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Abstract

This thesis describes the setup, calibration, and operation of the charge exchange

ion energy analyzer (SC-IEA) designed for the Princeton Field Reverse Configuration 2

(PFRC-2) plasma device at the Princeton Plasma Physics Laboratory. The introduc-

tion sets forth the basic notions of energy distribution and temperature necessary for

understanding the design and functionality of the SC-IEA. Section 2 presents a detailed

description of the diagnostic system, presenting the theoretical models for the operation

of its different components, specifically the curved-plate analyzer and the stripping cell.

Section 3 discusses the calibration process and results for testing out the diagnostic with

a known ion source, along with a discussion of how the calibration results fit with the

theoretical model in Section 2. Section 4 discusses the desired properties for the connec-

tion between the diagnostic and the PFRC-2 as well as the plans for its installation.

This work was made possible by funding from the Department of Energy for the

Summer Undergraduate Laboratory Internship (SULI) program as well as by an ARPA-

E grant. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.
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1 Introduction

This thesis describes the setup, the calibration, and the installation of a charge-exchange

ion energy diagnostic to measure the ion energy distribution on the Princeton Field

Reversed Configuration 2 (PFRC-2) plasma device. This introductory section attempts

to clarify all of the terms in the above sentence in a way that provides an understanding

of the motivation and goal of the project, specifically focusing on describing the notion

of an energy distribution, heating, and a charge-exchange diagnostic.

Firstly, it is important to clarify the basic notion of a plasma. The definition pre-

sented in Principles of Plasma Physics (Chen 1974), [1], is that a plasma is a “quasineu-

tral gas of charged and neutral particles that exhibits collective behavior.” Quasineu-

trality indicates that on the whole, the gas is not charged, although individual pieces of

the plasma may be charged. The positive particles, called ions, that make up plasma

come from atoms that have been stripped from a certain number of their electrons and

the negative particles come from the electrons that have been freed from being bound

to individual atoms. Collective behavior is a way of distinguishing a plasma from a nor-

mal gas which also has a slight fraction of ionized particles. Because of the long range

electromagnetic force, one part of the plasma influences other parts of the plasma. This

property leads to effects such as waves and instabilities that contribute to the overall

behavior of the plasma.

One of the most important concepts regarding the motion of charged particles in a

magnetized plasma is that charged particles roughly follow magnetic field lines1. This

can be seen from the equation of motion of a charged particle of mass m and charge

q in a uniform magnetic field B⃗ = Bẑ. The particle obeys the Lorentz force law with

F⃗ = qv⃗ × B⃗. This vector equation can be written as three separate equations:

m
dvx
dt

= qBvy

m
dvy
dt

= −qBvx

m
dvz
dt

= 0

The solution to these equations, found by differentiating once more with respect to time

and decoupling, is that the particle gyrates around the magnetic field line in the xy

1This derivation follows that of Chen (1974), [1].
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plane with a frequency of ωc =
qB
m , called the cyclotron frequency, while traveling with

constant velocity in the ẑ direction. Thus, the motion of a charged particle is helical,

with the particle following the direction of a field line and staying within a set radius

in any given xy plane. This single-particle motion is the reason that closed field lines

are so significant to plasma confinement. There are many other effects that the single

particle will feel in magnetic fields of varying strengths and directions, but much of that

behavior can be described as velocity drifts in addition to the basic behavior of gyrating

motion along a field line [1].

1.1 Energy Distribution

This section describes the notion of an energy distribution in a collection of particles.

The energy of a gas can be described with a distribution function of the energies of the

particles in the gas. The distribution function operates like a probability distribution,

i.e. the fraction of particles in the gas with energy E ∈ [E1, E2] is given by
∫ E2

E1
f(E)dE.

The Maxwell-Boltzmann, or Maxwellian, Distribution describes the energy distribution

of a thermalized gas of classical particles [2]. To find the Maxwellian energy distribution

for a collection of particles, one begins by finding the Maxwellian speed distribution2.

The speed distribution function, f(v), will be the product of the probability that the

particle will have the velocity, v, multiplied by the number of possible velocity vectors

corresponding to that speed. The probability term is given by Boltzmann statistics

itself, in which the probability that a particle is in a particular state with energy E

is proportional to e−E/kT , where T is the temperature of the gas. Here, the state of

velocity v corresponds to an energy given by E = 1
2mv

2, so the probability that the

particle has velocity v is proportional to e−mv2/2kT . The number of possible velocity

vectors corresponding to a given speed v is given by thinking of the the velocities in a

velocity space. In this case, each speed v corresponds to a spherical surface in this space

with area 4πv2. Thus, the distribution function f(v) is proportional to 4πv2e−mv2/2kT .

By normalizing this so that f(v)dv integrates to 1, the distribution is found to be, [2]:

f(v) =
( m

2πkT

)3/2
4πv2e−mv2/2kT . (1)

To convert this into an energy distribution function, one uses the definition that E =
1
2mv

2 and dE = mvdv. Rearranging this, one finds that dv = dE√
2mE

. Substituting these

2The following derivation comes from Thermal Physics (2000) by Daniel V. Schroeder, [2].
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into the distribution function, one finds that:

f(v)dv =

√
2

π

√
m

(kT )3/2
mv2e−mv2/2kTdv =

√
2

π

√
m

(kT )3/2
2Ee−E/kT 1√

2mE
dE. (2)

Rearranging, the final energy distribution function becomes:

f(E) =
2
√
E

√
π(kT )3/2

e−E/kT . (3)

The Maxwell-Boltzmann distribution as a function of ion speed and ion energy are

plotted below in Figures 1 and 2.

Figure 1: Maxwellian distribution plot-
ted as a function of speed.

Figure 2: Maxwellian distribution plot-
ted as a function of energy.

Even for classical gases, if the gas particles’ velocities are not sufficiently random-

ized, the distribution function may not be a Maxwellian one. In other words, there must

be a certain level of randomness to the velocities of the particles in question for their

distribution to be characterized by a Maxwellian distribution. This randomization is

termed the heating of particles and the achievement of heating in the PFRC-2 will be

discussed further in Section 1.3 [3]. For now, it is enough to mention that the notion

of a plasma’s temperature depends on the plasma having a Maxwellian distribution, i.e.

in the context of a gas, temperature T is only a meaningful concept with reference to a

Maxwellian distribution.

The temperature of a plasma is often used to refer to kT , rather than T , and will

have units of eV, where 1 eV = 1.602 ∗ 10−19 J. For a Maxwellian distribution, the
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average energy E can be found by taking the integral:

E =

∫ ∞

0
Ef(E)dE =

∫ ∞

0

2
√
π(kT )3/2

E3/2e−E/kT . (4)

Because of the E3/2 dependence, it is easier to evaluate this integral in velocity space.

When this is done, as in [2], one finds that E = 1
2kT . Speaking about the temperature

in terms of kT is thus a convenient way of noting the average energy of the distribution.

In a plasma, the different species, such as the different types of ions and the elec-

trons, can have different energy distributions, which becomes an important fact when

one wants to heat a plasma to high enough temperatures to allow for fusion to occur [1].

Although to a certain degree, because of attraction between like charges, the ions should

generally follow the electrons, they can still have a distinct energy distribution. Knowl-

edge of the ion energy distribution (IED) in particular is important in determining if a

plasma is relevant for fusion. Fusion may occur when two nuclei approach each other

with enough energy to overcome the Coulomb repulsion that normally attends the meet-

ing of like charges. When the particles are energetic enough they approach close enough

for the nuclear forces that make fusion energetically favorable to overcome the Coulomb

repulsion barrier [1].

Figure 3: Collisional cross sections for three different fusion reactions, from Bosch
and Hale (1992), [4].

The collisional cross sections for four different fusion reactions, D-3He, D-T, D-
4He, and T-4He, as a function of energy are plotted in Figure 3. The cross sections are

6



expressed in units of barns, where 1 barn is equal to 10−24 cm2, so one can see how

unlikely the occurence of the reaction is unless the ions have energies on the order of

tens or hundreds of keV. The main result evident from this plot is that practical fusion

depends on the existence of a population of ions with energies high enough for the fusion

cross section to be non-negligible, i.e. the ion energy distribution needs to be sufficiently

populous at high energies. To make this possible, there need to be methods of heating

the ion species to high enough temperature, as well as diagnostics for assessing what the

ion energy distribution is to see how ion heating occurs. The method for heating ions

in the PFRC-2 will be discussed in Section 1.3, and the method for measuring the IED

will be discussed in the next section, Section 1.2.

1.2 Charge Exchange Diagnostic

The charge exchange ion energy analyzer under present discussion is a diagnostic to

measure the ion energy distribution in the plasma3. The main issue in analyzing ions

in a plasma is that ions, as charged particles, should be confined with the magnetic

fields. Even when they do escape, the particles do not carry information about the

state of the plasma’s interior because they experience forces as they exit the plasma that

modify their energy and direction. One solution to this problem is to look at the flux

of fast neutrals exiting the plasma, which is likely the product of charge exchange. The

principle behind charge exchange is that when heated ions in the plasma’s interior pass

by unheated neutrals, there is some probability that the neutral will lose an electron to

the ion, neutralizing the hot ion and allowing it to escape from the plasma. The reaction

can be written as:

H+
fast +H0

slow → H0
fast +H+

slow. (5)

Because the two species have about the same mass, they retain their energies after the

collision, and the new fast neutral can escape the confining fields and convey information

about the ion energy distribution [5].

Hutchinson describes this as a quantum mechanical resonance phenomenon, i.e.

when the two atoms with electrons come close to one another, the wavefunction describ-

ing an electron bound to the first atom can leak probability into another wavefunction

describing the electron bound to the second atom. This process is maximized when the

3The principles of this diagnostic are described in Chapter 8 of Principles of Plasma Diag-
nostics by I. H. Hutchinson (1987).

