of note:

Definition 2.13. An ancilla qubit is a pre-initialized (usually to |0〉) qubit added to a quantum

system that becomes unneeded in a final measurement.

Theorem 2.4. (Stinespring [9]) A generic quantum circuit C (allowing both gates and measure-

ments) on an n-qubit quantum system may not be unitary due to measurements. However, there
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exists some k ≤ 2n such that by adding k ancilla qubits, C can be obtained by reducing an n +

k-dimensional unitary operation U acting on an n + k-qubit quantum system to the original n-

dimensional subsystem.

Theorem 2.5. (Principle of Deferred Measurement) For any generic quantum circuit C, there exists

an equivalent circuit C ′ obtained by delaying all measurements until the end.

This theorem, combined with Stinespring’s result, shows that a generic quantum circuit on n

qubits can be viewed as a single unitary operation on at most 3n qubits. As a result, within the

quantum circuit model of quantum computation, we ask for the minimum number of gates required

to implement a desired n-qubit unitary operation U , allowing for ancilla qubits:

Definition 2.14. Given a universal gate set G and an n-qubit unitary U , CG(U) is the minimum

number of gates from G required to exactly implement U , and CG,ε(U) is the minimum number of

gates required to approximate U to within ε.

Sometimes, quantum computations on a quantum circuit are performed with the help of ‘black-

box’ operations called oracles:

Definition 2.15. An oracle f is an operation applied to a quantum circuit at unit cost [10].

These ‘black-box’ operations do not reveal their inner nature, and as such may require a large

number of gates from G to implement; however, when we compute CG(U) relative to an oracle f ,

we ignore this contribution. One famous problem in which quantum oracles are used is the Hidden

Subgroup Problem [11], which is necessary in many regimes, including Shor’s polynomial factoring

algorithm that has long been considered an important evidence of quantum supremacy, since integer

factorization is conjectured to be non-efficient on a classical computer [4].

Remark 2.4. (Setup for Hidden Subgroup Problem) Let A be a subgroup of B, and X be a finite

set. A function f : B → X is said to hide A if f is constant only within cosets of A. In the Hidden

Subgroup Problem, f is given as an oracle.

While seemingly far-fetched, the relevance of quantum oracles will become evident in the main

result of this paper after we discuss the continuous, quantum control model of quantum computation.

2.3 Quantum Control Model

The quantum circuit model of quantum computation is a highly theoretical model that uses discrete

gates. When analyzing the scaling of CG,ε, the Solovay-Kitaev theorem allows us to ignore how G

5



is formed. However, as any physical realization of a quantum computer is not discrete but rather

continuous, it is not as easy to ignore the makeup G, or even to describe G effectively.

In this sense, instead of a number of discrete gates, we explore a physical time required to

implement a certain unitary operation. As a result, the concept of a quantum speed limit has been

developed. Some versions of this ‘speed limit’ are explicitly dependent on a specific model or on

constraints imposed by a proposed physical implementation [3]. However, other speed limits are

more fundamental in nature, and will be the subject of this section. One common candidate for

a physical implementation is an NMR-based quantum computer [12], which uses nuclear spins as

qubits. The following quantum control model is based upon this proposed implementation, but

applies also to generic quantum systems.

Definition 2.16. The Hamiltonian, denoted H, is a Hermitian operator that completely describes

the time-evolution of a quantum system.

Within this description, the state of a closed quantum system evolves under the Schrodinger

equation [10]:

Theorem 2.6. Let the physical Planck constant be normalized to ~ = 1. Then, the state |ψ〉 of a

quantum system evolves according to the Schrodinger equation d
dt |ψ(t)〉 = −iH(t)|ψ(t)〉. Solving this

equation for time-independent H yields the solution |ψ(t)〉 = e−iHt|ψ(0)〉.

Definition 2.17. In the bilinear control model, the Hamiltonian H(t) of a quantum system is con-

trolled by writing H(t) = H0 +
∑
j fj(t)Hj , fj(t) ∈ R.

Definition 2.18. The drift Hamiltonian H0 is the Hamiltonian that describes the free evolution of

a quantum system (without external control), representing the uncontrollable interactions between

the qubits that make up the physical implementation of the quantum computer.

Definition 2.19. The control Hamiltonians Hj are Hamiltonians that can be applied to a quantum

system with controllable time-dependent amplitudes fj(t).

