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Energizing charged particles by an orbit instability in a slowly rotating magnetic field
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The stability of charged particle motion in a uniform magnetic field with an added spatially uniform transverse
rotating magnetic field (RMF) is studied analytically. It is found that the stability diagram of a single particle’s
orbit depends critically on the chosen boundary conditions. We show that for many boundary conditions and wide
regions in the parameter space, RMFs oscillating far below the cyclotron frequency can cause linear instabilities
in the motion which break μ invariance and energize particles. Such energization may appear at odds with the
adiabatic invariance of μ; however, adiabatic invariance is an asymptotic result and does not preclude such
heating by magnetic fields oscillating at slow frequencies. This mechanism may contribute to heating in the edge
plasma of field-reversed configurations (FRCs) in rotamak-FRC experiments. Furthermore, these RMF-driven
instabilities may significantly enhance azimuthal current drive during the formation of FRCs in such devices.
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I. INTRODUCTION

Consider a particle in a constant, uniform magnetic field
B0 with cyclotron frequency �0. We examine the possibility
of destabilizing the dynamics and pumping energy into the
particle by applying an additional perpendicular spatially uni-
form rotating magnetic field (RMF) B1(t ) which rotates in the
transverse plane with period T much longer than the gyrope-
riod (�1 =̇ 2π/T � �0). We show that for many boundary
conditions and wide regions in the parameter space, RMFs
oscillating far below the cyclotron frequency can cause linear
instabilities in the motion which break μ invariance and ener-
gize particles. This model system of low-frequency RMFs has
been studied before, primarily in studies focused on finding
conditions for stable solutions [1–6] and is particularly im-
portant to current drive in field-reversed configuration (FRC)
plasmas [7,8]. However, previous treatments have not fully
addressed two important aspects of the problem: the roles of
adiabatic invariance and boundary conditions in the theory.

The former issue is theoretical in nature. At first glance,
invariance of the magnetic moment μ = W⊥/B, which is often
assumed in plasma physics, might preclude energization of
the particle since B = |B0 + B1(t )| is constant. Indeed, while
schemes for energizing plasmas via magnetic pumping were
proposed early in the history of plasma physics, first to explain
cosmic ray phenomena [9], and soon after as potential heat-
ing mechanisms for fusion devices [10], they typically relied
on breaking conditions for the adiabatic invariance of μ. In
collisional magnetic pumping, dissipative, non-Hamiltonian
collisions break adiabaticity [11]. In transit-time magnetic
pumping, particles experience rapidly changing magnetic
fields when entering and exiting a finite region of oscillating
B, breaking the assumption that the field is slowly varying in
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space [11,12]. RMF heating of FRC plasmas has also been
explained by breaking adiabatic conditions either at magnetic
nulls [13] or by Speiser collisions [14,15]. In contrast, the
presented model of energization by slow RMFs suggests that
μ can grow significantly without explicitly breaking adiabatic
conditions. This is possible since adiabatic invariance is an
asymptotic result, and as such it does not necessarily limit the
growth of μ for fixed small values of the adiabatic parameter
ε = �1

�0
.

This paper also answers a question of more practical im-
port, that of the role of boundary conditions on the stability
of the particle dynamics. The RMF B1 induces an electric
field E which is determined in part by the boundary conditions
and is therefore not unique. Three different sets of boundary
conditions have been employed in past studies, each lead-
ing to vastly different stability criteria [1–7]. In a study on
RMF-driven isotope separation, Rax and Gueroult identified
that there is actually a large family of boundary conditions
consistent with this problem whose stability properties remain
unexplored [5]. Here we derive the complete set of consistent
boundary conditions and determine the stability criteria for
a one-parameter subset of these which characterizes those
configurations most relevant to laboratory plasmas. This gen-
eralized treatment reveals two important points. First, one can
exhibit a large degree of control over the stability diagrams
by varying boundary conditions, and with correctly chosen
conditions, one may be able to energize one or both species in
a plasma. Such a mechanism may provide a linearized model
of heating in the edge region in field-reversed configuration
(FRC) devices driven by RMFs. In regimes in which elec-
trons, but not ions, are energized, we show that the energy is
selectively imparted into the azimuthal motion, leading to an
azimuthal current drive. This mechanism may be important in
the formation of FRCs. Second, one can answer the question
of how sensitive the stability diagram is to perturbation in the
boundary conditions. It is shown that the stability diagrams
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in some previous studies [2,4,6,8] are in fact highly sensitive
to such perturbations. However, this is an exceptional case.
We show that for almost all boundary conditions the Hamil-
tonian structure of the problem provides structural stability,
guaranteeing that small changes in the boundary conditions
only slightly perturb the stability diagram.

Fluid models [16,17] have been extensively used to study
the penetration of rotating magnetic fields into FRCs. How-
ever, fluid models are not applicable when the gyroradii of
particles exceed a moderate fraction (∼1/10) of the field
curvature, a condition that exists in small s (hot, kinetic) FRCs
and near the minor axis (the O-point null line) of all FRCs
(s ≈ 0.3ρi/rs, where ρi is the ion gyroradius at the FRC’s field
maximum and rs is the separatrix radius). Supporting the
latter assertion is the observation that RMF fields often do not
penetrate to the minor axis of many FRCs [18]. Particle-in-cell
codes [19] have also been applied to the RMF-FRC problem.
In addition to being self-consistent, these do address kinetic
issues, though the required computational resources are ex-
tremely high. On the other hand, single-particle models [20]
offer a far simpler framework which allows detailed study of
certain important rapid processes, independent of the com-
plex interplay of longer-duration phenomena, e.g., inductive
effects and collisions, in FRCs. Applications of our model to
FRCs are thus restricted to rapid processes, such as particle
energization and current drive in the early stages of FRC
formation.