7



Figure 4: Cross sections for two charge exchange processes. Data is taken from C.
F. Barnett (1990) and available on https://www-amdis.iaea.org/ALADDIN/.

two wavefunctions are very similar, which is why the data in Figure 4 shows very differ-

ent behavior for the two reactions4. The H+ + H0 reaction displays an almost constant

cross section from ≈ 1 eV - 10 keV. On the other hand, the H+ + He0 cross section has a

very localized maximum value between 10 keV and 100 keV, steeply dropping off around

that value. The difference is that the H+ + H0 is a resonant one, so the probability of

losing an electron is highest for low energies and stays fairly constant, whereas the H+

+ He0 reaction is non-resonant so it depends on there being a high incoming ion energy.

This distinction is referred to in Rapp (1960), [6]. Because of the resonance, the charge

exchange cross section along the whole range of interest for this experiment, about 100

eV - 1 keV, only changes by less than 10−15 cm2, with a cross section of ≈ 2.5 ∗ 10−15

cm2 for 100 eV and ≈ 1.7 ∗ 10−15 cm2 for 1 keV. This is an important feature for the

diagnostic, since it means that the energy distribution of ions will not be significantly

shifted to higher or lower energies because of varying charge exchange cross section over

the energy range.

The above process will produce a flux of neutral atoms exiting the machine that can

then be analyzed to reveal information about the plasma’s interior. Before the atoms

4A rough outline for the physical process appears in Exercise 8.1 and 8.2 in Hutchinson (1987).
Time dependent perturbation theory can be used to calculate the probability that an electron
with ψ1

0 will transfer to be bound to atom 2 in the ground state, ψ2
0 , given the perturbation

potential of V (r) = e2

4πϵ0r
. The probability is given by P12 =

∣∣〈ψ2
0 |V |ψ1

0

〉
t/ℏ
∣∣2.

8



can be analyzed, they need to be ionized. This has primarily been accomplished in the

past in two different ways. One method uses a gas stripping cell with a region of high

pressure gas so that the neutrals can collide and lose electrons to other neutral atoms as

in Colchin (1988), [7]. The other method uses a solid foil that the atoms pass through,

colliding with atoms to which they lose electrons as in Beiersdorfer (1987), [8]. The

present system uses the former method.

The newly ionized flux is then analyzed using either electric or magnetic fields,

or a combination of the two. The principle of these analyzers is to set up a field that

splits the beam of incoming ions so that only ions with desired values of either energy

or momentum will exit the analyzer and continue on to be tested. Analyzers that use

electric fields select for ion energy, as in Eubank (1963), [9], and Beiersdorfer (1987) [8],

while analyzers that use magnetic fields select for ion momentum. Combination of both

magnetic and electrostatic analyzers allows one to separate the outgoing flux by particle

mass as well, as in [10] and [11]. Because the flux in the present system is expected to

be primarily of only one species, H0, the use of a combined magnetic and electrostatic

system would not be significantly more beneficial than a much simpler electrostatic-only

analyzer. Thus, the analyzer in the present system is an electrostatic analyzer, the

principles and operation of which will be discussed in further detail later.

For clarity and comparison, the basic principles of the magnetic analyzer will briefly

be discussed. The principle is to set up a magnetic field such that an incoming beam in

the plane perpendicular to the uniform magnetic field undergoes circular motion around

the field. The radius executed by the ion is found by equating the Lorentz force law

with the equation for centripetal force:

F = qvB = mac = m
v2

r
−→ r =

mv

qB
. (6)

Since p = mv, the magnetic field selects for r = p
qB , so the analyzer selects for momen-

tum, which is directly proportional to the radius of the beam.

After the desired momentum or energy is selected from the beam, the selected

ions from the beam can be measured and their signal recorded. In this system, the

measurement of the ion flux is performed using an electron multiplier, which produces

a pulse of ≈ 107 electrons for each ion that strikes the surface of the multiplier. These

pulses are then detected in an oscilloscope.
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1.3 Operation of the PFRC-2

This section introduces the basic concepts in the physics of field reversed configuration

(FRC) devices in general and the Princeton FRC in particular, clarifies how heating of

ions occurs, and how this affects the placement of and expected flux into the SC-IEA.

The anatomy of a field reversed configuration is described in Steinhauer (2011), [12]. An

FRC establishes a toroidal plasma without any central field coils, allowing for a device

geometry that is much simpler than other toroidal devices. There are two main regimes

of magnetic field geometries in an FRC. Inside of the separatrix, the magnetic field lines,

pictured as the solid black lines in Figure 5, close in a toroidal shape, while outside

the separatrix, the field lines open, leading to either end of the linear device [12]. The

significance of open and closed field lines is such that particles in closed field lines are

generally confined to the torus inside the machine, while particles on open field lines

generally follow those field lines and escape from the machine. This is due to the basic

helical motion of a charged particle along a field line described at the beginning of Section

1.

Figure 5: Schematic of FRC, taken from Steinhauer [12].

One of the ways of establishing and heating the particles in an FRC is through a

rotating magnetic field (RMF), which is the addition of a transverse magnetic field with

a direction that changes in time [12]. The term transverse in this context means that the

magnetic field lines are in the plane perpendicular to the z axis [13]. The RMF rotates

around the z axis, driving current as the ions and electrons follow the magnetic field lines.

This current forms the toroidal field that confines the plasma in this configuration [12].

Past experiments of RMF driven FRCs resulted in poor energization and confinement.

As suggested in [13], this was partly due to the fact that the type of RMF used in previous

experiments broke down the closedness of the toroidal field lines. The Princeton FRC
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(PFRC) configuration uses an RMF which has odd parity about the midplane (z = 0

plane). The transverse component of this RMF is the solid black curve pictured in Figure

6, which has been shown to preserve the closed nature of magnetic field lines within the

separatrix [13].

Figure 6: The transverse odd-parity magnetic field, from Cohen [13].

It has also been demonstrated using single particle codes that analyze the orbits

of ions and electrons in the PFRC by integrating Hamilton’s equations that the RMFo

system not only establishes an FRC but also effectively heats electrons and ions [14].

The source of this heating is discussed both analytically and numerically by analyzing

the energization of the three different types of particle orbits in the PFRC [3]. There are

three different classes of orbits in the PFRC device, as discussed by Landsman in [15].

These orbits, which depend on the particle’s momenta, termed cyclotron, betatron, or

figure-8 orbits, are pictured in Figure 7. The figure-8 orbits are shown to exhibit the

most heating from the RMFo. This is due to the fact that velocity randomization is

necessary for heating, and the figure-8 orbits have more opportunities to fall out of

phase with the RMFo and thus to experience velocity randomization. Further, because

they are highly non-linear, slight variations in their initial conditions produce a chaotic

selection of different states [3]. This method has also been experimentally verified to

produce heating of particles in the PFRC [16].

To determine the proper placement of the charge exchange diagnostic, a simulation

called the Synthetic Diagnostic (SD) code, created and implemented by Alan Glasser

and by Samuel Cohen, was used to model the expected fluxes and energies of neutrals

given different viewing chords of the diagnostic into the PFRC-2. Because of the differ-

ent particle orbits, as shown in Figure 7, different viewing chords may see only certain

populations of orbits. The final choice in the implementation of the system is that the
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Figure 7: Possible orbits and their viewing chords in the PFRC-2, from an upcom-
ing paper by Samuel A. Cohen in Physics of Plasmas.

diagnostic will be installed to view along the midline (major axis) of the system, but

will have the ability to view at different angles within the plane of the major axis of the

system, due to the likelihood that neutrals will exit with some nonzero velocity compo-

nent in the ẑ direction. The plans for the connection and placement of the diagnostic

onto the PFRC-2 will be discussed further in Section 4.
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2 Description of Diagnostic System

This section describes the setup and physical principles essential to the operation of the

charge exchange diagnostic. The section begins by discussing the hardware and overall

structure of the diagnostic (2.1) before delving into the physics of the energy analyzer,

clarifying the mechanics of its energy selection and other features (2.2) with some of the

measurements of its features presented (2.3). Then, the principles behind the operation

of the stripping cell are presented (2.4)

2.1 Description of the SC-IEA Hardware

As outlined above in Section 1.2, the diagnostic consists of three main stages: ionization,

energy selection, and signal detection. Ionization is performed by placing a region of

higher pressure in the path of the neutral flux. This region is called the stripping cell

and is the thin metal tube pictured in between the two port crosses in Figure 8. Energy

selection is performed in the curved-plate electrostatic ion energy analyzer, pictured

below in Figure 9. This analyzer functions by establishing equal and opposite voltages on

two concentric curved plates in such a way that ions of selected energy, E0, are allowed to

pass through the analyzer. Signal detection is accomplished using a Channeltron electron

multiplier (Model 5901), in which each incoming ion that strikes the electron multiplier

is converted into about 107 electrons that constitute the pulses that are observed by the

oscilloscope.

The system setup, pictured in Figure 8, was designed and its parts were purchased

by Eugene Evans in 2019. The basic setup is of two port crosses joined together in the

center by the stripping cell. In the picture, the neutral flux enters from the right, passing

through the stripping cell before exiting to the left to be analyzed in the curved-plate

analyzer and detected in the electron multiplier.

There are several vacuums, gauges, and probes on the system to effectuate the

above three main stages. A turbomolecular pump, directly underneath the port cross

closest to the machine side, is able to keep the system pumped down to a pressure on the

order of ≈ 10−8 Torr, and there are two non-evaporative getter (NEG) pumps nestled

in the interior of the two port crosses on either side of stripping cell. These pumps are

important in the operation of the stripping cell, in which the stripping cell should have

a gas pressure on the order of 10−3 or 10−2 Torr, while the rest of the system should still

stay at a lower pressure to minimize scattering of the neutral flux in both energy and
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Figure 8: Photograph of the diagnostic setup with the main components labelled.

angle. At the top of each port cross is an ion gauge to measure pressure in the vessel.

The ion gauges are sensitive up to ≈ 10−10 Torr. There is a Baratron pressure gauge

on the stripping cell, with a much lower sensitivity but one that suffices for the high

pressure meant to be present in the stripping cell. Finally, there are two current probes

created by Bruce Berlinger that hang down from the top of the port crosses that serve

to measure the current of the ion beam during calibration but could also be helpful in

the operation of the diagnostic on the plasma device. The system was constructed by

Bruce Berlinger.

