

Progress Report on LSP Simulations of Magnetic Nozzles and Plasma Detachment

Aidan MacDonagh

aamacdon@princeton.edu

PEI PPST Summer Intern

Dr. Samuel Cohen, PPPL

Mikhail Khodak

Dr. Adam Sefkow, Sandia

Dr. Dale Welch, Voss Scientific, Inc.

Reasons to Study Magnetic Nozzles

- Converting thermal energy to directed kinetic energy;
 Valuable for:
- $\odot \text{MHD}$ power generation for FRC power plants
 - High efficiency: energy converts directly to electrical power
- $\circ \textbf{Electromagnetic propulsion}$
 - Attractive for certain space missions
 - Princeton Satellite Systems, Direct Fusion Drive
 - VASIMR

Magnetohydrodynamic (MHD) Electricity Generation

$$\frac{m_p + (1 + f_s)m_f}{m_p + f_s m_f} = e^{\frac{\Delta V}{u_e}}$$

Physical Description

- Similar to physical nozzle, fluid mechanics
 - De Laval nozzle: convergent, throat, divergent
 - Principally interested in divergent portion, where the momentum transfer and detachment occur
 - Mechanical 2D wall surface acts as a surface constraint
 - In contrast, plasma confined on original field lines

<u>Typical plasma parameters</u>				
$T_e = 1 - 100 \text{ eV}; \qquad T_i = 0.$.5 – 10 eV			
$n_i = 10^{10} - 10^{14} \text{ cm}^{-3}$	Important	velocities		
$E_i = 1 - 500 \text{ eV}$	$c_s = 9.79$	$\times 10^5 (\gamma Z T_e)$	$(\mu)^{1/2}$ cm/s	
$B < 5 \ kG$	$v_A = 2.18$	$\times 10^{11} (\mu n_i)$	$)^{-1/2} B \ {\rm cm/s}$	I.
	$v_{Te} = 4.19$	$9 \times 10^7 T_e^{1/2}$	cm/s	

Directed Kinetic Energy

Momentum Exchange, Lorentz force

- Momentum transfer via Lorentz interaction
 - Applied external *B* field acts on currents in plasma
 - Induced *B* field in plasma acts on current in electromagnets
- Circulating azimuthal current in field
 - Paramagnetic
 - Strengthens field, reduces thrust (drag effect), focuses field
 - Swirl acceleration
 - Diamagnetic
 - Increases thrust, weakens field, increases divergence of field
 - Pressure gradient
 - Hall acceleration

A. Sasoh: Phys. Plasmas 1, 464 (1994)

Methodology: Detachment Parameters **PPPL**

- Detachment mechanisms:
 - Collisionless
 - Collisional
 - *B* field rearrangement

Collisionless Detachment

 r_L particle A

- Gyroradius larger than B field spatial variation, $r_L \left| \frac{\nabla B}{B} \right| > 1$
 - Single particle inertial detachment

- Plasma no longer confined, $\beta_p > 1$
 - Collective plasma detachment
- Super-Alfvénic plasma, $\beta_f > 1$
 - Induced field detachment

E.B.Hooper; Plasma Detachment from a Magnetic Nozzle

Methodology: Building Simulation

- Injection scheme
 - Ion injection
 - $J = qn_i v_i$
 - Fix v_i in units of gamma-beta
 - Fix n_i by setting J
 - Simple case: *J* constant in time and space
 - Electron injection
 - Child-Langmuir
 - Steady state: maintains quasi-neutrality
- Magnetic Field
 - Solenoid
 - $B_{max} = 800 \text{ G}, \quad B_0 = 500 \text{ G}$
 - L = 20 cm; R = 10 cm
 - Center (0,0)

$$\frac{Injection Parameters}{T_i = 0.5 \text{ eV}}$$

$$n_{i0} = 1.0 \times 10^{10} \text{ cm}^{-3}$$

$$u_{i0} = c_s$$

$$\gamma \beta = \frac{u_{i0}}{c} \left(1 - \frac{u_{i0}^2}{c^2}\right)^{-1/2} = 4.3 \times 10^{-4}$$

$$J_i = q n_{i0} u_{i0} = 0.0022 \text{ A/cm}^2$$

$$T_c = 2.0 \text{ eV}$$

$$I_e = 2.0 \text{ eV}$$

 $J_e \propto \frac{V^{3/2}}{d^2}$, computed by LSP

 $\frac{Important \ velocities \ at \ throat,}{(r,z) = (0,0)}$ $c_s = 1.38 \times 10^6 \ \text{cm/s}$ $v_A = 1.09 \times 10^9 \ \text{cm/s}$ $v_e = 5.93 \times 10^7 \ \text{cm/s}$