The paper is organized as follows. The equations of motion
and boundary conditions are presented in Sec. II, followed by
a study of the stability criteria in Sec. III. In Sec. IV we discuss
various implications of the stability analysis, in particular,
how our results compare to previous analyses and applica-
tions to FRC devices in terms of driving azimuthal current
and heating the plasma. In Secs. V and VI, it is shown how
energization of charged particles by slowly oscillating fields
is consistent with the adiabatic invariance of the magnetic
moment.

II. EQUATIONS OF MOTION

Consider a spatially uniform, T -periodic magnetic field

B(t ) = B0ez + B1(t ), (1)

which corresponds to the family of vector potentials

A(x, t ) = 1
2 B(t ) × x + Ā(x, t ) = 1

2 B̂(t )x + Ā(x, t ), (2)

where Ā(x, t ) is any curl-free vector field and the hat map ˆ :
R3 → so(3) was used on the r.h.s. to express the cross prod-
uct. We work in the Coulomb gauge, so we have the additional
constraint that ∇ · Ā = 0. Therefore, Ā = ∇ψ where ψ (x, t )
is a solution of Laplace’s equation. In the terminology of fluid
dynamics, A is determined up to an irrotational flow Ā. We
assume further that there is no electrostatic potential, that is,
φ = 0, so the electric field is purely inductive:

E(x, t ) = −1

c

∂A
∂t

= −1

c

(
1

2
˙̂B1x + ∂Ā

∂t

)
. (3)

This field automatically satisfies Faraday’s equation. The free-
dom afforded by Ā (or equivalently by ψ) can be understood
from the fact that boundary conditions have not been imposed.

Equation (1) describes fields that extend infinitely in space.
Such fields are nonphysical and in reality must be coupled
to nonlinear, decaying fields for large x. Ā can be viewed as
specifying the boundary (or matching) conditions determined
by such nonlinear fields.

We are interested in the case of spatially linear fields in
which E(x, t ) = F(t )x for some matrix F(t ). Thus, ψ must be
a quadratic form

ψ (x, t ) = 1
2 xT G(t )x, (4)

where G is a traceless matrix which can generally be taken to
be symmetric. We then arrive at the general form of the vector
potential

A(x, t ) = 1
2 (B̂(t ) + G(t ))x =̇ Ax. (5)

The dynamics of a particle with charge q and mass m in this
field are described by the Hamiltonian

H (x, p) = 1

2m

(
p − q

c
A

)2

, (6)

where p is the canonical momentum

p = mv + q

c
A. (7)

Hamilton’s equations then give the canonical equations of
motion

ẋ = ∂H

∂p
= 1

m

(
p − q

c
Ax

)
, (8)

ṗ = −∂H

∂x
= q

mc
AT

(
p − q

c
Ax

)
. (9)

We normalize time using the background gyrofrequency �0 =̇
qB0

mc :

τ = �0t, x̃(τ ) = x(t ), p̃(τ ) = p(t )

m�0
, B̃(τ ) = B(t )

B0
,

Ã = A
B0

, T̃ = �0T (10)

to obtain the form(
˙̃x
˙̃p

)
=

( −Ã I
−ÃT Ã ÃT

)(
x̃
p̃

)
=̇ M(τ )

(
x̃
p̃

)
;

M(τ + T̃ ) = M(τ ). (11)

This is a linear nonautonomous system with periodic coeffi-
cients, and its solution can be formally written as(

x̃
p̃

)
= P(τ )

(
x̃(0)
p̃(0)

)
, (12)

where the solution map P(t ) is determined by

Ṗ = M(τ )P, P(0) = I, (13)

where I is the identity. The stability of the system is deter-
mined by the eigenvalues of the one-period solution map,
also known as the monodromy matrix, P(T̃ ). In the general
case, P(T̃ ) only can be obtained numerically. In this study
we will specialize to a particular family of vector potentials
for which the stability of Eq. (11) can be studied via analytic
means. We note that this system has a Hamiltonian structure
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and therefore may be amenable to analysis by a recently
developed generalized Floquet theory for nonperiodic Hamil-
tonian systems [21]. This possibility will be explored in future
work.

Consider the rotating magnetic field (RMF)

B̃(τ ) = ez + β(cos ετ ex + sin ετ ey), (14)

where ε =̇ α−1 =̇ �1
�0

, β = B1
B0

, and �1 = 2π
T . Such fields have

been employed in multiple plasma physics applications, such

as in simplified models of the applied fields in rotamak
FRCs [4,6–8] and in an RMF-driven plasma separation con-
cept [5]. In the slowly rotating limit |ε| → 0, it can be used
as a model system to study the interplay between adiabatic
invariance and particle energization. The orientation of the
rotation with respect to the particle gyration in the background
field is specified by the sign of ε (or equivalently α) with
ε > 0 and ε < 0 corresponding to counter- and corotating
fields, respectively. In this case, Eq. (5) gives

Ã = êz

2
+ β

2

⎛
⎜⎝

g11(τ ) g12(τ ) sin ετ + g13(τ )

g12(τ ) g22(τ ) − cos ετ + g23(τ )

− sin ετ + g13(τ ) cos ετ + g23(τ ) −[g11(τ ) + g22(τ )]

⎞
⎟⎠. (15)

In general, the gi j (τ ) are arbitrary functions of time determined by the boundary conditions. However, typical conditions of
theoretical and experimental interest substantially constrain the gi j (τ ). We consider the case in which the boundary conditions
have the same driving frequency and are in phase with the RMF (and with no higher harmonics):

g13(τ ) = b13 sin ετ, (16)

g23(τ ) = a23 cos ετ, (17)

gi j (τ ) = ai j cos ετ + bi j sin ετ ; i � j, j ∈ {1, 2}, (18)

where the ai j and ai j are constants. We also assume that the boundary conditions are rotationally symmetric with respect to the
RMF. That is, we assume the cylindrical components of E satisfy

Er (r, φ + ετ ′, z, τ + τ ′) = Er (r, φ, z, τ ), (19)

Eφ (r, φ + ετ ′, z, τ + τ ′) = Eφ (r, φ, z, τ ), (20)

Ez(r, φ + ετ ′, z, τ + τ ′) = Ez(r, φ, z, τ ). (21)