2.2 Energy Analyzer: Physical Model for Operation

The heart of the charge exchange diagnostic is the electrostatic curved plate analyzer.

Consisting of two concentric curved metal plates subtending an angle of roughly 90° and
separated by a distance, d, pictured in Figure 9, the analyzer operates by setting up

a radial electric field in between the two plates that points towards the center of the

analyzer’s curvature. By varying the electric field, one can select a specific ion energy

to execute a circular orbit, entering the aperture at one radius and exiting on the other

end of the curved plates at the same radius such that it will be detected in the electron

multiplier. This section will discuss the theory of operation behind the electrostatic
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electron multiplier, seeking to clarify the way an electric field is established in between

the plates and the derivation of both circular and nearly circular ion orbits in the electric

field. These mechanics will then be applied to discuss the properties of such an analyzer,

specifically its resolution. An analysis of these aspects of the energy analyzer will clarify

how precisely and accurately these properties need to be determined for the successful

operation of the system as an ion energy diagnostic on the PFRC-2.

Figure 9: Picture of the curved-plate energy analyzer to be used in the SC-IEA.

Understanding the electric field in the energy analyzer is the foundation for all other

investigations into its properties and uses. The electric field is established by setting up

a voltage difference between the plates, with the inner plate set to V− and the outer

plate set to V+. The geometry of the plates makes it difficult to solve analytically for

the electric field for two reasons. First, the plates do not continue around the full circle

but stop after 90°. Secondly, the extent of the plates in the direction orthogonal to the

plane of the circle they surround (the ẑ direction) is not infinite. For these two reasons,

the analyzer’s geometry is one that is not simple to handle analytically. However, if one

assumes that the electric field in the analyzer is approximately that of a cylindrically

symmetric one with the asymmetries only greatly affecting the field near the edges of

the analyzer, it is possible to analytically solve for the electric field and then discuss the

effects of the asymmetries on the electric field and the paths of the ions. The discussion

here will therefore focus on the properties in the case of cylindrical symmetry, with later

discussion on how accurately this model applies to the present case.
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To solve for the electric field in the case of cylindrical symmetry, one first solves for

the electric potential using Poisson’s equation and then applies the negative gradient to

find the electric field. For a problem with cylindrical symmetry, this is:

∇2ϕ = 0 −→ 1

r

∂

∂r

(
r
∂

∂r

)
ϕ =

∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
= 0 (7)

. This differential equation is an equidimensional equation. Testing out ϕ = rm, it

is found that m = 0 with multiplicity 2. Thus, the solution takes the form of ϕ(r) =

A+B ln(r). In order to find the solution for the energy analyzer, the boundary conditions

of ϕ(a) = V− and ϕ(b) = V+ need to be applied. After doing so, the potential is found

to be

ϕ(r) = V

[
ln(a) + ln(b)

ln(a)− ln(b)
− 2 ln(r)

ln(a)− ln(b)

]
. (8)

Taking E = −∇ϕ = −∂ϕ
∂r , the electric field is found to be:

E⃗(r) = − 2V

ln
(
b
a

) 1
r
r̂. (9)

The electric field in the cylindrically symmetric case is therefore found to be purely

radial and varies with radius as 1
r .

The voltage that enables a circular orbit for an ion of energy E0 is found by using

the equation for circular motion: F⃗ = −mv2

r r̂. In this case, the Coulomb force law states

that F⃗ = qE⃗, so one may write:

m
v2

r
= q

2V

ln
(
b
a

) 1
r
. (10)

By using the definition of E0 =
1
2mv

2, one may reformulate Equation 10 as

V (E0) =
E0 ln

(
b
a

)
q

. (11)

Thus, when the above voltage is applied, ions of energy E0 will execute circular motion

and enter the aperture at the end of the curved plates. Equivalently, the proper voltage

to apply to the plates to select for ions of energy E0, when E0 is measured in electron volts

(eV), is simply given by V (E0) = ln
(
b
a

)
∗E0. This equation is presented in Beiersdorfer

(1987), [8], as well.
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Inevitably, even if the plates in the analyzer are set to the proper voltages of

±V (E0), some ions of energy E which is larger or smaller than E0 will be able to enter

the aperture, strike the electron multiplier, and contribute to the signal. To calculate

what range of E will still be detected, one needs to calculate the ion trajectory of a

particle of energy E in an electric field set up to select for particles of energy E0
5.

Because the electric field is assumed to be radial, the problem can be formulated as that

of a particle in a central force field. To solve for the trajectory of such a particle, r(θ),

it is convenient to begin with Binet’s Equation6, a second-order differential equation for

u(θ), where u = 1/r, in the case of a central force field:

d2u

dθ2
+ u = −F (1/r)m

l2u2
, (12)

where l is the angular momentum of the particle. Plugging in F = q 2V
ln( b

a)
1
r , Equation

12 becomes
d2u

dθ2
+ u =

2mE0

l2
1

u
. (13)

By rewriting the l2 in terms of E, l2 becomes 2mEr20, where r0 is the radius of the

entrance aperture. With this simplification, 2mE0
l2

= E0

Er20
. To make the differential

equation dimensionless, one lets y = u/u0, where u0, the characteristic inverse length, is

defined as u0 =
√

E0
E

1
r0
. With this, Equation 13 simplifies to the non-dimensional form

of:
d2y

dθ2
+ y =

1

y
. (14)

Because of the equation’s nonlinearity in y, it does not admit a closed-form analytic

solution, so it is most easily solved through an approximation. Because the physical

case of interest is when the trajectories are near circular, i.e. when u ≈ u0, letting

y = 1+ x, where x is a small perturbation, will produce an approximate solution to the

problem. Plugging in y = 1 + x and making use of the expansion 1
1+x ≈ 1− x+O(x2),

Equation 14 becomes
d2x

dθ2
+ 2x = 0, (15)

which has the solutions of x(θ) = A cos(
√
2θ+α). Solving for A and α requires applying

the initial conditions. A full description of the mechanics of the analyzer would involve

discussion of the trajectory given an entrance angle, α, deviating from one tangential to

5The following derivation follows that found in Hughes and Rojansky (1929), [17].
6A derivation for Binet’s Equation appears in Appendix I.
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the curvature of the analyze, but because the case of α = 0 is sufficient for deriving the

resolution, it is the case that will be explored here. The case of α = 0 is described by

the initial condition: dy
dθ (0) = 0. This condition requires that A

√
2 sin(

√
2(0) + α) = 0,

or α = 0. Further, because the particle starts out at u =
√

E
E0
u0, we want y(0) =

√
E
E0

.

These conditions determine that the first order approximate solution to Equation 14 is:

y(θ) = 1 +

(√
E

E0
− 1

)
cos(

√
2θ). (16)

By relating y back to r, using r = r0

√
E
E0

1
y , it is found that the approximate solution

for ion orbits in the charge exchange analyzer is given by:

r(θ) =

√
E
E0
r0

1 +
(√

E
E0

− 1
)
cos(

√
2θ)

. (17)

The shape of this approximate solution for a range of energies in an analyzer set to

select 100 eV ions is plotted in Figure 10. The solution exhibits features that one would

expect. When E = E0, the solution reduces to circular motion, with r(θ) = r0. For small

deviations in energy, the orbits are nearly circular, while for larger energy deviations from

E0, the ions travel on trajectories that deviate even further from circular ones.

Figure 10: Approximate trajectories for energies near the selection energy when
E0 = 100 eV.
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To assess the accuracy of the approximate solution, a second-order forward Euler

algorithm7 is employed to solve Equation 14. If the differential equation is posed in the

form:

y′′ = f(y, t) = −y + 1

y
; y(0) =

√
E

E0
;
dy

dθ
(0) = 0, (18)

then the second-order Euler method finds the solution using:

y0 = y(0); y1 = y0 +
dy

dθ
(0)∆t; yn+1 = 2yn − yn−1 + (∆t)2f(yn). (19)

Using the definition from above, that r = r0

√
E
E0

1
y , one can find r(θ) from the

numerical solution for y(θ). Applying this iterative scheme for finding a numerical

solution yields results that appear to be accurate and are in fact quite close to the

approximate solution. The difference between the two trajectories is small, with the

error, plotted in Figure 12, not exceeding a couple µm. For example, at the detector

end of an analyzer (θ = π
2 ) set to 100 eV, the error for the trajectory of a 102 eV ion

is only about 5 thousandths of a millimeter. In other words, the approximate solution

should suffice for the regime relevant for the curved-plate analyzer.

Figure 11: Plotting both numerical and
approximate solutions at the detector
end of the analyzer.

Figure 12: The difference between the
numerical and approximate solutions.
Angle step size is 1.5*10−5 radians.

By using the approximate solution for the motion of ions in the curved-plate ana-

lyzer, it is possible to approximate the resolution for a beam of ions entering the analyzer

at the same point, i.e. the values of E for which r(π/2) ∈ (r0 − δr, r0 + δr). Formulated

7Thank you to Prof. Mikko Haataja for his guidance on the topic of numerical solutions to
ODEs. The algorithm comes from his lecture notes for MAE 306.
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differently, the accepted energy range is ∆E = E+ − E−, where E+ is the energy for

which r(π/2) = r0 + δr and E− is the energy for which r(π/2) = r0 − δr. The energy

resolution, ∆E/E is thus given by E+−E−
E . Letting α = cos(ϕ), where ϕ is the angle

that the analyzer subtends, and solving for E±, one finds that:

r0 ± δr =

√
E±
E0
r0

1 +

(√
E±
E0

− 1

)
α

−→ E± = E0


(
1± δr

r0

)
(1− α)

1− α
(
1± δr

r0

)
2

. (20)

By using ∆E/E = E+−E−
E from above, the energy resolution is given by:

∆E

E
=


(
1 + δr

r0

)
(1− α)

1− α
(
1 + δr

r0

)
2

−


(
1− δr

r0

)
(1− α)

1− α
(
1− δr

r0

)
2

= f(δr, r0, α). (21)

Although this expression is not simple, it only depends on three parameters: the width

of the exit aperture (δr), the radius of entry (r0), and the angle that the curved plates

subtend (α = cos(ϕ)). Significantly, then, the ∆E
E resolution is only a function of these

three geometrical properties of the analyzer, leading to the fact that the accepted energy

range ∆E is linear in the energy, with f(δr, r0, α) as the slope, or ∆E = f(δr, r0, α)E.