Methodology: Simulation

- P4 postprocessor
 - IDL to visualize data from simulation:
 - History
 - Energy (field, particle, total, net)
 - Global velocity total
 - Number
 - Scalar
 - Species density
 - Species temperature
 - Species pressure
 - Electric potential
 - Field
 - Magnetic field
 - Electric field
 - Current density
 - Species velocity

р_і, р_е Ф

 $\vec{B} \rightarrow B_r, \ B_Z$ $\vec{E} \rightarrow E_r, \ E_Z, \ E_\phi$ $\vec{J} \rightarrow J_\phi$

 T_i, T_e

 n_i, n_e

 \vec{v}_i , \vec{v}_e

Methodology: Diagnostics

MATLAB: Computing + visualization

- Script and plotting
 - Read P4 data writes into matrices/ *meshgrid* format
 - Plot as contour plots; visualize detachment
- Dimensionless plasma parameters
 - Beta:
 - Inertial detachment

- Others

 - Breizman: E field development: \vec{v} and $\frac{v_r}{v_z}$, \vec{B} and B_r/B_z : Azimuthal \vec{J} , Lorentz: $\beta_f = \frac{nmU^2}{B^2/2\mu_0}$ $\vec{E}(r, z)$ $\vec{U}(r, z)$

Results: System Development

• System parameters

$$B_p = \frac{nkT}{B^2/2\mu_0} = 4.03 \times 10^{-11} n_i T_e B^{-2}$$

- Motivation:
 - Assess plasma confinement locally, ${\sim}10~{\rm cm}$ scale, rather than system-wide average
- Caveats:
 - β_p not meaningful for single particle
 - Focus on collective characteristics, e.g. contour levels
- Observations
 - Maximum $\log_{10}(\beta_p) \approx -3.5$
 - Large gradient with change in density n_i envelope for plume
 - Development of pocket of maximum β_p near axis

- Motivation:
 - Investigate localized adiabaticity of plasma throughout nozzle
- Gyroradii of both ion and electron species
 - Plot restricted to densities n_e , $n_i \ge 10^8$

$$r_L = \frac{v_T}{\omega_c} = \frac{mv_T}{qB}$$

$$r_{L,i} \approx \mathbf{10} r_{L,e}$$
 Given $m_i \approx 2 \times 10^3 m_e$, then $v_{\perp,i} \approx 10^{-2} v_{\perp,e}$?
 $T_i = \frac{1}{4} T_e$, and $v_i \propto \sqrt{\frac{T_i}{m_i}} \approx \sqrt{\frac{\frac{1}{4}}{2 \times 10^3} \frac{T_e}{m_e}} \approx \frac{1}{90} \sqrt{\frac{T_e}{m_E}} \quad \therefore v_{\perp,i} \approx \mathbf{10}^{-2} v_{\perp,e}$

- Motivation:
 - Radial motion of ions, generates E?
 - Formation of $E \times B$ drift in plume
- Observations
 - Contour plots
 - E_r present at magnitudes of $\approx 10^{-2}$ kV/cm

Ē

• Responsible for azimuthal effects?

- Momentum transfer by applied $ec{B}$ and plasma $ec{J}$
- Find \vec{J} , and thereby ΔF
- \vec{J} output by LSP; MATLAB computation
- Observations
 - J_{ϕ} found to be *diamagnetic* at boundary of high density plume, paramagnetic within high density plume $\Delta F_{z=100,J} = -6.4181 \times 10^{-7} \text{ N}$
 - Suggests induced B fields have net drag effect

Conclusions

- Plume development
 - Confinement within magnetic streamlines
- Separation of ions from electrons
 - Electrons well confined, per above
 - Ions spread radially
- Electric field
 - Potential difference from charge separation, per above
- Azimuthal current
 - Force on plasma plume, $J \times B$

Ongoing/Future Work

- EPPDyL, independent work
 Professor Edgar Choueiri, Justin Little, Matthew Feldman
- Mikhail Khodak's ongoing work (coming up next)

<u>Acknowledgements</u>

- Samuel Cohen PPST internship adviser/mentor, PPPL
- Dale Welch LSP, Voss Scientific
- Adam Sefkow Sandia National Laboratories
- Mikhail Khodak PPST co-intern, Princeton University
- Elizabeth Paul PPST co-intern, Princeton University
- Matthew Feldman EPPDyL, Princeton University
- Justin Little EPPDyL, Princeton University
- PPPL computing resources
- Funding for internship DOE Office of Science