These conditions essentially assert that the only preferred direction in the xy plane is that specified by the instantaneous direction
of the RMF. We can eliminate many of the Ai j and Bi j using these conditions. For example, with τ = 0 and φ = 0, condition (21)
can be expressed as

−B1�1

2c
[r(a23 + b13)(1 − cos 2ετ ) + 2z(a11 + b22)(−1 + cos ετ ) − 2z(a11 + b22) sin ετ ] = 0. (22)

From the functional independence of the involved trig functions, it follows that a23 = −b13, a11 = −a22, and b11 = −b22.
Applying similar reasoning to Eqs. (19) and (20) shows that g11, g12, and g22 must vanish, leaving a single free parameter
p =̇ a23 = −b13 to specify boundary conditions. The total electric field is then

E(x, τ ) = B1�1

2c
[−z(1 − p) cos(ετ − φ)er − z(1 − p) sin(ετ − φ)eφ + r(1 + p) cos(ετ − φ)ez], (23)

which clearly satisfies conditions (19)–(21). Note that p = 1 corresponds to the case when E is purely in the z direction and
p = −1 to the case when it is only in the transverse plane. We thus arrive at the general form of Ã:

Ã = B̃0

2
êz + β

2

⎛
⎜⎝

0 0 (1 − p) sin ετ

0 0 −(1 − p) cos ετ

−(1 + p) sin ετ (1 + p) cos ετ 0

⎞
⎟⎠. (24)

We have made these assumptions both because they are typi-
cal of laboratory applications of RMFs as well as because they
allow a vastly simplified analytical treatment by moving into
a rotating frame. That said, we must take care that the results
of the following stability analysis are robust against small per-
turbations away from these specialized boundary conditions.
This point is addressed in Sec. IV E, where it is shown that the

Hamiltonian structure guarantees such robustness for almost
all values of p.

We briefly remark on the question of determining p in
practice. A choice of Ā, or equivalently of p, mathematically
represents a boundary condition on E. In practical scenarios,
the uniform rotating B and linear rotating E configuration
assumed will only hold locally. Thus, by linearizing E in
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a region of nearly uniform rotating B, an equation of the
form (23) is obtained, from which one can read off p.

The explicit time dependence in Eq. (24) can be eliminated
by transforming into the coordinate system (x′, p′) rotating
with the RMF:

x′ = R(ετ )x̃, (25)

p′ = R(ετ )p̃, (26)

where R(θ ) is the xy-rotation matrix

R(θ ) =

⎛
⎜⎝

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

⎞
⎟⎠. (27)

We note that this is a canonical transformation since it is the
cotangent lift of the point transformation given by Eq. (25).
The transformed equation of motion is then

(
ẋ′
ṗ′

)
= M′

(
x′
p′

)
, (28)

where

M′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
2 + ε 0 1 0 0

− 1
2 − ε 0 β

2 (1 − p) 0 1 0

0 − β

2 (1 + p) 0 0 0 1

− 1
4 0 β

4 (1 − p) 0 1
2 + ε 0

0 − 1
4 [1 + β2(1 + p)2] 0 − 1

2 − ε 0 β

2 (1 + p)
β

4 (1 − p) 0 − β2

4 (1 − p)2 0 − β

2 (1 − p) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (29)

III. STABILITY ANALYSIS

Since this transformed matrix M′ is time-independent, its
eigenvalues λi determine the stability. In particular, this ma-
trix is Hamiltonian [i.e., M′ ∈ sp(6,R)], so the dynamics
are stable if and only if all of its eigenvalues are imaginary
and semisimple. In the unstable case, the growth rate of the
instability is

γ =̇ max Reλi. (30)

Since M′ is Hamiltonian, its characteristic polynomial is even:

λ6 + λ4(1 + β2 + 2ε + 2ε2)

+ λ2ε

[
− pβ2 + ε − 1

4
εβ2(p2 + 6p − 3) + 2ε2 + ε3

]

+ ε3

4
(1 + ε)(1 − p)2β2. (31)

Let u = λ2, so that the eigenvalues are determined by the roots
of the cubic polynomial:

u3 + u2(1 + β2 + 2ε + 2ε2) + uε

[
− pβ2 + ε

− 1

4
εβ2(p2 + 6p − 3) + 2ε2 + ε3

]

+ ε3

4
(1 + ε)(1 − p)2β2 = 0. (32)

In particular, the system is unstable unless all roots ui are
real and negative, with special care being taken in the case of
repeated roots. It is possible to write explicit expressions for
these roots, but they are extremely unwieldy. Furthermore, we
are interested not so much in the explicit solutions themselves,
but in the stability boundaries in parameter space. These are
determined in part by the zeros of the discriminant of the cubic

equation, which, in this case, is a 12th-order polynomial in the
parameters. A general exact analytical treatment is therefore
not possible except for special choices of the parameters.
However, we can derive all of the notable features of the
stability diagram using perturbation theory.

A. Slowly rotating limit

The stability diagrams for the counterrotating (α = ε−1> 0)
and corotating (α < 0) cases are shown in Figs. 1 and 2 for
different p values between −1 and 1. We look first at the
limit of slowly rotating fields |α| 	 1. In this case, the leading
order solutions of Eq. (32) are

u1 ∼ (p − 1)2

4pα2
+ O(α−3),

u2 ∼ pβ2

α(1 + β2)
+ O(α−2), (|α| 	 1), (33)

u3 ∼ −(1 + β2) + O(α−1),

assuming p 
= 0, 1. In the counterrotating (α > 0) case, the
dynamics are stable when p < 0 and unstable when p >

0 with γ ∼ α−1/2. This difference in stability can be seen
in numerically calculated particle trajectories and the corre-
sponding magnetic moment evolutions shown in Fig. 3. These
trajectories were computed with α = 200, β = 0.2, and p =
±0.5. On the other hand, in the corotating case either u1 or u2

is always positive, so the system is always unstable in the large
α limit. When p > 0, the instability rate goes as γ ∼ |α|−1/2

while for p < 0, γ ∼ |α|−1.
When p = 0, u1 and u2 are given by

u1,2 ∼ ± iβ

2α3/2
√

1 + β2
+ O(α−2), (34)
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FIG. 1. Stability diagrams of a particle in a counterrotating magnetic field for the following boundary conditions: (a) p = 1, (b) p = 0,
(c) p = −0.3, and (d) p = −1. The log of the growth rate γ is shown as a function of normalized RMF strength β = B1/B0 and inverse RMF
frequency α = �0/�1. p = 1 and p = −1 correspond to E ‖ ez and E ⊥ ez, respectively.

and therefore the p = 0 case is always unstable for |α| 	 1
with γ ∼ |α|−3/4.

