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Abstract
Rigid electron rotation of a Rotamak-FRC produces a pressure flux function that is more
peaked than the Solov’ev flux function. This paper explores the implications of this peaked
pressure flux function, including the isothermal case, which appear when the temperature
profile is broader than the density profile, creating both benefits and challenges to a
Rotamak-FRC based fusion reactor. In this regime, the density distribution becomes very
peaked, enhancing the fusion power. The separatrix has a tendency to become oblate, which
can be mitigated by flux conserving current loops. Plasma extends outside the separatrix,
notably in the open field line region. This model does not apply to very kinetic FRCs or FRCs
in which there are significant ion flows, but it may have some applicability to their outer layers.

Keywords: nuclear fusion, field-reversed configuration, magnetohydrodynamics, Grad
Shafranov, rigid rotor
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1. Introduction

Rotamak-FRCs are plasma physics experimental devices in
which electron current is driven by an externally-imposed
rotating magnetic field (RMF) [1]. They are also called RMF-
driven FRCs. Interest in this configuration of plasma arises
from its favorable properties for scaling into a nuclear fusion
reactor, particularly a compact one [2–6]. The favorable prop-
erties include: high plasma β, maximizing the plasma pressure
for a given magnetic field; low internal field, allowing high-
temperature and advanced fuels; and a simple, compact, and
efficient method of heating and current drive in the form of
the RMF system. RMF current drive dates to the 1960s [7].
There have been several Rotamak-FRC experiments operating
since the 1990s [6, 8–11]. An existing example is the Prince-
ton field-reversed configuration 2 (PFRC-2) experiment at the
Princeton Plasma Physics Laboratory (PPPL) [12].

∗ Author to whom any correspondence should be addressed.

The name Rotamak was coined by Jones [8, 10]. Originally,
the ‘reversed field’ of the ‘field-reversed configuration’ (FRC)
referred to the θ-pinch method of formation, in which the bias
field was quickly ramped and reversed to drive plasma current.
FRC now more typically refers to the plasma configuration,
regardless of how it was produced.

In fully penetrated Rotamak-FRCs, the current drive is
assumed to be due to electrons rotating in synchrony with
the applied external RMF while the ions are stationary [1, 10,
13–16]. There is also speculation that FRCs that are not driven
by RMF will still rotate synchronously due to collisional
effects [17]. This argument extends to both electrons and ions,
although they will rotate at different rates. RMF-synchronous
electron rotation has been observed in experiments [18] and
PIC (kinetic) simulation [19].

A simplified (no Bt) Grad–Shafranov model is often used
to predict and reconstruct the MHD equilibria of these plasma
configurations [20, 21]. While many modern analyses assume
a Solov’ev [21] pressure flux function, with P ∝ Ψ (pres-
sure linear in flux) [22–24], it has been known since 1982

1741-4326/21/086023+14$33.00 1 © 2021 IAEA, Vienna Printed in the UK

https://doi.org/10.1088/1741-4326/ac0f96
https://orcid.org/0000-0003-0231-8525
https://orcid.org/0000-0002-8500-5526
mailto:cswanson@pppl.gov
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-4326/ac0f96&domain=pdf&date_stamp=2021-7-16


Nucl. Fusion 61 (2021) 086023 C.P.S. Swanson and S.A. Cohen

that the Solov’ev linear pressure flux function is the least
steep pressure flux function consistent with rigid rotation, and
that more realistic flux functions have a higher power law,
P ∝ ΨN , N � 1 [25–27] or even an exponential relationship,
P ∝ eΨ/Ψ0 [17, 28–32]. The well-known rigid rotor 1D radial
pressure profile P(r), B(r) implicitly assumes this pressure
flux function.

Where these steeper pressure flux functions have been used
to numerically generate equilibria, it has predominantly been
for the purpose of fitting to experimental measurements. In
this context, the implications of this steeper pressure flux
function on fusion reactor design have not been explored
in detail.

The Grad–Shafranov equation has also been used to model
FRC equilibria with more complex, multi-parameter pressure
flux functions that do not include rigid rotor effects [33, 34].

