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Abstract 
A new method for parameter identification in non-linear kinetic systems is 

presented.  Parameter identification is achieved through the use of HDMR, (High 
Dimensional Model Representations) which can reduce greatly the computational cost of 
high dimensional function inversion.  This technique is applied to two previously studied 
kinetic systems in order to verify its accuracy.  In addition, modifications to the existing 
algorithm are discussed which could increase both the efficiency and generality of 
HDMR. 
Introduction 

Kinetic experiments are routinely performed to determine values of reaction rate 
constants.  The data obtained from such experiments often take the form of species' 
concentrations as a function of time of reaction.  This target data must then be 
deconvoluted to yield the parameters of interest.  If the reaction model is a system of 
ordinary differential equations, this inversion can be accomplished in a number of ways.  
Most straightforward is a simple non-linear fitting approach which varies the rate 
constants of interest in order to minimize the error-squared value between the target data 
and the model data.  However, this method involves the repeated integration of systems 
of potentially stiff ODEs, which can be resource intensive and numerically difficult.  In 
addition, because each of the parameters can be varied independently, the searchable 
parameter space grows exponentially with the number of parameters.  Thus, the number 
of points which must be sampled to obtain a good fit can quickly become unmanageable, 
an obstacle which is often referred to as the "curse of dimensionality".1   
 The difficulties of high dimensionality can be palliated by the judicious use of 
HDMR.2  HDMR is based upon the assumption that most multi-dimensional functions 
display relatively low-order correlation between input variables.  HDMR can be 
expressed mathematically by the following equation:3 
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Thus, one need only consider low-order correlation to obtain a reasonable approximation 
of the function's overall behavior.  For instance, a first order HDMR would consist of the 
sum of functions depending only on a single variable; a second order HDMR would 
consist of the sum of functions depending on every possible combination of two 
variables.  By neglecting higher order correlation, the number of sample points needed to 
describe a function's behavior is greatly reduced.  An HDMR map which accurately 
approximates the function of interest can be generated with a relatively low overhead. In 
the case of non-linear kinetics, this function takes as input the rate constants of the system 
and returns the concentration of a given species at a specified time.  Rather than inverting 
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the actual function, the evaluation of which can be computationally expensive, we can 
invert the HDMR map, which can be evaluated with much less cost. 
 The primary goal of our research was to prove that parameter evaluation of non-
linear kinetic systems is amenable to the HDMR technique.   
 
Technique 
  Integration of the ODEs which describe the kinetics of the system was initially 
attempted using a 4th-order Runge-Kutta algorithm.4  However, this method was 
unsuccessful due to the stiffness of the equations.  Eventually, the equations were 
successfully integrated using the lsode integration package, a "canned" routine which is 
adapted to the solution of stiff ODEs. 
 The first system to be studied was the formation of HBr from H2 and Br2 in gas 
phase. This reaction occurs by a free-radical mediated mechanism, which has been well 
studied and has been firmly established experimentally.5  Because six reactions are 
involved in the mechanism, there are six rate constants which govern the system's 
behavior.  Test data was then generated by using the literature values for the rate 
constants and using the lsode package to integrate the system over 100 seconds.6  The 
concentration of each of the five species at a series of fixed time intervals was recorded, 
just as real laboratory data would be collected during an experiment.  In several trials, we 
included random error in our generated data to simulate the experimental error associated 
with real laboratory measurements.  To test the HDMR inversion scheme, we then fed 
this target data into the inversion algorithm and compared the best-fit parameters to the 
known parameters with which the data was generated. 
 The first issue that needed to be addressed was the size of the parameter space for 
which the HDMR was to be constructed.  HDMRs using small windows displayed greater 
accuracy, but limited the possible values of the rate constants to narrow ranges.  It is 
assumed that at least some rough estimate of the real values of the parameters is known; 
in this case, the ranges were centered on the literature values of each rate constant. The 
second issue that was considered was whether a first order HDMR would be sufficient to 
model the function, or whether a second order HDMR would have to be constructed to 
obtain the desired accuracy.  

To determine the optimal window size and HDMR order, several HDMR maps 
were constructed and tested by conducting 1000 random trials and comparing the real 
function values with the HDMR approximation.  If we were using real laboratory data, 
we would try to ensure that the error in the HDMR model is no larger than the 
experimental measurement error.  In general, we tried to ensure that the HDMR error was 
less than 10 percent.  The results of the trials are shown in Table 1.  The largest window 
that was found to yield sufficiently accurate HDMR maps was a window spanning one 
order of magnitude on each axis: in other words, each rate constant was allowed to vary 
over a range of an order of magnitude.  Furthermore, in order to achieve the desired level 
of accuracy for a reasonably sized HDMR window, a second order HDMR was required. 
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Once the HDMR map was constructed, the actual inversion process was 
implemented using the galib2.44 genetic algorithm package7.  Though a simulated 
annealing or gradient descent algorithm could have been used, we chose a genetic 
algorithm because it offered the option of propagating a family of acceptable solutions 
rather than a single solution.  Previous studies have shown that many non-linear kinetic 
systems have multiple solutions8.  This tendency is even more pronounced if 
experimental error (not to be confused with HDMR error) is taken into account.  Thus, it 
was hoped that a genetic algorithm would locate all sets of rate constants which yielded 
the test data within the specified experimental error. 
Results 