The p = 1 case is special and worth discussing since it has
been previously studied [2,4–6,8]. In this case, u1 = 0 is an
exact root for all (α, β ), as can be seen by the vanishing of
the constant term in the characteristic polynomial (32). In this
case it may appear that the system is stable in the α → −∞
limit since u2 < 0. However, u1 = 0 corresponds to a double
root at λ = 0, and a closer inspection of the eigenvectors
shows the eigenspace of 0 is one-dimensional and spanned
by the vector ez. Thus, 0 is a defective eigenvalue, and the
motion is technically unbounded. This point was not reported
in the literature. This instability appears mild in the sense
that the instability grows linearly, rather than exponentially,
in time. Moreover, the instability corresponds only to growth
of the z coordinate; the motion in the xy plane and the mo-
mentum in all directions remain bounded as τ → ∞. Both
these properties are atypical and occur only for the special
value of p = 1; in all other cases we study, instabilities cor-
respond to the exponential divergence in both the axial and
transverse coordinates. This is in fact the fundamental issue
with the p = 1 case: small modifications to the boundary

conditions leading to nonzero electric fields in the xy plane
destabilize the motion for large negative α (see Fig. 4). This is
known as structural instability. This sensitive dependence on
the boundary conditions needs to be considered when drawing
conclusions from the p = 1 case. It is shown in Sec. IV E that
the system is structurally stable for other p values.

One potential complication in determining stability from
asymptotic expansions is that higher order terms could modify
stability. The only case in which this could be an issue is
if all the u are real and negative to leading order with an
imaginary term occurring at some higher order. However, this
is only possible when eigenvalues are repeated in the leading
order since complex eigenvalues occur in conjugate pairs. For
instance, higher order terms cannot affect the stability in the
above case when p 
= 0 since the roots in Eq. (33) are all
distinct to leading order.

B. Counterrotating stability boundaries

Figure 1 shows that in the counterrotating (α > 0) case,
there are stability boundaries which depend on p. By guessing
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FIG. 2. Stability diagrams of a particle in a corotating magnetic field for the following boundary conditions: (a) p = 1, (b) p = 0.5,
(c) p = 0, and (d) p = −1. The log of the growth rate γ is shown as a function of normalized RMF strength β = B1/B0 and inverse RMF
frequency α = �0/�1. p = 1 and p = −1 correspond to E ‖ ez and E ⊥ ez, respectively.

FIG. 3. (a) x̃ỹ projection of the trajectory and (b) magnetic moment μ̃ of a test particle in a slow counter-RMF with α = 200, β = 0.2 over
two RMF periods (400 gyroperiods) for two different boundary conditions: p = 0.5 (red) and p = −0.5 (black). The particle is initialized at
x̃ = 0 and p̃ = (1, 0, 0). The stability of the particle orbit depends on the sign of p.
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FIG. 4. (a) x̃ỹ projection of the trajectories and (b) magnetic moments μ̃ of a test particle in a slow co-RMF with α = −50, β = 0.25 over
25 RMF periods (1250 gyroperiods) for two different boundary conditions: p = 1 (red) and p = 0.9 (black). The particle is initialized at x̃ = 0
and p̃ = (1, 0, 0). These plots illustrate the structural instability of the p = 1 dynamics against perturbations in p.

the functional form β ∼ c√
α

of the boundary, and taking α →
+∞, one finds

u1 ∼ −1 + O(α−1), (35)

u2,3 ∼ 1

2α2
[pc2 − 1 ±

√
(c2 − 1)(p2c2 − 1)] + O(α−3).

(36)

When p < 0, stability boundaries correspond to changing
signs of the radical and are given to leading order by c =
1, 1

|p| , that is, the stability boundaries are β ∼ 1√
α
, 1

|p|√α
.

When 0 < p < 1, the dynamics again become unstable as c
increases past 1 due to the radical. However, when the radical
becomes real again upon crossing c = 1/p, the nonradical
term pc2 − 1 is positive, maintaining the instability. Thus, the
only stability boundary is β ∼ 1√

α
. Analysis is similar when

p > 1, except now the only stability boundary is β ∼ 1
p
√

α
.

We can summarize these results by saying that for α 	 1 the
dynamics are unstable if

1

|p|√α
< β <

1√
α

if p < −1, (37)

1√
α

< β <
1

|p|√α
if − 1 < p < 0, (38)

β >
1√
α

if 0 < p < 1, (39)

β >
1

p
√

α
if p > 1. (40)

Using perturbation theory, one can obtain successively
higher order approximations of the stability boundaries. Do-
ing so, one finds

β1 ∼ 1√
α

+ 3 − p

4α3/2
α−3/2 + O(α−5/2), (41)

β2 ∼ 1

|p|√α
+ (p − 2)(p + 1)

4|p|3α3/2
+ O(α−5/2). (42)

The leading order approximation for β1 is very accurate even
when α ∼ O(1). For β2, one needs to include O(α−3/2) cor-
rections when α ∼ O(1). This is illustrated in Fig. 5 for p =
−0.3.

We note in particular that in the case of p ≈ −1 when
the electric field is primarily in the xy plane, the region of
instability in the counterrotating case is extremely small, and
thus bounded motion for all time is possible for nearly all α, β.