Remark 2.5. Note that for any Hamiltonian H and time t, e−iHt is unitary, and (trivially) since

the unitary group is closed, any product of unitary transformations is unitary.

As a result, given the initial state of a quantum system |ψ(0)〉, for any time t the transformation

from |ψ(0)〉 to |ψ(t)〉 is unitary. Therefore, we can define |ψ(t)〉 = U(t)|ψ(0)〉. The quantum control

model of quantum computing aims to find suitable values for fj(t) such that U(t) = U for some

desired unitary U .
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Definition 2.20. Given a set of drift and control Hamiltonians, the minimum time required to

implement a desired unitary operation U is the smallest T = TU such that there exist fj(t), t ∈ [0, TU ]

with U(TU ) = U .

For an in-depth review of quantum speed limits relating to the quantum control model, we refer

the reader to [3, 13], and for work in the field done by the present author, we refer to [14, 15]. Here,

we present some of the major results that will become relevant in conjunction with discussions on

the quantum circuit model.

One benefit of having access to a time T , as opposed to a number of discrete gates, is that

it allows explicit comparisons and analyses to be made with respect to physical implementations.

As per definition (2.6), a measurement forces the state of a quantum system to collapse. When

performing a quantum computation, it is necessary for such collapses to only occur when desired.

Definition 2.21. A quantum system is said to be coherent if its time-evolution is predictable under

the Schrodinger equation.

However, any physical implementation undergoes a process called quantum decoherence, where

the system effectively loses coherence and therefore becomes unpredictable, and as such causing

unwanted collapses.

Definition 2.22. The coherence time or relaxation time, denoted trel, is the time it takes for a

quantum system to lose coherence.

As a result, given a relaxation time trel associated with the qubits in a quantum system, it is

desirable to know the unitaries U for which the minimum time TU < trel.

We now present algebraic and geometric models to describe a quantum control system.

Definition 2.23. An N -dimensional quantum system defined by a set of drift and control Hamilto-

nians {Hj} is exactly fully controllable if for all N -dimensional unitaries U , there exists some finite

T and values fj(t) such that U(T ) = U . The values fj(t) are said to be control functions that drive

the unitary U(t).

Definition 2.24. A quantum system, as above, is (approximately) fully controllable if for all U and

ε > 0, there exists finite T such that ‖U(T )− U‖ < ε, where ‖U‖ is defined as in (2.12).

Definition 2.25. The unitary group in N dimensions is denoted U [N ], and the special unitary group

is denoted SU [N ], which have determinant 1.
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Theorem 2.7. (Ignore global phase [4]) Measurement ignores the global phase in a quantum system,

so U ∈ SU [N ] is effectively equivalent to eiθU ∈ U [N ] for all θ ∈ [0, 2π).

Definition 2.26. The reachable set corresponding to a set of Hamiltonians {Hj} is the subgroup of

SU [N ] generated by {Uj = e−iHj}.

Standard theorems from algebra yield the following result:

Theorem 2.8. The reachable set of the control Hamiltonians forms a subgroup RC ⊂ SU [N ], and

as such partitions SU [N ] into disjoint right cosets of RC .

Furthermore, using the continuity of U(t) derived from the Schrodinger equation (2.6) yields the

following result as well:

Theorem 2.9. Let U = U(T ) ∈ SU [N ]. The time-evolution {U(t) | 0 ≤ t ≤ T} with U(0) =

IN , U(T ) = U defines a continuous path in SU [N ] from IN to U .

A major result in quantum control theory connects two theorems above:

Theorem 2.10. A quantum system is exactly fully controllable if and only if the reachable set of

the drift and control Hamiltonians is SU [N ]. [13].

Then, given a fully controllable quantum system, the next question involves the minimum time

TU for an arbitrary unitary U . For a full review, we refer to [3]. One key result in quantum speed

limits relates the optimality of the time T with a distance defined by a metric on SU [N ]:

Theorem 2.11. Given a set of drift and control Hamiltonians, there exists a metric d on SU [N ] such

that if U ∈ SU [N ], TU is the minimum time if and only if the length of the path {U(t) | 0 ≤ t ≤ TU}

is minimal with respect to d [16, 17].

As a result, although the details of this proof is beyond the scope of this paper, we obtain an

equivalence between the minimum time TU and the length of a path in SU [N ].