In papers reporting on similar analyzers, the figure of ∆E
E = δr

r0
is often reported as

the energy resolution [8]. The figure does not take into account the angular dependence

of the analyzer for the resolution. The δr
r0

figure is the minimum possible resolution for

the analyzer, but it only applies in the case of the π√
2
≈ 127◦ analyzer. For the analyzer

in use in the SC-IEA, which subtends 90◦, the resolution is expected to be slightly larger.

The difference between Equation 21 and the oft-cited resolution is a slight one, with the

more important result being that ∆E is a linear function of ion energy.

To summarize the main results from this section, by modelling the curved plate

analyzer as a cylindrically symmetric system, it is possible to derive a formula for the

electric field between the plates (Equation 9) . Using this formula for the electric field,

it is possible to derive a formula for the proper voltage to apply to the plates in order to

select for specific energies (Equation 11). By using Binet’s Equation from the analysis

of central fields, one can derive an approximate solution for the ion’s trajectory through

the curved-plate analyzer (Equation 17), which can be used to find a formula for the

expected energy resolution of the analyzer (Equation 21). This theory for the operation
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of the curved-plate analyzer is experimentally tested during calibration, described in

Section 3.

2.3 Measurement of Analyzer Properties

From the above, it appears that if the theoretical model of the charge exchange analyzer

is indeed correct, the proportionality factor between applied voltage and selected energy

as well as the energy resolution of the analyzer are fully determined by the geometry of

the system. From the measurements that were made in Summer 2021, the rough values

of these geometrical properties are presented in the table below:

Quantity Symbol Value

Inner Plate Radius a 11.75 cm

Outer Plate Radius b 12.8 cm

Spacing Between Plates d 1.05 cm

Aperture Width δr 0.635 cm

By using these measurements and the model for the analyzer presented above, the pro-

portionality factor between applied voltage and selected energy is 0.0856, i.e. V (E0) =

0.0856 ∗ E0(eV), and the resolution is calculated using Equation 21 to be 6.44%.

Although these measurements seem to reveal a great deal about the operation of

the analyzer, this method is nevertheless insufficient to rely upon experimentally. Exper-

imental calibration of the system using a known ion source is necessary for two reasons.

First, obtaining accurate measurements of the radii of curvature of the two plates is

not so reliable. Finding the center of curvature is difficult, so the radius of curvature

is difficult to measure accurately. Because the dependence of the proportionality factor

is ln
(
b
a

)
, small mismeasurements in the radii of curvature lead to significant changes

in the proportionality factor. For instance, if b in truth was only 1% higher and a was

in truth one percent lower (an error of just 1.1 mm), the proportionality factor would

be 0.106. If the error was in the opposite direction, the proportionality factor would

be 0.656. Secondly, the differences between the physical model and reality may lead to

differences in the values of the proportionality factor and the resolution. To illustrate, a

host of factors not taken into account by the model may contribute to energy selection

and resolution. The presence of fringing fields due to the fact that the plates do not form

a full circle will cause the equation for electric field to only be an approximation, chang-

ing the resolution and energy selection. The lack of a perfect vacuum in the analyzer
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will cause further scattering and spread of angles. Electromagnetic forces within the ion

beam itself may change the dynamics of an ion’s path through the analyzer. In short,

there is a long possible litany of finer physical effects that will cause the experimentally

observed phenomena to differ from the picture presented in this section. Including this

list of possible effects on the resolution in our model would be impossible, so empirical

determination through a physical calibration is a critical step in rendering the analyzer

useful for the determination of the ion energy distribution.

2.4 Stripping Cell

The stripping cell serves as a method for ionizing the neutrals that exit the plasma

so that they can by selected by energy in the curved-plate analyzer. The operating

principle is that there is a certain fraction of the incoming neutrals will be ionized

through collisions with neutral gas particles in the stripping cell. The model used in

Adlam and Aldcroft (1969), [18], which is described in further detail below, allows for

two other possibilities, collisions that cause neutrals to scatter out of the aperture path,

and collisions that cause newly created ions to borrow an electron and return back to

neutrals. This model is parameterized by three cross sections: σi, σEC , and σs, which

are the ionization cross section, the electron capture cross section, and the scattering

cross section. Using these three parameters and given an initial flux of neutrals, H0, one

can write coupled differential equations for the neutral flux, ϕH(x), and the ionized flux,

ϕi(x), as functions of position
8:

dϕH
dx

= nσECϕi − n(σs + σi)ϕH

dϕi
dx

= −n(σs + σEC)ϕi + nσiϕH ,

where n is the density of neutral gas in the gas stripping cell. The solutions to these equa-

tions are found by forming two decoupled second-order ODEs and applying boundary

conditions. The solutions are:

ϕi(x) = H0
σi

σi + σEC
e−nσsx

(
1− e−n(σi+σEC)x

)
(22)

ϕH(x) = H0e
−nσsx

(
1 +

σi
σi + σEC

(
e−n(σi+σEC)x − 1

))
. (23)

8The derivation for the efficiency follows that in [18].
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Defining the efficiency of the stripping cell as η = ϕi(l)
H0

, where l is the stripping cell

length, it is found that:

η =
σi

σi + σEC
e−nσsl

(
1− e−n(σi+σEC)l

)
. (24)

The best pressure to run the system at is found by taking setting dη
dn = 0 and solving for

n. When this is done, it is found that:

nmax =
1

l(σi + σEC)
ln

(
σi + σEC + σs

σs

)
, (25)

which gives the density in particles/cm3. To convert this to a maximum pressure, the

ideal gas law is used: PV = NkT −→ Pmax = nmaxkT :

Pmax = nmax

(
102cm

m

)3(
1.3806 ∗ 10−23 J

K

)
(293 K)

(
0.0075Torr

Pa

)(
103mTorr

Torr

)
,

or, Pmax = nmax

(
3.033 ∗ 10−14mTorr ∗ cm3

)
. The results are plotted using the following

values for σi and σEC , taken from C. F. Barnett’s measurements for hydrogen ions

travelling through neutral hydrogen [19]. Because reactions depend on the ion’s energy,

the efficiency η is not a constant but rather is a function of ion energy, η(E). The values

for various ion energies are tabulated below.

Energy (eV) σi (cm
2) σEC (cm2)

100 5.24 ∗ 10−19 3.65 ∗ 10−17

200 2.39 ∗ 10−18 6.96 ∗ 10−17

400 8.32 ∗ 10−18 1.56 ∗ 10−16

700 2.09 ∗ 10−17 2.93 ∗ 10−16

1000 3.37 ∗ 10−17 4.26 ∗ 10−16

Because the scattering cross section is sensitive to the system’s geometry, a range of

possible values are used to illustrate roughly what the value of the pressure should be.

The length used in plotting the pressure and efficiency is ≈ 6 cm, the length of the

stripping cell.

From Figure 11, it appears that the ideal pressure varies greatly based on the

value of σs. When σs = 10−16 cm2, the ideal pressure is about 40 mTorr, to maximize

the efficiency taking into account the various different energies. However, when σs =

10−19 cm2, the ideal choice is closer to 800 mTorr to maximize for the most values of ion
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(a) Pressure vs. η(E) for σs = 10−16cm2. (b) Pressure vs. η(E) for σs = 10−17cm2.

(c) Pressure vs. η(E) for σs = 10−18cm2. (d) Pressure vs. η(E) for σs = 10−19cm2.

Figure 13: Plots of Pressure vs. Efficiency for various values of σs at different ion
energies.

energy. Nevertheless, settling on a low pressure of about 40 mTorr for a slightly lower

efficiency than the maximum for high energy ions is a fair plan, given that it ensures a

high efficiency at high values σs.

A separate issue for the efficiency is that because the efficiency depends upon energy,

it has the effect of shifting the relative abundance of energies to higher energies, because

the efficiency grows with energy. Nevertheless, in the model presented, one can see that

the efficiency always stays between about 1% and 10%, so it should not greatly influence

the exponential tail of a Maxwellian from which temperature can be derived. In a non-

Maxwellian distribution though, it would be best to develop a system, similar to the

one described later for resolution, to filter out this skewing. Nevertheless, the change in

the energy spectrum due to this effect will not be a great one and is one that can be

accounted for.
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To conclude, the value of η(E) was not experimentally determined during calibra-

tion, nor was the stripping cell tested, so stripping cell operation will be determined

during the operation of the SC-IEA itself on the plasma device. Because η(E) was not

experimentally tested, some uncertainty will be introduced in the ion energy distribution

(IED), so future analysis of the IED will include the uncertainty in the IED reasonably

contributed by the η(E) weighting of the stripping cell.
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3 Calibration

This section will elaborate the process for the calibration of the SC-IEA, focusing on

the process of gathering calibration data, the methods for analyzing the data, and the

results found from the data. Along the way, the results are compared to those theo-

rized in the previous section, both in terms of their overall qualitative behavior and the

quantitative results. Carrying out calibration helped to clarify several aspects of the

system, such as the relationship between the voltage on the plates and the ion selection

energy, the resolution of the curved-plate analyzer, and the magnitude of the signal and

its attenuation throughout the system. Analyzing the data helped pin down a value

and error bars for the proportionality factor between plate voltage and ion energy, as

well as roughly demonstrating that energy resolution, ∆E/E, is constant as a function

of ion energy. Both the proportionality constant and the resolution are measured to

be different than the values found from direct geometric measurements that are entered

into the theoretical model, a discrepancy discussed later in this section.

3.1 Procedure

Calibration of the curved plate analyzer was performed with an ion source of adjustable

energy, the Physical Electronics Model 04-303 Ion Gun, obtained from Shota Abe in the

Surface Science Laboratory at PPPL. The ion beam energy is adjustable from 0 eV to

5 keV with a precision of 10 eV. The goal of calibration was to set the ion beam energy

to known values, vary the voltage delivered to the plates of the energy analyzer, and

study the signal detected from the electron multiplier as a function of the voltage on the

analyzer plates.