C. Corotating stability boundaries

In the corotating case, the only stability boundaries are in
the fast RMF range (−1 � α < 0). First, we show there is an
exact stability boundary at α = −1 if we assume −1 � p � 1

FIG. 5. Approximate stability boundaries for a corotating RMF
for p = −0.3 are shown in red. A higher order approximation is
needed for the upper boundary when β ∼ O(1).
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FIG. 6. Approximate stability boundaries in the corotating case
for p = −0.5 are shown in red. Higher order approximations are
necessary when β ∼ O(1).

and 0 < β < 1. If we let α = −1 + δ, then the roots of the
characteristic polynomial are given to leading order in δ by

u1 ∼ p − 1

p + 3
δ, (43)

u2,3 ∼ − 1
2 [1 + β2 ±

√
1 + β2(p2 + 2p − 1) + β4]. (44)

One can show that u2,3 are always negative in our chosen
parameter regime, so the expression for u1 implies that the
system is stable for δ > 0 and unstable for δ < 0. The stability
boundary at α = −1 does not depend on the value of p, but
there are other stability boundaries which do. We can use
asymptotic techniques as in the previous section to obtain
approximate equations for these boundaries in the limit that
β2 � 1 and |1 + α| � 1:

β1 ∼ 4
√

1 + α

p + 3
+ 9p2 + 26p + 29

(p + 3)3
(1+α)3/2 + O[(1+α)5/2],

(45)

β2 ∼ (1 + α)3/2

1 − p
+ 7 − 3p

4(1 − p)2
(1 + α)5/2 + O[(1 + α)7/2].

(46)

These approximations are not very accurate when β2 ∼ 1,
but this can be partially remedied by including higher order
corrections; this is illustrated in Fig. 6.

D. Extremely weak RMF limit

In the case that β2 � α−1, the leading order solutions of
Eq. (32) are given by

u1 ∼ (1 − p)2β2

4(1 + α)
+ O(β4),

u2 ∼ − 1

α2
+ O(β2),

u3 ∼ − (1 − α)2

α2
+ O(β2), (47)

from which it follows that the dynamics are unstable only
when α < −1.

IV. IMPLICATIONS

A. p = 0 case

It appears that only the p = 0 and p = ±1 cases have been
treated in the literature [1–7]. The p = 0 case corresponds to
the electric field

E = B1�1

2c
[−z cos ετex −z sin ετey+(x cos ετ +y sin ετ )ez]

(48)
and can be produced by a pair of dephased coils aligned along
the x and y axes and a constant B0 along the z axis. We remark
on this case because its treatment in the literature is somewhat
muddled. It was first considered by Kazantsev [1], but an
algebraic error in Eq. (3) of that work resulted in incorrect
stability criteria. Kurbatov detailed this error [3], obtained
the correct characteristic polynomial [Eq. (10), Ref. [3]], and
produced a plot of the stability regions (Fig. 1, Ref. [3]). How-
ever, the boundaries in this plot were distorted, and certain
stability boundaries were missing. Kurbatov’s original plot
and a corrected version produced from Eq. (31) are shown in
Fig. 7; note that the parameters αkurb and βkurb in Ref. [3] (sub-
scripts added) are related to our definitions by αkurb = 1

αβ
and

βkurb = 1
β

. A correct version of the p = 0 stability diagram,
consistent with Fig. 7(b), can also be found in Fig. 4 of Rax
and Gueroult [5].

B. Single-particle confinement in FRCs

Previous analyses [4,6] have used the p = 1 case to model
single-particle confinement in field-reversed configurations
(FRCs) maintained by RMFs. The idea in these analyses is
that RMF parameters α and β should be chosen such that both
electrons and ions are confined for all time. Such conditions
would lead to long confinement times, aiding steady operation
of an FRC device. In these studies, it was assumed that p = 1
and that |αi| � 1 and |αe| 	 1 where αe,i = �0e,i

ω
. Van De

Wetering and Fisch [6] propose that stable operation can be
achieved by applying an RMF which is counterrotating with
respect to ions (0 < αi � 1) and corotating with respect to
electrons (|αe| 	 1, αe < 0). There are a few issues with this
setup. For one, as was mentioned in Sec. III A, the z coordinate
actually grows linearly when p = 1, and so the motion is not
technically bounded. This would not likely be a practical issue
since mirror forces could confine electrons in the z direction.
The structural instability is a more important issue: if p is
perturbed even slightly, the motion is unstable in all position
and momentum coordinates if |αe| 	 1, αe < 0. Furthermore,
it appears that the reason p = 1 was chosen is that it leads to
nice analytically solvable equations. Physically, it corresponds
to the situation in which E ‖ êz. However, a model of RMFs in
FRCs using more realistic nonlinear fields involves azimuthal
electric fields [15].

We thus look for other parameter regimes which may result
in confinement. For all p 
= 1, electrons are unstable when
|αe| 	 1, αe < 0 due to what we might term the corotating
electromagnetic instability. It is only possible to confine elec-
trons for all time in the |αe| 	 1 limit if the RMF is in fact
counterrotating with respect to the electrons (αe > 0). In this
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FIG. 7. (a) Stability diagram obtained by Kurbatov parameterized by αkurb = 1
αβ

and βkurb = 1
β

(reproduced from Ref. [3] with permission
of Springer Nature) and (b) the corrected stability diagram calculated from Eq. (31).

case, either of the following conditions would lead to stable
electron motion:

β >
max(1, |p|−1)√

αe
and p < 0 (49)

or

β <
min(1, |p|−1)√

αe
. (50)

Assuming |αi| � 1 and αi < 0, the ions are also stable.
We note that such considerations should be applied only to

the edge of the FRC where the magnetic field gradients are
relatively weak and the approximation of a spatially uniform
magnetic field is valid. This model is not applicable in the core
of the FRC due to the presence of large field gradients.

