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Quantum control



Basics

The dynamics is given by the Schrodinger equation

i~
∂U(t)

∂t
= H(t)U(t), U(0) = 1.

Add the interaction to the Hamiltonian

H(t) = H0 − µE(t)

in order to “control” the observable

Pi→f = |〈f |U(T ; 0)|i〉|2.



D-MORPH

How to achieve control?

Parameterize the electric field using a continuous variable s.

To require

dPi→f
ds

=

∫ T

0

δPi→f
δE(s, t)

∂E(s, t)

∂s
dt ≥ 0

we set
∂E(s, t)

∂s
=

δPi→f
δE(s, t)

,

where

δPi→f
δE(t)

= −2

~
=
{〈

i
∣∣∣U †(T ; 0) ∣∣∣f〉〈f ∣∣∣U(T ; 0)U †(t; 0)µU(t; 0)

∣∣∣i〉}.



Quantum control landscape



Structure vs. topology

H. Rabitz, M. Hsieh, C.
Rosenthal Science (2004)
examined the topology of the
quantum control landscape.

Results very encouraging: no
sub-optimal extrema!

Our work is to examine the
structure, using the linearity
metric R.

Figure from J. Roslund and H.
Rabitz Phys. Rev. A (2009)

Results again very encouraging:
landscape is structurally simple.



What is R?

Optimizations are trajectories in control space.

The path length of a trajectory is

dPL =

∫ smax

0

[∫ T

0

(
∂E(s, t)

∂s

)2

dt

] 1
2

ds.

The Euclidean distance is

dEL =

[∫ T

0
(E(smax, t)− E(0, t))2 dt

] 1
2

The ratio R is defined by

R =
dPL
dEL

.



Statistical behavior of R
Perform random optimizations and calculate R.

H0 =


−10 0 0 0 0
0 −7 0 0 0
0 0 −3 0 0
0 0 0 2 0
0 0 0 0 8


and

µ =


0 ±1 ±0.5 ±0.52 ±0.53
±1 0 ±1 ±0.5 ±0.52
±0.5 ±1 0 ±1 ±0.5
±0.52 ±0.5 ±1 0 ±1
±0.53 ±0.52 ±0.5 ±1 0

 .

Initial field parametrized in the form

E(t) =
1

F

20∑
n=1

exp[−0.3(t− T

2
)2]an sin(ωnt+ φω).



Statistical behavior of R



Statistical behavior of R



“Straight shot” assessment and algorithm
How straight is “straight”?

E(u, t) =

(
δP Ii→f

δE(s = 0, t)

)
u+ E(0, t), u ≥ 0.

Could be another method to optimize.



Minimizing R

Use the Particle Swarm Optimization (PSO) algorithm to search
for low R.

Particles updated through

Egk = Eg−1k + vgk.

Velocities of particles given by

vgk = C0v
g−1
k +C1S1(E

best,g−1
swarm −E

best,g−1
k )+C2S2(E

best,g−1
swarm −E

g−1
k )

PSO algorithm is a stochastic optimization algorithm.



Minimizing R

With our landscape, R− 1 can be driven down to ∼ 10−4, two
orders of magnitude lower than random trajectories.

R can also be maximized, highest values are R ∼ 1.7.



Mathematics of straight trajectories

In order to achieve R = 1, the gradient function must be separable

∂E(s, t)

∂s
=

δPi→f
δE(s, t)

= α(s)× β(t).

The slope-intercept equation for a line in infinite dimensions.



Mathematics of straight trajectories

If R = 1, then the gradient points in the same direction
everywhere on the path.

More precisely,
δPi→f

δE should be proportional to itself at two points
on the path.

Sliding from point to point involves translating by
δPi→f

δE itself, so

δPi→f
δE

[E] ∝
δPi→f
δE

[
E +

δPi→f
δE

× const.
]

≈
δPi→f
δE

[
E
]
+
δ2Pi→f
δEδE

[
E
]
·
δPi→f
δE

[
E
]
× const.



Mathematics of straight trajectories

This implies that

δ2Pi→f
δEδE

·
δPi→f
δE

[E1] ∝
δPi→f
δE

[E1]

which appears to say that the gradient is an eigenvector of the
Hessian.

Can we then find the eigenvalue? Exact relation:∫
δ2Pi→f

δE(t)δE(t′)
[E(s′, τ)]

δPi→f
δE(t′)

[E(s′, τ)] dt′ =
α′(s′)

α(s′)
·
δPi→f
δE(t)

[E(s′, τ)].



Mathematics of straight trajectories
We can factor the Hessian

δ2Pi→f
δE(s, t′)δE(s, t)

= β[2](s)×K [2](t, t′)

where K [2](t, t) is a symmetric kernel that leaves the gradient

invariant, and β[2](s) = α′(s)
α(s) .

More generally, every higher-order derivative factors

δnPi→f
δE(s, tn) · · · δE(s, t1)

= β[n](s)×K [n](tn, · · · , t1)

with K [n] a symmetric kernel and

β[n](s) =
1

α(s)

dβ[n−1](s)

ds
, β[1](s) = α(s).



Hessian-gradient eigenrelation



Hessian-gradient eigenrelation



Hessian-gradient eigenrelation



Hessian-gradient eigenrelation



Additional optimization objectives

Can optimize unitary transformations

J = ||W − U(T )||2

Gradient is then

δJ

δE(t)
= 2 Tr =

{
W †Uµ(t)

}
.

Or optimize arbitrary observables

J = Tr
(
ρ(T )O

)
Gradient is then

δJ

δE(t)
= 2 =

{
Tr Uρµ(t)U †O

}
.



Saddle points

Topology of landscape is now more complex; consequently, so is
the structure.

Kinematics: view landscape as Lie Group U(N).

Additional critical points appear in the middle of the landscape,
but always saddle points.

For W problem, critical submanifolds occur when

Tr (W †U) = −N,−N + 2, · · · , N.

For Tr (ρO) problem, critical submanifolds correspond to the
double cosets ⋃

π∈P(N)

U(m)πU(n)



Saddle points (Tr (ρO))



Saddle points (W )
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