For the calibration process, two methods of applying voltage to curved plates were

tested, direct current (DC) and alternating current (AC). The results from both methods

are discussed in this section. The application of DC voltage was tested first, by using

an HP-511 power supply. The positive and negative outputs of the power supply were

both connected through resistors to ground to produce a positive and negative voltage

of the same magnitude, as illustrated in Figure 14. This method was beneficial for the

initial detection of a signal, which it will likely also be used for in the detection of initial

data from the PFRC-2. However, because it did not allow for automatic variation of the

voltage, building up enough data to determine a peak value with reasonable error took

too long to allow for practical collection of data. Thus, the method for delivering voltage
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Figure 14: Circuit diagram for the DC
voltage application. Figure 15: Circuit diagram for the AC

voltage application.

that was used to collect data for the determination of the analyzer properties used an AC

voltage source in the form of a Variac that was plugged into the wall. The voltage signal

entered a transformer to be split into positive and negative signals around ground before

being applied to the analyzer plates. The positive and negative voltages then passed

through two resistors, one large (≈ 110 kΩ) and one small (≈ 1.2 kΩ), before both

going to ground. Between the large and small resistors, the voltage was monitored by

an oscilloscope so that the value of the applied voltage could be monitored and recorded

to be matched with signal seen as a function of the applied voltage, as illustrated in

Figure 15. When the SC-IEA is used on the PFRC-2, voltage delivery will be tested at

higher frequencies by using a signal generator along with a bipolar operational amplifier

in order to detect any anomalies or higher frequency physical phenomenon in the plasma

that would be averaged out by using the relatively low frequency of 60 Hz coming from

the wall.

To produce the data that was used for the determination of the analyzer properties,

the signal vs. voltage were recorded at each energy for a large range of energies. For

each of these energy data sets, the peak signal value was determined along with the peak

width. By compiling the values of the peaks for each energy value and the standard

deviations of the peak value for each energy, a reasonably linear fit is found, with the

slope being the proportionality factor between applied voltage and the selected ion energy

and the slope’s error being the high and low limits for the proportionality factor. To

determine the value of the energy resolution for the energy analyzer, the width of the

energy peak at half maximum was taken to be the variance of the energy, ∆E. These

values for ∆E are then divided by the energy, E, at each value to obtain a data set of

∆E/E as a function of the ion energy.
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Using a DC voltage signal, building up a full signal vs. voltage spectrum took a

long time for data collection to be complete. At each voltage, the output of the electron

multiplier had to be measured and the count rate recorded. The results are shown in

Figure 16. The largest peak can be taken to be the selected energy peak. This method

has two major problems. First, acquiring enough data to have a data set large enough

Figure 16: The voltage vs. signal for
the DC voltage method.

Figure 17: Ion energy vs. peak volt-
age with fitting line for the DC voltage
method.

to determine the values of the proportionality factor between the voltage and energy

with a reasonable uncertainty took too long. Second, the pressure in the ion gun is

variable over the timescale for data collection over the whole voltage energy spectrum,

so the count rate detected at lower voltages and higher voltages vary not only due to the

energy difference in the ions being selected but also because of the pressure in the ion

gun. Using an AC voltage signal remedies this problem by cycling through the whole

voltage interval on a timescale much faster than the timescale for pressure to change in

the ion gun. Rough as the DC method was, it demonstrated three significant features.

First, as shown in Figure 16, there are clear peaks for which the signal was maximized

at particular voltages, which is the expected behavior of the analyzer. Second, there

appeared to be multiple peaks, a feature not predicted by the theory but one that was

also observed by using the AC method. Third, by plotting and fitting the highest peak

voltage values for different energies, the relationship between applied voltage and peak

value appears to be a roughly linear one, shown in Figure 17. The value that was

determined, ln
(
b
a

)
= 0.099, was not an unreasonable deviation from ln

(
b
a

)
= 0.0856,

the value determined by the measurements of the analyzer’s geometry.

The AC voltage method used a sinusoidal signal oscillating at the wall frequency of
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60 Hz, a frequency far faster than the significant changes in count rate due to the varying

pressure in the gas in the ion gun. An oscilloscope was used to trigger the signal from the

electron multiplier at the same frequency as the voltage signal sent to the curved-plate

analyzer. Thus, it was simple to plot the signal as a function of voltage delivered to the

plates. In the data that was used, the signal was always given at least thirty seconds to

accumulate an average.

Figure 18: Data for voltage vs. signal taken for several energies using the sinusoidal
voltage method.

Figure 18 shows several voltage vs. signal plots on the same graph. One can see

that in each plot there are two sets of peaks that both vary as a function of the ion

energy. As the energy grows, the peaks migrate to higher voltages. The symmetric

peaks are closer to the expected energy based on the measurements, so the asymmetric

peak population at higher voltages are treated as an anomalous peak.

Although the double peak problem was already evident from the DC voltage method,

the peaks became even more clear by using the AC method. The determination is made

due to two indications. First, the lower peak is at the voltage closest to that predicted

by the measurements of the system geometry. Second, the higher peaks appear to be

asymmetric, which is a feature not predicted for the energy peaks. There are several

possibilities for the production of a second peak. The second peak does not appear to

be due to a second ionization of the hydrogen (H2) molecules being pumped into the ion

gun. Because the V (E0) scales as q
−1, a higher ionization should result in peaks at lower
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voltages, not higher voltages. Further, data taken with helium (He) as the ionization gas

also demonstrated the same second peak, even though the difference in the ionization

potentials of helium and hydrogen should present different peaks. Another possibility

that appears to be unlikely is that the beam dislodges atoms from the probes in its path

and causes them to speed up. This explanation seems unlikely because collisions with

interposing material should dissipate the energy in the beam, as discussed in [8], not add

energy. The most likely explanation for the extra peak is due to an internal operation

due to focusing in the ion gun. By shifting the electrostatic lenses that focus the ion

beam, the beam not only grows stronger and weaker, but the ratio of high peak to low

peak also shifts, indicating that the second peak is likely due to the focusing mechanism

of the ion gun, although further information is required in order to pinpoint the exact

cause of this phenomenon.

3.2 Results for the Voltage-Energy Relation

The calibration yielded reasonable values and errors for the proportionality factor as

well as a general confirmation of the theoretical model for the energy resolution of the

analyzer. Six sets of data were analyzed, shown in the graphs in Figure 19. Each set

consists of the voltage at the signal peak as a function of energy for energies in the range

of 200 eV - 1 keV. Ions with energy less than 200 eV were difficult to detect. The graphs

each show the slope and y-intercept for the data set, calculated using Numpy’s built-in

polynomial fitting function. The “energy offset” is also displayed, a quantity defined

later as b
m . These all seem reasonably precise with a mean of 0.0959 and a standard

deviation of only 0.0028, a value only ≈ 3% of the mean.

To come up with a different estimate that takes into account all of the data at

once, the six data sets were combined to produce average values for the voltage for each

energy value as well as the standard deviation from that value. The mean of the voltage

(Vi) and the standard deviation (σi) were calculated according to:

Vi =
1

N

N∑
j=1

Vi,j ; σ2i =
1

N

N∑
j=1

(
Vi,j − Vi

)2
, (26)

where N is the number of voltage measurements at each energy. In the present case,

N = 6. The mean voltage value for each energy and its standard deviation (treated

here as the error) are used to calculate the linear fit along with its error, as presented in
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(a) Energy vs. Peak Voltage for Set 1. (b) Energy vs. Peak Voltage for Set 2.

(c) Energy vs. Peak Voltage for Set 3. (d) Energy vs. Peak Voltage for Set 4.

(e) Energy vs. Peak Voltage for Set 5. (f) Energy vs. Peak Voltage for Set 6.

(g) Data from all six data sets.

Figure 19: Figures for the proportionality factor between energy and voltage.
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Figure 20: The final calibration results: Peak voltage vs. Energy with errors for
energies between 200 eV and 1 keV.

Figure 20. The data in Figure 20 was then fit using a NumPy linear fitting function that

returns the slope of the line as well as the error on the slope. To assess the plausibility

of a linear fit, the reduced χ2 is used:

χ2 =
N∑
i=0

(Vi − Vfit)
2

σi
(27)

When the reduced χ2 >> 1, the fit is a poor one, whereas when χ2 << 1 the

model is overfitted to the data. A reduced χ2 of order unity shows a reasonable fit to

the data. As shown from the reduced χ2 for the data in Figure 20, which takes a value

of 4.45, a value close to unity, the linear fit is a reasonable one.

One surprising feature that became apparent from plotting and fitting the data is

the nonzero y-intercept. Based on the theoretical model for V (E0) mentioned above,

the y-intercept should be zero. This y-intercept is likely due to an offset in the ion beam

energy. For example, if E′ = E + E0, then:

V (E′) = ln

(
b

a

)
E′ = ln

(
b

a

)
(E + E0) = ln

(
b

a

)
∗ E + ln

(
b

a

)
E0 (28)
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Thus, the energy offset should be given by ln
(
b
a

)
E0. As pointed out by Dr. Abe, a

switch at the back of the ion gun was turned to “200 eV” ionization energy, which seems

to produce the ions at a potential of 200 V. When the beam then travels to the center of

the analyzer at a potential of 0 V, the ions gain 200 eV in energy. A natural test of the

validity of the theory is if the y-intercept divided by the slope is close to the expected

value of 200 eV. Indeed, for the data in Figure 20, this is the case, as the energy offset

calculated from the six data sets used for the proportionality calculation is 191.2± 12.3

eV, which is reasonable if the expected value for the offset energy is 200 eV.

To summarize, the results from the calibration for the proportionality factor in-

dicate that the trend between energy and voltage peak is linear. The proportionality

factor between voltage and energy is 0.0986 ± 0.00146 using the second method and

0.0959 ± 0.0028 using the first method, where E0 is measured in eV. The two methods

of extracting the proportionality factor overlap in the range of [0.0971, 0.0987]. The pro-

portionality factor calculated based on the measurements of geometry was 0.0856, so the

measured proportionality factor is within a reasonable range, especially because small

deviations in the measurement of the curved plate radii greatly affect the proportionality

factor between applied voltage and selected energy.