C. Heating particles with RMFs

Because we are working in a linear model, growth in
the position and momentum coordinates are coupled. In par-
ticular, it is not possible for particle energy to grow while
maintaining a bounded orbit. This can be seen by noting that
M′ in Eq. (29) cannot have eigenvectors containing only the
momentum coordinates. The studies [4,6] considered only
situations in which all particle dynamics are stable, and,
therefore, particle energies are bounded. In this case, particle
energies oscillate over an RMF period, and thus heating can
occur if one considers phase decohering collisions, whether
with particles or the field. In fact, this is the only way heating
can occur when particle orbits are bounded in this model.

However, it seems that this requirement on particle orbits
may be too restrictive. The fact that bounded orbits cannot
exist when heating occurs is a result of the simplified, linear
model employed. It is a characteristic of any linear instabil-
ity, including ICRF heating which is frequently used to heat
laboratory plasmas. In realistic scenarios, nonlinear fields and
collisions could nonlinearly saturate the instability and pro-
vide confinement. FRCs, for example, have axial field nulls,

around which the model we are considering is certainly not
applicable. Furthermore, ambipolar electric fields are likely
to develop near the boundary to limit particle losses. Thus,
we can instead look for parameter regimes in which electrons
and/or ions have unstable orbits and thus undergo collisionless
heating, and assume that confinement is provided by nonlin-
ear effects outside of our model. There are broad parameter
regimes in which such heating can occur. For example, heat-
ing for both species would occur if the RMF is taken to be
corotating with ions and counterrotating with electrons, and
such that αi � 1 and αe > β−2 if we assume p > 0.

We can give a physical picture of the energization mecha-
nism. Since magnetic fields can do no work, it is the inductive
electric field which imparts energy to the particles. In the case
of p = 1, the particle is accelerated in the z direction by the
purely axial electric field. The radial RMF then helps convert
this axial motion into perpendicular motion, increasing μ. The
details are different for p 
= 1, but the same essential idea that
the electric field imparts energy and the RMF redistributes it
among the other degrees of freedom holds.

As in the previous section, this model should be applied
only to the edge of an FRC plasma, where the field gradi-
ents are relatively weak. In particular, the field nulls inside
the separatrix appear to play an important role in heating in
the core of the FRC [15], and thus such heating cannot be
modeled by the spatially uniform magnetic field employed
here. We can apply this theory to the edge of the PFRC-2 near
the separatrix, where typical parameters are αe = −1.8 × 103,
αi = 0.9, and β = 0.8 × 10−3. The model predicts electron
heating in the edge since the electrons are corotating with the
RMF and |αe| 	 1 (see Fig. 2). Since αi � β−2, the ions are
stable by the results of Sec. III D, and thus ion heating due to
this mechanism is not expected in the edge.

D. Azimuthal current drive

The rotamak concept [22,23] relies on RMFs to provide the
large azimuthal current necessary to maintain field reversal
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in an FRC. The heuristic picture of the RMF current drive
mechanism is that electrons are tied to the RMF and are
dragged azimuthally by it. The ions are too heavy and slow
to be magnetized by the RMF, resulting in a net azimuthal
current due to the electrons. Studies of single-particle motion
in nonlinear FRC-like fields suggest this picture is an over-
simplification of the current drive mechanism [24]. However,
our model suggests that with the help of the instability this
mechanism may be accurate during the initial formation of an
FRC.

When the slow RMF is first applied, prior to FRC forma-
tion, the electromagnetic fields are approximated by Eqs. (14)
and (23). Assume αe,i, β, and p are such that electrons are
unstable, ions are stable, and the RMF is corotating with
respect to the electrons. Let ξ be the position-space projection
of the eigenvector of M′ corresponding to the most unstable
eigenvalue λu for electrons. Equation (33) shows that λu is
real to leading order as |α| → ∞, and thus γ ≈ λu. This
eigenmode will eventually dominate the electron dynamics
with the asymptotic motion in the rotating reference frame
given by x′(τ ) ∼ aξeγ τ where a is a constant determined by
initial conditions. In the lab frame, we see that all electrons
rotate synchronously with the RMF and with an exponentially
growing radius,

x̃(τ ) ∼ aR(−ετ )ξeγ τ . (51)

Consider a ring of such electrons with initial radius r0 and
extended uniformly in the z direction. Even if the particles
are initially stationary, Eq. (51) shows that the particles will
eventually establish an azimuthal current, creating a solenoid
with radius r = r0eγ τ and current K per unit length. Since the
asymptotic rotation speed is synchronous with the RMF, K
will be constant while the radius grows. Thus, the linear insta-
bility in the electrons results in a growing enclosed magnetic
flux,

� = −4π2

c
Kr2

0 e2γ τ . (52)

The ions, being bounded, will produce no such growing mag-
netic flux, resulting in net azimuthal current drive. We observe
that the instability significantly enhances the azimuthal cur-
rent drive effect of an RMF through two mechanisms. The
instability synchronizes the angular velocity of all electrons to
that of the RMF and pushes all electrons toward larger radii.

E. Geometric stability

In this analysis we have assumed that the boundary con-
ditions rotate with the the same phase and frequency as the
RMF. This assumption allowed us to parametrize the bound-
ary conditions by a single parameter p. Furthermore, these
assumptions were necessary to obtain a time-independent set
of equations after transforming to the rotating frame. These
assumptions cover many situations of interest, such as the
RMFs typically applied to cylindrical devices like FRCs and
mirror machines. There are other situations in which it may be
necessary to consider boundary conditions which break these
assumptions; for example, the rotational symmetry would be
broken in the case of RMFs applied to a toroidal device. In
this case, one may wish to work in the large-aspect ratio

approximation in which the rotationally symmetric boundary
condition assumption will only be perturbatively broken. Fur-
thermore, even in situations like FRCs where the boundary
conditions should be rotationally symmetric, one needs to be
careful that the stability diagram itself is structurally stable
against small perturbations that break this symmetry.