Theorem 2.12. Given a reachable set RC , movement within a single right coset of RC occurs

instantaneously.

Theorem (2.12) is a major result in the subfield of bang-bang quantum optimal control [18].

3 Main Result: Relating CG(U) and TU

The quantum circuit model gives insight into a minimum number of gates CG(U) given a universal

gate set G, while the quantum control model yields a minimum time TU given a Hamiltonian control
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system {Hj}. It is desirable to relate these two quantities.

3.1 Proof of Main Result

Theorem 3.1. Fix some n, and define N = 2n. Let U ∈ U(N), and {H0, H1, . . . ,Hj} be a set

of N -dimensional Hamiltonians defining a fully controllable quantum system with reachable set RC .

Then, there exists an n-universal gate set Gn(H0) such that computing TU is equivalent to computing

CGn(H0)(U) relative to an oracle f that hides the right cosets of RC .

Proof. By Theorem (2.11), TU is the minimum time if and only if the path {U(t)} is minimal with

respect to some metric d. By Theorem (2.8), SU [N ] is partitioned into disjoint right cosets of RC ,

and the portion of TU within a given right coset is 0 by Theorem (2.12). Since by Theorem (2.9) the

path is continuous, all portions TU occur as finitely many discrete transitions between right cosets,

and so the path {U(t)} can be viewed as a discretized path between the cosets RCIN and RCU ,

where by definition of a coset any transition occurs by application of the drift Hamiltonian H0 alone

for some non-zero time. This yields an equivalence relation that identifies all elements in SU [N ]

that are in the same right coset of RC . Thus, identification of which right coset a given unitary U(t)

can be written as a function described in remark (2.4). This specific function satisfies the condition

that f is an oracle, namely form definition (2.15) that it is applied at unit cost, because the length

of the path within a coset is 0. Now, let since we are in a fully controllable quantum system, there

exists a universal gate set. Theorem (2.6) showed that for time-independent H the unitary evolution

for some time t is simply e−iHt; therefore, any unitary between right cosets is of the form e−iH0t

for some t. Then, we see that choosing α =
√

2, for example, yields that e−iH0α generates all such

unitaries, and so the gate set G = {e−iH0α} ∪ RC is universal. Since gates RC are applied at unit

cost via the oracle f , we can define the reduced n-universal gate set Gn(H0) = {e−iH0α}, which by

Theorem (2.3) is equivalent to any other universal gate set. Therefore, this concludes the proof that

computing TU is equivalent to computing CGn(H0)(U) relative to f .

4 Conclusions and Future Work

While Theorem (3.1) only applies for a fixed number of qubits n, in general the Hamiltonians of an

n-qubit quantum system {Hj} can be described as an extendable family of Hamiltonians {Hj,n} for

all n [13], such as by having each Hamiltonian be a tensor product of single-qubit Pauli operations

[19, 20, 21].
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As a result, given a family of unitaries {Un}, computing explicit times {TUn
} yields a scaling

relation that is equivalent to the scaling of CGn(H0,n). However, while the equivalence between

minimum number of gates and minimum time has been given, only one direction has been proven

to transform a fully controllable set of Hamiltonians into a universal gate set relative to an oracle.

It would be favorable to be able to describe the opposing direction as well, by identifying classes of

control systems that are equivalent relative to a given oracle and universal gate set.

It is also worth noting that a given family of unitaries {Un} within a family of fully controllable

quantum systems represents the solution to a decision problem in the quantum complexity class

BQP relative to the oracle defined by the family {H0,n} if {TUn
} scales polynomially in n [10]. It

would therefore also be favorable to explore families of Hamiltonian systems that are equivalent to

universal gate sets without oracles.

In this work, we have compiled concepts and results from two models of quantum computation

to provide a framework for understanding precise scenarios in which they are equivalent. While

theoretical studies in quantum circuit and quantum complexity theory involve a given universal gate

set, more experimentally-driven studies regarding physical implementations of quantum computing,

such as quantum control theory, involve settings that are different from both each other and from

the circuit-based framework. It is hoped that this paper has begun to identify the importance and

possibility of allowing different subfields of quantum information sciences to communicate methods

in a unified framework, such that the impact of a result in one subfield can readily be translated

and applied in another.
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