3.3 Results for the Resolution

To determine the ∆E
E resolution, the output of the Channeltron is simply passed through

a python peak-finding algorithm (Scipy). The function determines the width of the peak

at half of its maximum (FWHM), which is then divided by the energy of the peak. This

quantity is taken to ∆E/E. Because a sinusoidal voltage signal was used to deliver

voltage to the curved-plate analyzer, The peak finding algorithm returns the position of

the peak as the index of the voltage array. Because the energy of the peak is proportional

to the voltage delivered to the analyzer, it is also proportional to the index of the voltage

array, with the V = 0 counting as the first index. Thus, ∆E/E for the peak can just be

taken to be the width of the peak in indices divided by the index of the peak starting

from V = 0. The width of the peak used in calculating ∆E/E is the FWHM of the peak,

as illustrated in Figure 21a. The calculation of peak width is illustrated in Figure 21a.

As discussed earlier, there is the issue of the presence of a second, asymmetric peak, at

higher voltages, but for the calculations of the calibration factor and the resolution, only

the first peak is used.
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(a) Example of peak-finding algorithm. (b) ∆E/E from Data Set 1.

(c) ∆E/E from Data Set 2. (d) ∆E/E from Data Set 3.

(e) ∆E/E from Data Set 4. (f) ∆E/E from Data Set 5.

(g) ∆E/E from Data Set 6. (h) ∆E/E from Data Set 7.

Figure 21: Figures relating to the resolution.
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The calculation described above was performed for each of the data sets from the

calibration of the analyzer using the ion gun, with the results presented for each of the

seven data sets in Figure 21 as graphs showing ∆E/E as a function of energy.

Six out of seven of the graphs, i.e. all except for Figure 21f, do show that ∆E/E is

roughly constant over a significant portion of the energy range. Of those six graphs, only

Figure 21b shows more or less constant behavior throughout the whole energy range,

while the other five show a clear pattern in their variations from the constant baseline

resolution. In Figures 21c, 21d, 21e, and 21h the resolution is higher at lower energies

before falling to nearly constant values for energies higher than around 400 or 500 eV,

while Figure 21g shows the opposite behavior where it appears that the resolution takes

on a constant value for lower energies before rising to higher values for higher energies.

This opposite behavior is probably due to some peculiar feature of the data collection,

as the peaks that contribute to the abnormally large ∆E/E values have asymmetric,

jagged shapes. To illustrate, Figure 22 shows two peaks at equal energies, one from Data

(a) Symmetric peak from Data Set 4. (b) Jagged peak from Data Set 6.

Figure 22: Figures illustrating peak width variation for the same energy.

Set 4, which has a constant ∆E/E, and the other from Data Set 6, which has a widely

varying ∆E/E. Figure 22a, which has a resolution fitting with a broader constant trend,

exhibits a symmetric peak, while Figure 22b, which is part of the non-constant trend in

Data Set 6, has an abnormally shaped, asymmetric peak, demonstrating that the peak

shapes in Data Set 6 are likely corrupted, perhaps as a result of varying voltage such that

the data includes peaks of several energies. Specifically, in Data Set 6 the amplitude

of the sinusoidal signal was varied for certain energies, to keep the peak energy near

the top of the sinusoidal voltage. If data from the adjustment period of the plates was
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included, or if the plates took longer than expected to adjust to a new voltage, then the

energy acceptance of the peak would be broadened. The two data sets that exhibit the

asymmetric peak shape were the two data sets in which the amplitude of the voltage

signal was altered, perhaps leading to a similar asymmetrizing of the peaks.

The behavior seen in the group of five graphs with the behavior of poor resolution

(higher ∆E/E) at low energies before cutting to constant resolution at higher energies

remains the dominant behavior. This behavior requires explanation as it differs from

the theoretically predicted behavior that ∆E/E should be constant as a function of

E. A similar behavior to this, along with two explanations, is reported in Beiersdorfer

(1987), [8], in which ∆E/E appeared to be largely constant at higher energies but grew

with lower energies. First, the presence of fringing fields causes poorer resolution for

low energies. Fringing fields will cause some additional energy in the radial direction,

effectively causing a deviation in the entrance angle. For lower energy ions, the deviation

in entrance angle is greater than for higher energy ions. To illustrate, the ion will gain

some velocity vr and vϕ due to the fringing fields. The ion’s entrance angle into the

analyzer is given by α = arctan( vrvϕ ). Because the contribution to vr will be a small

contribution which is independent of ion energy, the ratio of vr
vϕ

will be small for ions

that begin with a high vϕ, i.e. higher energy ions, and will be larger for ions that

begin with a low vϕ, i.e. lower energy ions. The second possible explanation for the

data showing poorer resolution at lower energies could be due to the higher scattering

cross section for ions of lower energy. Ions with lower energy could lose or gain slight

amounts of energy through collisions with neutral gas particles in their path, leading to

a broadening of the energy peak because there is, indeed a broadening of the energies.

To test the plausibility of the first explanation, one needs to consider the predictions for

the entrance angle. What fraction of the population will enter the analyzer at an angle,

and how large is the fringing field expected to be? To test the second explanation, it is

necessary to consider the likelihood of energy-altering collisions for incoming ions.

To pinpoint a value based on the figures above, by considering the constant regions

in the five figures mentioned above, ∆E/E takes a mean value of 7.2% with a standard

deviation of 0.4%, so ∆E/E ∈ [0.068, 0.076] when E is above ≈ 400 or 500 eV. This

value is within reason for the analyzer, considering that the theoretical estimate based

on measurements of the radius of curvature, aperture width, and angle subtended by

the detector came out to be 6.44%.

However comforting this measurement may be in terms of its proximity to the
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theoretical estimate, its narrow applicability in the energy range of interest may be a

major hindrance in using it in practice. The range at which this value for ∆E/E is

relevant is the tail end of what the SC-IEA is expected to measure in the PFRC-2. To

get a simple estimate for the resolution for energies below 450 eV, the resolutions for that

range are averaged together, with their standard deviation serving as the uncertainty in

the measurement. Because of the significant uncertainty for the resolution in this energy

range, it is important to see how this range of ∆E/E values may influence aspects of

the observed signal, most importantly, its temperature, T. The standard deviation from

the energies between 200 and 450 eV is about 1.2 %, so the reasonable values of ∆E/E

within two standard deviations are ∆E/E ∈ [0.058, 0.106].

3.3.1 Applying Resolution to Real Signals

In a real signal, because of the ∆E/E resolution, in which the window of energy accep-

tance depends linearly on energy, the signal will appear to be shifted towards higher ener-

gies. This section will lay out the framework necessary to handle this energy-dependent

∆E, along with an assessment of the effects that uncertainty in the value of ∆E/E may

have on the calculation of ion energy in the observed signal.

First, to illustrate the effects that the ∆E ∝ E resolution has on the signal, the

effects are calculated for a plasma with a general energy distribution, f(E). Discussion

about the specific methods for handling the Maxwellian distribution are discussed a bit

later. Because of the finite resolution, the signal at each energy Ei is really the integrated

signal from energies E ∈ [E−∆E/2, E+∆E/2]. Therefore, if this distribution is sampled

at energies Ei, then the corresponding signal g(Ei) that will be observed is given by:

g(Ei) =

∫ Ei+∆E/2

Ei−∆E/2
f(E)dE =

∫ Ei(1+
r
2
)

Ei(1− r
2
)
f(E)dE, (29)

where r = ∆E/E. This same property can be exploited to produce a simple approximate

routine for recovering the underlying energy distribution from the observed signal g(Ei).

If the integral in Equation 29 is approximated using the trapezoidal rule, which will be

valid for small enough ∆E, then the operation can be easily reversed without know-

ing the underlying distribution in advance. To illustrate, Equation 29 can be written
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approximately as:

g(Ei) =

∫ Ei(1+
r
2
)

Ei(1− r
2
)
f(E)dE ≈

f(Ei(1 +
r
2) + f(Ei(1− r

2)

2
rEi. (30)

By further approximating the integral by assuming that f(Ei(1 + r
2) + f(Ei(1 − r

2) ≈
2f(Ei), it can be stated that:

g(Ei) ≈ f(Ei)rEi −→ f(Ei) ≈
g(Ei)

rEi
, (31)

which is an approximation to the values of the underlying signal f(Ei) given an observed

signal g(Ei) and the knowledge that the signal is observed through a resolution that

depends linearly on energy.

(a) A Maxwellian distribution for kT = 100
eV along with an observed signal assuming
that ∆E/E = 0.106.

(b) Inverting the observed signal to reveal
the underlying distribution using the tech-
nique described in Equation 31.

Figure 23: Figures illustrating peak width variation for the same energy.

Figure 23a displays what may be the observed signal given an underlying distribu-

tion which is Maxwellian, defined as f(E) = 2E1/2(πT 3)−1/2e−E/kT . The orange curve

is the observed signal, which has been weighted using ∆E ∝ E such that it is shifted

towards higher energies. The method for correcting for this shifted weight described

in Equation 31 is illustrated in Figure 23, in which the “observed signal” from Figure

23a is inverted back to the “underlying signal” according to Equation 31. To reflect the

uncertainty in the actual value of ∆E/E, especially at lower energies, the method is im-

plemented using the two farthest values that ∆E/E is likely to take. In Figure 24a, one

can see that the inversion scheme produces an underlying signal almost identical to the
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(a) A Maxwellian distribution for kT = 100
eV along with an observed signal assuming
that ∆E/E = 0.106.

(b) Inverting the observed signal to reveal
the underlying distribution using the tech-
nique described in Equation 31.

Figure 24: Figures illustrating peak width variation for the same energy.

original one, despite the crude assumptions made in inverting the process of integration

that takes place during signal collection. Furthermore, the inversion scheme described

in Equation 31 does not really depend on the value of ∆E/E because r acts only as a

scale factor in the equation. The use of more sensitive integration techniques than the

trapezoid rule would depend more significantly on the value of r.