When considering general boundary conditions, transform-
ing to the rotating reference frame no longer eliminates time
dependence in the equations of motion. As such, the eigenval-
ues of the monodromy matrix P(T̃ ) determine stability, rather
than those of M(τ ) or M′(τ ). In particular, the system is stable
if the eigenvalues ρi of P(T̃ ) are in the unit disk, with those
on the boundary semisimple. Since M(τ ) is Hamiltonian [i.e.,
M(τ ) ∈ sp(2n,R)], P(T̃ ) ∈ Sp(2n,R). As a result, the Krein
theory applies—stable eigenvalues must reside on the unit
circle and can leave and become unstable only via a Krein
collision [25–27]. Consider a set of boundary conditions that
satisfy our assumptions (i.e., they can be specified by choos-
ing p) and that are stable for some choice of α and β. The
eigenvalues ρi are on the unit disk and semisimple. The Krein
theory thus guarantees that arbitrarily small perturbations to
the boundary conditions, including those which cannot be
parameterized by p, cannot destabilize the system. Note, how-
ever, that in the marginal case when there are nonsemisimple
eigenvalues on the unit circle, perturbations can cause those
eigenvalues to leave the unit circle, making the instability
worse. This is what occurs in the p = 1 case. However, for
generic p values, we can say that the regions of stability are
geometrically protected, since the Hamiltonian (or symplec-
tic) structure provides this structural stability.

V. INSTABILITY IN A PARALLEL OSCILLATING FIELD

The instabilities in μ and corresponding energization of
particles observed in the slow RMF fields of Eq. (14) are
surprising in light of the adiabatic invariance of the magnetic
moment. To facilitate the discussion of adiabatic invariance
in the next section, we consider an additional, simpler mag-
netic configuration, that in which the periodic magnetic field
B̃ = B̃(τ )ez is purely in the z direction so that the motion is
confined to the xy plane [28]. The normalized equations of
motion are

¨̃x = 1
2 ỹ ˙̃B + ˙̃yB̃, (53)

¨̃y = − 1
2 x̃ ˙̃B − ˙̃xB̃. (54)

Unlike the RMF case, there is no obvious way to eliminate the
time dependence in the EOMs. However, they can be reduced
to a one-dimensional Hill equation as done by Ogawa [29].
Letting ξ = x̃ + iỹ, one obtains the complex scalar equation

ξ̈ + iB̃ξ̇ + i

2
˙̃Bξ = 0. (55)

Defining ξ (τ ) = u(τ ) exp [ − i
2

∫ τ

0 B̃(t ) dt] puts this into the
form of Hill’s equation,

ü + 1
4�2(τ )u = 0. (56)
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FIG. 8. (a) Stability diagram of a particle in a parallel oscillating magnetic field parameterized by the normalized RMF strength β and
inverse frequency α. The unstable band structure is related to that of the Mathieu equation. (b) Plot of the one-RMF-period growth rate γα as
a function of α and β. The decay of γα as α increases indicates adiabatic invariance.

Since |ξ | = |u|, ξ and u have the same stability properties.
Choosing �(τ ) = 1 + β sin ετ , we have

ü + 1
4 (1 + β sin ετ )2u = 0. (57)

This equation can be viewed as a generalization of Math-
ieu’s equation with the proper Mathieu’s equation recovered
in the small β limit. Such equations are difficult to study
analytically, in part because they are nonhypergeometric [30].
We instead calculate the instability rates numerically from
the monodromy matrix P(T̃ ) using methods that have been
employed to study other nonautonomous instabilities in
plasma [31,32] and accelerator physics [21,33–35]. The in-
stability rate γ is determined by the eigenvalues ρi of P(T̃ ):

γ =̇ ln(max |ρi|)
T̃

. (58)

The stability diagram in Fig. 8(a) shows that the unstable
regions form a band structure of so-called Arnold tongues
centered around the cyclotron resonances at integer values of
α = ε−1. Note that all Arnold tongues are connected to the
line of β = 0, i.e., instability regions exist around arbitrarily
large integer values of α and arbitrarily small β, akin to the
situation of Mathieu’s equation. However, for fixed β, these
unstable regions shrink rapidly in size and strength as α in-
creases, and thus such fields cannot easily energize particles
for large α. In comparison, it is remarkable that instability
in the slow RMF discussed in the previous section exists for
large regions in the parameter space. The existence of such
parametric resonances for arbitrarily slow driving forces is
prototypical of the subtle issues that arise in the theory of
adiabatic invariants [36,37].

VI. ADIABATIC INVARIANCE

In this section, we address the seeming conflict between the
adiabatic invariance of μ and instabilities of μ in the slowly
varying RMF and parallel magnetic field discussed in previous
sections. We show how these results are in fact consistent.

The adiabatic invariance of the magnetic moment refers to the
tendency of variations in μ to remain small over long time
periods in the asymptotic limit of slowly varying fields. For
quantitative analysis, it is necessary to give this concept a
rigorous definition; one sufficient for the current discussion
is given by Arnold [37]. Let H (q, p; η) be a fixed, C2 function
of η. Set η = ετ and consider the Hamiltonian evolution with
slowly varying parameter η:

q̇ = ∂H

∂p
, ṗ = −∂H

∂q
; H = H (q, p, ετ ). (59)

Then a function I (q, p; η) is an adiabatic invariant of this
system if for every δ > 0 there exists ε0 > 0 such that, if
0 < ε < ε0 and 0 < τ < 1/ε, then

|I (q(τ ), p(τ ); ετ ) − I (q(0), p(0); 0)| < δ. (60)

In the present analysis in which we are interested in the
limit of slowly varying fields (ε = α−1 = �1

�0
� 1), adiabatic

invariance of μ is equivalent to the claim that for every δ > 0
there is a ε0 such that

|μ(τ ; ε) − μ(0; ε)| < δ (61)

for all 0 < ε < ε0 and τ < T̃ ∼ |ε|−1 = |α|. For the linear
fields studied, we have the following bound on the growth
of μ:

μ(τ ) ∼ ṽ2
⊥(τ ) � ṽ2(τ ) � ṽ2(0)e2γ τ , (62)

so adiabatic invariance is equivalent to the condition that for
any fixed β,

lim
|α|→∞

γ (α, β )α = 0. (63)