Initially, an inversion run was performed on data generated by observing the 
concentration of HBr over the course of 2000 seconds with samples taken every 100 
seconds.  As expected, multiple solutions were located by the genetic algorithm, all of 
them generating curves that fit the target data extremely well.  We had hoped that the 
distribution of solutions found would be concentrated around the real rate constants used 
to generate the data, but unfortunately, this was not the case.  Only k3 displayed a sharp 
distribution around its truth value; the distributions of the other rate constants were broad 
and spanned the entire inversion window (see figures 1 and 2).  If random error was 
introduced into the target data, the distributions of all rate constants became even less 
sharp (see figure 3).  By adding more information to the system, the rate constants could 
be determined with greater specificity.  For instance, when the concentration of H was 
monitored along with the concentration of HBr, rate constants k3, k4, and k5 all showed 
sharp distributions centered around their truth values. 

To further test the generality and the accuracy of HDMR map inversion, a second 
non-linear kinetic system was modeled.  The oxidation of formaldehyde had previously 
been studied by Rabitz et al., who used a mechanism containing 17 reactions, and hence 
17 rate constants9.  Rather than generate the target data computationally as we did in the 
HBr case, real laboratory data reported by Rabitz was used along with the reported 
experimental error associated with the measurements.  Again, a window of 1 order of 
magnitude for each rate constant, centered on its truth value (as reported by the Rabitz 
paper) proved to be optimal.  The HDMR maps generated were of comparable accuracy 
to the HBr system, despite the greater dimensionality of the formaldehyde system, and a 
second-order HDMR yielded acceptable accuracy. 

Inversion of the target data was accomplished using the same genetic algorithm as 
in the HBr system.  Because only the concentration of the hydroxyl radical had been 
monitored in the experiment, it was found that only k1 through k5 were well-specified; 
the best-fit values of the other rate constants were distributed evenly over the inversion 
window.  Furthermore, the well-defined behavior of k2 and the ill-defined behavior of 
k17, which had previously been reported by Rabitz, was confirmed by our analysis as 
well.  The traditional method of inversion employed by Rabitz and the HDMR map 
inversion both determined the value of k2 with a high degree of accuracy.  In general, the 
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HDMR inversion of the formaldehyde system behaved very similarly to the inversion of 
the HBr system. 
Summary 

Thus far, the application of the HDMR map inversion technique to parameter 
identification in non-linear kinetic systems has been successful.  Though it was found that 
not all of the rate constants could be identified with great accuracy, this uncertainty was a 
result of multiple solutions present in the systems themselves.  Traditional methods of 
inversion, such as those used by Rabitz et al., also reported this uncertainty.  On the other 
hand, specification of well-defined parameters was accomplished very effectively and 
accurately, as evinced by the comparison of the results of traditional and HDMR map 
identification of the k2 rate constant in the formaldehyde system.  However, the increased 
efficiency and decreased computational cost of HDMR map inversion relative to 
traditional inversion, makes HMDR map inversion a desirable alternative. 

Though the usefulness of HDMR map inversion has been demonstrated in the 
case of two non-linear systems, there are still problems with the technique.  Obtaining an 
accurate HDMR map is an absolute necessity for accurate inversion.  Currently, the 
accuracy of an HDMR map of an intractable function -for instance, a function with strong 
higher order correlations- can be improved only by decreasing the size of the inversion 
window, an operation which limits the generality of the inversion or increasing the order 
of the HDMR.  However, by reworking the basic mathematical foundations of HDMR, 
we can increase its accuracy and generality without simply shrinking the size of the 
window or increasing the HDMR order.  For instance, preliminary work suggests that if 
HDMR is redefined such that: 
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the non-linear function g() can be used to remove some of the higher order function 
correlations and thereby increase HDMR accuracy without sacrificing window size.  
Other ideas, such as the rotation of the HDMR axes or the use of non-orthogonal HDMR 
bases, also show promising results.  It is also possible that accuracy could be increased to 
such a degree that a first order HDMR would be sufficient when previously a second- or 
third- order HDMR was necessary.  Hopefully, continued research will yield an algorithm 
which can model previously intractable functions with great accuracy and with a 
minimum number of function evaluations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
Figure 1 - Solutions obtained for k1 in 100 separate inversion trials.  The output data was 
not sensitive to rate constant k1, and hence k1 is not well-specified, as is shown by the 
very broad distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Figure 2 - Values obtained for k3 for 100 separate inversion trials.  Each solution found 
modeled the target data within ±.5% 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Figure 3 - Solutions for k3 which modeled the target data within ±10% 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Orders of 
magnitude 

0th order 1st order 2nd order 

2 556.8576 488.1731 180.062 
1.5 280.3485 192.6781 56.1079 
1 119.3876 50.1730 9.5417 
.5 43.4858 8.4946 .8183 
Table 1 - Standard deviation of HDMR values of 1000 test points from real values (in 
percent).  Orders of magnitude lists the size of HDMR window used. 