If the distribution is Maxwellian, the temperature can be inferred by looking at the

tail of the distribution. In this case, the inversion scheme is very accurate, returning

almost the same temperature that would be inferred from the Maxwellian itself. Figure

22 illustrates the calculation of the temperature of the Maxwellian using a line fitting

scheme to the tail end of the distribution. This is performed by taking the natural

logarithm of the distribution, i.e., according to:

ln(f(E)) = ln(A) +
1

2
ln(E)− E

kT
, (32)

which, because ln(E) grows much more slowly than E, can be approximated for large E

as:

ln(f(E)) ≈ − 1

kT
E +B. (33)

The slope of this line is − 1
kT , so one can find the temperature of the distribution by

taking kT = − 1
m . In the figures above, the Maxwellian has a characteristic temperature

of 100 eV, and calculating the temperature using a linear fitting for the natural logarithm

of the signal recovers that temperature fairly accurately. Applying Equation 33 to the

39



“underlying” and “observed” signals in Figure 24a, for instance, yields temperatures of

107.4 eV and 127.1 eV, respectively. By inverting the “observed signal,” the temperature

measured from the “observed” signal is much closer to the “underlying signal” at 108.2

eV. The result from this inversion is shown in Figure 24b. Thus, if the underlying

signal is a Maxwellian, than applying even a crude inversion process can recover the

temperature to within 1% of what the temperature would have been measured using

the underlying signal. Further, from Figure 23b it can be seen that the inverted signal

itself is quite close to the original. Therefore, to answer the question posed earlier, the

large uncertainty in the resolution for energies below ≈ 450 eV is unlikely to pose a

significant obstacle to the accuracy of the data analysis. Nevertheless, the calculation

of the resolution from calibration data is a helpful confirmation that, at least at high

enough energies, the resolution is roughly a linear function of energy.

3.4 Magnitude of the Signal on the Channeltron

Aside from calculating the proportionality between energy and voltage or the value of

the analyzer’s energy resolution, another goal of calibration was the measurement of the

current variation as it travels through the port crosses before it finally enters the curved-

plate analyzer. The current was measured using the two current probes, which were bare

metal wires connected to picoammeters inserted into the path of the beam. The probes

were designed by Bruce Berlinger to be able to rotate in and out of the path of the beam

while maintaining a tight vacuum seal. The two probes interfered with the beam in ways

that were unexpected. For instance, moving the probes in or out of the path sensitively

influenced the amount of signal seen exiting the Channeltron. Specifically, the presence

of Probe 1 in the path of the beam increased the amount of signal seen, while barely

any signal was seen without the probe in the path. The source of this phenomenon is

not particularly clear, but it may have to do with the wire focusing the beam in some

way. Especially considering the possibility that the beam exits the ion gun at some offset

positive voltage, the presence of a floating potential wire may effect the signal before it

reaches the 0 V midline of the curved-plate analyzer.

From the data in Figure 25, it appears that the current is attenuated by a factor

of about 1
60 as it passes through the stripping cell. There appears to be sharp cutoff in

the transmission of current between 700-800 eV. Until 700 eV, the current is attenuated

by about a factor of 1
60 while for higher energies, the attenuation factor is closer to 1

1000 .

The reason for this cutoff is not so clear. On the contrary, the main two expected con-
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Figure 25: The current on both probes as a function of ion energy. Probe 1 is the
probe closest to the ion gun.

tributions for attenuation, collisions with gas molecules and angular divergence, should

lead to attenuation that decreases with energy or stays constant with energy, respec-

tively. One possible explanation could have to do with some cutoff in how the beam is

focused for higher energy ions in such a way that leads to a decrease of current in the

second probe, although this requires further investigation.

One of the outstanding problems observed during the calibration of the SC-IEA

with the ion source was the gap between the current of the observed signal at the

Channeltron detector and the current as measured at the probes. Although the count

rate at the electron multiplier was not recorded directly, for energies lower than a keV,

there were not more than a couple pulses per period. Because the frequency of the

applied voltage on the curved-plate analyzer was 60 Hz, if there were 5 counts per

period, this would be a flow of about 300 ions/s. Although this number is very rough, it

provides a rough number to compare to the current seen from the ion gun on the second

probe. However this is significantly lower than the current seen in the second probe. For

instance, the current seen at the second probe for ions of 500 eV was 0.2 nA, or:

0.2nA = 2 ∗ 10−10C

s
∗
(

H+

1.602 ∗ 10−19C

)
≈ 1.25 ∗ 109 ion

s
, (34)

about a billion ions per second, which is 7 orders of magnitude higher than what roughly

was observed.

There are several considerations that may lead to a reduction in the current. First,
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it is reasonable to assume that the 1/60 attenuation experienced between the first and

second probe is repeated between the second probe and the Channeltron. Second, be-

cause the voltage signal applied to the curved-plate analyzer is sinusoidal, the analyzer

only spends a limited amount of time at voltages that can accept the selected ion ener-

gies. Finally, if some of the ions enter at a non-zero entrance angle, they may be excluded

from detection. The rest of this section will quantify the final two considerations to test

their contributions to beam attenuation.

The second consideration in the reduction of current from the second probe to the

curved-plate analyzer is the fraction of each period spent at a voltage that can collect

the target energy. As discussed earlier, because of the nonzero aperture width, there is

an energy resolution ∆E/E = r, i.e. an energy E0 is accepted when the voltage takes

values between V (E0(1+
r
2)) and V (E0(1− r

2)). In the case of the calibration, the applied

voltage function was:

V (t) = A ∗ sin(f ∗ t), (35)

so the amount of time per period spent collecting a particular energy E0 is given by:

Ttotal(E0) =
1

f
arcsin

(
V (E0(1 +

r
2))

A

)
− 1

f
arcsin

(
V (E0(1− r

2))

A

)
. (36)

Equation 36 is evaluated in Figure 26 for a ∆E/E resolution of 0.1, a quantity slightly

larger than that the range experimentally determined in the previous section. The other

parameters in Equation 36 are used the measured quantities of the analyzer reported in

Section 2.3. Figure 27 plots this time as a fraction of the total period, i.e. the fraction

of each period spent collecting energy E0.

Figure 26: The total time in one period
spent at each energy, E0.

Figure 27: The fraction of a period
spent at each energy, E0.
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From the above, one can see that the fractional amount of each period spent at the

target energy will attenuate the amount of current delivered to the Channeltron. For a

500 eV electron during calibration, there was only 0.74 ms of collection time per period,

or 4.4% of each period. Thus, we can use an attenuation factor of ≈ 1
25 for this cause of

reduction.

Another consideration that might have been entertained for why the current is

attenuated is that ions entering the curved-plate analyzer have a large enough angle

to prevent their passage through the curved plates. However, this consideration does

not lead to a reduction of current when the relevant angles in this situation are taken

into account. Because the stripping cell aperture is ≈ 0.1 inches, and the length of

the first portcross is ≈ 20 inches, the largest angle allowed to exit the stripping cell is

θ = arctan(0.1/20) = 0.28◦. Thus, the widest possible range of angles into the curved-

plate analyzer is θ ∈ [−0.28◦, 0.28◦]. However, even if an ion entered the analyzer at an

angle of 0.28◦, it would likely still reach the Channeltron.

Figure 28: Simulated trajectories of two
ions at 500 eV through the detector,
marked in dashed gray lines.

Figure 29: The two trajectories in Fig-
ure 28 seen in closeup as they enter the
exit aperture.

Figures 28 and 29 show the trajectories of two ions at 500 eV, with one entering

the curved plates tangential to the analyzer’s curvature (α = 0◦) and one at an angle

of 2◦ relative to the analyzer plates’ curvature. Both ions safely enter the exit aperture

and continue into the Channeltron. If an ion oriented at 2◦ still passes through the

analyzer, than an ion at a tenth of that angle will likely exit the aperture as well, even

though the simulation is based on non-ideal measurements of the curved-plate analyzer,

as elaborated upon in the section discussing the calibration of the curved-plate analyzer.
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Applying the two further reduction factors accounts for a total reduction of 1
1500 , or

a total incoming current expected to be 8.3 ∗ 105 ion
s , which is now about 2000 times the

magnitude of the “observed” current of 300 ions per second. The result of the remaining

discrepancy is unclear.

The current may be further reduced because the pressure in the portcross from

Probe 2 to the curved plates is approximately twice that of the portcross housing Probe

1. This may mean that the reduction factor between Probe 2 and the curved plates

is ≈ 1
120 as opposed to 1

60 . Nevertheless, this would mean that the observed current is

still about 1000 times less than what would be expected, so for now, the reason for the

magnitude of the current remains unclear.

To summarize this section, calibration using the known-energy ion source allowed

for an experimental determination of the validity of the theoretical expectations of the

curved-plate analyzer. The relationship between plate voltage and ion energy was deter-

mined to be linear as expected, and the resolution was determined to be mostly constant

at higher energies, with a larger spread and tendency toward lower resolution at lower

energies. The magnitude of the signal was measured at the two probes, although it is

hard to justify the low current entering the Channeltron.
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4 Installation on the PFRC-2

This section will discuss the plans for the connection between the SC-IEA and the PFRC-

2 plasma device. The desired properties of the connection will be discussed as well as

the plans to implement them.

4.1 Port and Tubing Design

To construct the connection between the SC-IEA and the vacuum vessel, the connecting

pipes, the angle relative to the vacuum vessel, and the lengths need to be specified.

The desired capabilities of the connection are the ability to view the neutral flux from

various angles relative to the midplane and minimizing the attenuation of neutral flux

because of the connection angles. As mentioned above in the introduction, the PFRC-2

can be thought of as an axisymmetric device, with three main directions, the ẑ, r̂, and

θ̂ directions. The synthetic diagnostic (SD) module on the RMF code predicts that

neutrals exiting the vessel will likely not be purely radial; rather, they will exit at some

angle θ0 due to nonzero velocity in the ẑ direction, i.e. in the direction of the major axis.

Further, this angle could depend on the specific parameters used to run the plasma. The

design of the pipe connecting the diagnostic to the vessel accounts for this by using a

bellows that can bend. Further, the pipe inserted in the vessel is done so at an angle in

the first place.