Physically, this requirement is that the growth factor over
a single RMF period must approach 0 as the RMF period
becomes arbitrarily large. The asymptotic nature of this con-
dition is enough to resolve any seeming contradiction between
particle energization and adiabatic invariance. The fundamen-
tal observation is that while this growth rate must eventually
approach 0 as |α| → ∞, the instability rate can be finite for
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FIG. 9. Plots of the one-RMF-period growth rate γα as a function of RMF parameters α and β for (a) a co-RMF with p = −0.5 and (b) a
counter-RMF with p = 0.5.

fixed α and may even increase over a range of α values. In
the case of the parallel magnetic field in the previous section,
unstable regions exist for arbitrarily large |α|, but the magni-
tude of γα decreases rapidly as |α| increases [see Fig. 8(a)].
The situation is quite different for some types of RMFs. In
the corotating case with p < 0, Eq. (33) shows that γ |α| ap-
proaches a constant as |α| → ∞. Even more dramatically, in
both the co- and counterrotating cases with p > 0 and p 
= 1,
the same equations show that γα ∼ O(|α|1/2); see Fig. 9(b).
Such apparent violations of adiabatic invariance are an artifact
of the linearity and infinite extent of the fields. The classical
results on the adiabatic invariance of μ [38–40] require that E
and B are bounded in x, which is violated by the linear field
E = − 1

c Ȧx. Physically, E must decay for large x, leading to
nonlinear saturation of the instability and ultimately restoring
adiabatic invariance in α. In essence, adiabatic invariance
ensures that the nondecreasing trend of γα in Fig. 9 will
not persist for arbitrarily large |α|. The size of |α| where
this eventual downturn occurs will depend on the realistic
nonlinear fields but can theoretically be large.

We emphasize, however, that the necessity of the bound-
edness condition on E and B is not obvious. Indeed, no
analogous requirement is needed to prove the existence of
adiabatic invariants for 1D Hamiltonian systems [37]. For
example, the energy-to-frequency ratio in the 1D simple
harmonic oscillator is the model example of an adiabatic
invariant, and that system has a linear, and thus unbounded,
force. In fact, the observed adiabatic invariance of μ in the
parallel oscillating magnetic field case was not guaranteed by
the classical results on μ invariance, but rather by results on
adiabaticity in 1D Hamiltonian systems since the dynamics
are described by the scalar Hamiltonian system (57). The
RMF case demonstrates the necessity of the boundedness of
the fields in the fully 3D case. The constraints of adiabatic
invariance thus do not set in until nonlinear effects become im-
portant. However, that is also the condition in which nonlinear
saturation typically occurs for any linear instability. This gives
a further reason why adiabaticity may be a milder constraint
in some scenarios than is often assumed. We note too that,
as pointed out by Arnold [37], results on adiabatic invariance
typically rely on certain averaging techniques which may not
be rigorously justified in dimensions higher than 1. Thus, it is

possible that subtle mathematical issues beyond the scope of
this paper may be relevant in this discussion.

VII. DISCUSSION AND CONCLUSIONS

We have shown that it is possible to pump energy into
a magnetized particle via a slowly rotating magnetic field,
despite the adiabatic invariance of μ. In practice, adiabatic
invariance is important only inasmuch as the associated
asymptotic limit is realized. How large |α| needs to be be-
fore adiabaticity sets in depends very much on specifics of
the field configuration. This variance is illustrated by the
difference between the parallel and rotating magnetic field
cases, with the former showing narrow resonances that shrink
and weaken rapidly as |α| → ∞ but the latter exhibiting
broadband instability that decreases slowly in this limit.
This broadband instability illustrates how adiabatic invari-
ance may be significantly less restrictive in practice than it
appears.

It was shown that the existence and location of these un-
stable regions depends critically on the boundary conditions.
Even restricting to the experimentally relevant boundary con-
ditions parameterized by p, one can have fairly strong control
over the stability diagram. By appropriately choosing RMF
parameters and boundary conditions it is theoretically possi-
ble to energize one or both species in a plasma. This offers
a simple model that could describe electron and ion heating
in the edge of FRCs driven by RMFs. Furthermore, in certain
parameter regimes these instabilities can drive azimuthal cur-
rent, a mechanism which may be important in the formation of
FRCs. Accurate predictions would of course require modeling
with more realistic nonlinear field configurations; the linear
case presented here suggests such efforts may be fruitful.
Moreover, there are many types of FRCs: large or small;
pulsed or steady state; RF, beam, or compression heated;
metal or dielectric containment vessels; and research-device
or reactor scale. As such there is a broad range of β and
α values. FRCs also contain plasma, with its concomitant
ambipolar constraint, and have magnetic nulls and strong field
gradients. All these must be included in the evaluating the
applicability of the above analyses to a particular FRC device.
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In the present analysis of particle dynamics, no colli-
sions are included. For the physics of azimuthal current drive
by RMF, we plan to investigate the effects of collisions
by numerically integrating the stochastic differential equa-
tion for electron pitch-angle scattering [41]. A study of the
p = 1 case using this type of method [6] showed the az-
imuthal current drive efficiency at the low collision limit is
surprisingly high, especially in comparison with LHCD or
ECCD [42–46], which entail mechanisms that push current
parallel to the magnetic field. There are a few noteworthy
similarities between the result reported in Ref. [6] and the
present findings, despite the fact that our analysis does not
yet include collisions. In Ref. [6], while the electron orbit is
bounded without collisions, the high current drive efficiency
is correlated with the orbit radial expansion under the in-
fluence of collisions. The expansion induced by collisions

for otherwise stable orbits is consistent with our conclu-
sion that the case of p = 1 is structurally unstable, i.e., a
small perturbation to the system parameter will render the
dynamics unstable. Furthermore, the connection between ex-
panded orbits and larger current drive efficiency agrees with
our finding that orbit instabilities significantly enhanced cur-
rent drive. These topics will be studied in detail as the next
step.
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