Once the observation angle is set, there is a very small angular resolution due to the

length of the diagnostic and the small aperture at the end of the diagnostic. Specifically,

the angular resolution is:

θ = arctan

(
l

d

)
= arctan

(
40

0.25

)
= 0.35◦, (37)

so whatever angle θ0 the detector is set to, the effective angles seen will be between

θ0 − 0.35◦ and θ0 + 0.35◦, although larger angles may exist due to scattering along the

ion path as well.

To implement these desired capabilities, the installation on the vacuum vessel con-

sists of two distinct parts, a primary 2.25” polycarbonate tube penetrating the vessel

itself and then a 6 inch stainless steel bellows that connects the tube and the diagnostic.

The polycarbonate tube allows for the neutrals to move towards the diagnostic past

the copper antennae, while the bellows allows for adjustment of the angle between the
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diagnostic and the machine to enable detection of the flux at different angles relative to

the midplane.

To allow for minimal attenuation of the flux, the bellows should be curved as little

as possible. This is because the bellows does not redirect the flux, it simply reorients

the diagnostic to look at an angle. In doing so it lowers the effective flux seen by the

diagnostic. Hence, it is best to place the tube at an angle into the vacuum vessel itself,

so that flux at the desired angles is greater.

Figure 30: Plans for the tubing between the PFRC-2 and the SC-IEA vessels. The
tube’s dimensions in the present plans have the diameter of the conductive tube
at 0.3” and the length at 4”.

Figure 30 displays a bird’s eye view of the plans drawn out for the installation of

the port tubing. The top of the figure is the PFRC-2 vessel wall, and the bottom of the
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figure is the SC-IEA diagnostic vessel. The three main components of the connection are

pictured in the figure: the polycarbonate tube entering the vacuum vessel, the stainless

steel bellows, and the low conductance thin tube connecting between the bellows and

the SC-IEA vessel.

4.2 Maintaining Vacuum

In order to maintain low pressure (≲ 10−6 Torr) in the SC-IEA port crosses while they

are connected to the PFRC-2, which is kept at a pressure of ≲ 10−3 Torr, there will be

a long, thin tube placed in the center of the bellows which connects the SC-IEA and the

PFRC-2. This conducting tube is designed to have a conductance low enough to keep

the pressure at the desirable level in the SC-IEA. A low pressure is required to minimize

losses due to scattering out of the detector path as well as to maximize the lifetime of

the getter pumps.

The first step in determining the proper dimensions with which to construct the

low-conductance tube is to determine the conductance of a tube as a function of length

and radius. In Chapter 2 of Scientific Foundations of Vacuum Technique, [20], Dushman

states that flow through a pipe or orifice can be described using three different models:

laminar, molecular, or a transition region between the two. In laminar flow, the flow is

dominated by collisions between the gas particles rather than with the pipe, whereas in

molecular flow, the flow is dominated by interactions with the pipe. Therefore, molecular

flow is largely determined by the geometric characteristics of the apparatus while laminar

flow is mostly independent of these characteristics. The applicability of these two flow

models is determined by relative frequencies of collisions between molecules and collisions

between molecules and the walls. To compare these frequencies, one uses the mean free

path, l, and a characteristic measurement of the pipe, such as its radius, a. If the mean

free path is much larger than the radius, then the flow is molecular, if the mean free

path is much smaller than the radius, the flow is laminar. If there is no great difference

between the frequencies of these two collisions, then the flow is in the regime in which

both collisions between molecules and collisions between molecules and walls need to be
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taken into account. Dushman gives simple criteria for this relative frequency:

l/a < 0.01 −→ laminar

l/a > 1.00 −→ molecular

0.01 < l/a < 1.00 −→ transition,

where l is the mean free path and a is the characteristic dimension.

In this case, the characteristic dimension used is the radius of the pipe, which will

be 0.15” = 0.381 cm. The mean free path for H2 gas at 300 K can be found using:

l =
1

4πr2
1

n
=

kBT

πd2P
, (38)

which is found in [2]. In SI units, 0.001 Torr = 0.13 Pa, and kB = 1.38∗10−23 J/K. Plug-

ging in these values, and assuming that the molecular diameter of H2 is < 1 Angstrom

or 10−10 m, which is the value given for oxygen in [2], the mean free path of H2 is ≈ 100

cm. Using this mean free path and the characteristic dimension of radius for the tube

to be used, a = 0.381 cm, the ratio l/a ≈ 266, which safely puts this flow in the range

of molecular flow.

For the conductance of a tube using molecular flow, Dushman (2.29a) writes that:

C = 30.48

(
a3

l

)√
T

M
L/s, (39)

where a (radius) and l (tube length) are measured in centimeters, T is measured in

Kelvin, and M is the molar mass of the gas. Figure 31 shows the conductance calculated

from Equation 39 as a function of tube radius for tubes of varying length. The dashed

black line marks the diameter and and conductance calculated for the tube to be used in

practice, a tube with inner diameter of 0.3” and a length of 4.0”. With these dimensions,

the conductance is calculated to be ≈ 2.0 L/s.

To calculate the steady-state pressure in the SC-IEA, one posits that the system is

at steady state when the molecular current (dn1
dt ) into the port cross is the same as the

molecular current (dn2
dt ) out of the port cross. One can use the throughput (pumping

speed (C) * pressure (P )) as the molecular current. To illustrate this, differentiating

both sides shows that, if dP
dt = 0, i.e. at steady state, then P dV

dt = Q = dN
dt kT . Thus,

the throughput, Q, is proportional to the molecular current into/out of the vessel. As
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Figure 31: Conductance of a tube of
length l as a function of tube diameter.

Figure 32: Pressure in SC-IEA chamber
assuming a pumping speed of 350 L/s.

described in its manual, the turbo pump (Turbo V-551) used on the machine had a

lowest possible pumping speed of 350 L/s. Because the Turbo pumps from the end of

a tube, with several connections, a lower pumping speed of ≈ 100 L/s will be assumed.

At steady state, then, the throughput into the port cross from the tube must equal the

throughput out of the port cross due to the turbo pump, i.e.:

Q1P1 = Q2P2

2.0 L/s ∗ 10−3 Torr = 100 L/s ∗ P2

P2 = 2.0 ∗ 10−5 Torr.

This same calculation is performed assuming the turbo’s pumping speed of 100 L/s for

various different lengths of tube in Figure 32. One can see the general scaling of the

conductance and pressure. From those calculations, it is evident that a wide range of

lengths and diameters would be suitable for maintaining workable pressure in the SC-

IEA. Nevertheless, to be safe, a tube length of 10.16 cm (4.00”), about the length of the

stainless steel bellows will be used, while keeping a slightly larger diameter of 0.762 cm

(0.3”) to make alignment with the stripping cell simpler. Even if the pumping speed is

only 100 L/s, the pressure in the SC-IEA should only be ≈ 2.00 ∗ 10−5 Torr, which is

still a safe range for the maintenance of the getter pumps.

To summarize, the desired parameters of the connection have been presented, along

with a practical plan for the connection, along with an analysis of the pressure in the

port crosses due to the connection to the PFRC-2.
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5 Conclusion

To conclude, this thesis has attempted to describe the physics that contribute to the

operation of the charge exchange ion-energy analyzer, with a particular focus on the

specific ion dynamics in the analyzer, along with an experimental test of the properties

of the analyzer due to those ion dynamics. The quantities established through the process

of calibration will prove useful in the operation of the diagnostic on the PFRC-2, when

the physics of the diagnostic will be tested further and have significant implications for

the interpretation of the energy distribution of neutrals tested with the system. This

thesis has worked on building the framework for interpreting the signal that comes from

the diagnostic, through calibration with a known source as well as through testing the

effects that uncertainties in quantities like the resolution, the energy-voltage relation,

and the energy dependence of the ionization efficiency of the stripping cell.

Headway has been made in the construction and calibration of the diagnostic, but

the main part of the work remains to be performed and tested. Future work includes the

operation of the PFRC-2 with the charge exchange diagnostic and the interpretation of

the data from the SC-IEA. The work performed as part of this thesis has hopefully aided

the group in the advancement of this exciting project to develop a system to sensitively

measure the ion energy distribution.
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Appendix I: Derivation of Binet’s Equation9

In deriving the approximate path of ions through the curved-plate analyzer, use is made

of Binet’s Equation, a differential equation governing the path u(θ), where u = 1
r of a

particle in a central force field. First, the Lagrangian of a particle in a central potential

U(r) is written down, along with the Euler-Lagrange Equations for the two degrees of

freedom:

L =
1

2
m
(
ṙ2 + r2θ̇2

)
− U(r) (40)

∂L

∂θ̇
= mr2θ̇2 = constant = l (41)

mr̈ = mrθ̇2 − ∂rU = mrθ̇2 + F (r). (42)

Now, we let u = 1
r and take the first derivative with respect to θ:

du

dθ
=
dr

dθ

du

dr
= − 1

r2
dr

dt

dt

dθ
= − 1

r2
ṙ

θ̇
. (43)

Using conservation of angular momentum (i.e. the θ Euler-Lagrange Equation), one can

write: du
dθ = −m

l ṙ. Differentiating once more, it is found that:

d2u

dθ2
= −m

l

dṙ

dθ
= −m

l

dṙ

dt

dt

dθ
= −m

l

r̈

θ̇
. (44)

Using the Euler-Lagrange Equation for r and substituting in for θ̇ = l
mr2

, it is found

that:

d2u

dθ2
= −mr

2

l2

(
mrθ̇2 + F (r)

)
.

Substituting in l2 = m2r4θ̇2 and u = 1
r , the final form of Binet’s Equation is found to

be:

d2u

dθ2
+ u = − m

l2u2
F (u). (45)

Using this form, one can easily plug in for different forms of F (u) to arrive at equations

for the trajectories of the orbits u(θ). For the case of the curved-plate analyzer, for

which F ∝ u, Binet’s Equation yields a clear starting point for solving the trajectory.

9This derivation largely follows that in Thornton and Marion Section 8.4.
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