In section 2, we motivate these calculations by summariz-
ing the properties of a Rotamak-FRC-based fusion reactor. In
section 3, we introduce the geometry of the FRC and FRC-
related terminology and conventions. In section 4, we intro-
duce the calculation, its assumptions, and its applicability to
experiment and reactors. In section 5, we will derive the flux
functions to be inserted into the Grad–Shafranov solver that
are required by the condition of rigid electron rotation. In
section 6, we will discuss the likely values of the free param-
eters that are defined in section 5, the likely relative peaked-
ness of the density and temperature profiles. In section 7,
we discuss the solver which produces self-consistent MHD
equilibria from the equations in section 5. In section 8, we
will discuss the results of these MHD equilibria. In section 9,
we will conclude with a discussion of these results and their
effect on the future design of Rotamak-FRC based fusion
reactors.

2. Rotamak-FRC fusion reactors

It is beyond the scope of this paper to describe a Rotamak-
FRC-based fusion reactor, or argue the existence of a favorable
design point. For discussion of such a reactor, see the ‘path to
fusion’ section of Slough and Miller [5], and descriptions of
a Rotamak-FRC-based fusion rocket in two papers by Cohen
et al [2, 4]. Both of these sources discuss the possibility
of using FRCs’ unique strengths to produce in-space rocket
engines, a path also espoused by Wurden et al [3].

The in-space application highlights the unique strength of
the Rotamak-FRC compared to other magnetic fusion energy
concepts. The FRC has a high plasma β, which maximizes the
plasma pressure for a given magnetic field. This also maxi-
mizes the fusion power for a given magnet system mass. The
low internal field of the FRC also allows advanced fuels such as
D-3He to be considered, as it limits synchrotron radiation emis-
sion, creating a more favorable scaling at high plasma tem-
perature. The RMF system is a simple, compact, and efficient
method of heating and current drive.

For specificity, we tabulate example values of plasma
parameters of the Rotamak-FRC reactor described in Cohen

Table 1. Parameters of the PFRC-based fusion reactor, called the
DFD when considered as a rocket for in-space propulsion.

Parameter Quantity

Electron temperature (Te) 50 keV
Electron density (ne) 4 × 1014 (cm3)
RMF angular frequency (ωRMF) 2π × 106 rad s−1

RMF field magnitude (BRMF) 200 Gauss
Vacuum field (B0) 5 T
Plasma radius (rs) 25–30 cm
Plasma length (L) 1–10 m
Fusion power (Pfus) 1–10 MW
Fusion fuel D-3He
RMF power (PRMF) 100 kW–1 MW
RMF parity Odd (RMFo)
Reactor diameter 1–2 m
Reactor mass 1–10 tons

Figure 1. A rendering of a PFRC-based Rotamak-FRC fusion
reactor. The FRC plasma (center) is surrounded by three RMF
antennae, a vacuum vessel, and a solenoidal magnet array. A heat
engine in the upper-righthand corner generates useful electricity.
Image used courtesy of Princeton fusion systems (PFS).

et al [2, 4], which is called the direct fusion drive (DFD)
and is supported by the PFRC-2 experiment at the PPPL [12].
These parameters are tabulated in table 1. We note the favor-
able reactor size and specific power (Pfus/mass) enabled by the
Rotamak-FRC configuration.

A Rotamak-FRC fusion reactor concept typically consists
of: a solenoidal vacuum field system (typically superconduct-
ing and flux conserving), a vacuum vessel and pumping sys-
tem, an FRC formation and sustainment system (RMF), a fuel-
ing system (neutral beam injection or plasmoid injection), and
a heat engine for electricity generation. See a rendering in
figure 1.

Existing large, short-pulse Rotamak-FRC experiments have
measured Bohm-like or microturbulence-driven transport,
which is unfavorable to fusion reactor parameters [35]. This
high level of particle transport is attributed to saturation of the
lower hybrid drift wave (LHD). The PFRC-based reactor con-
cept is linearly stable to LHD [2]. Transport is assumed to be
near-classical, as has been theorized [36] and found of the fast
ions in the TAE energy C2 experiment [37].
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Figure 2. Anatomy of a typical FRC. Black lines: �B-field lines, or equivalently contours of constant flux Ψ. Red × s: external solenoidal
magnets. Green shaded region: closed field line region. White shaded region: open field line region. Red dashed line: the separatrix. Magenta
+: the o-point null. Radially inward of the null, the magnetic field is in the +ẑ direction as indicated by the arrows. Radially outward of the
null, the magnetic field is in the −ẑ direction.

3. Anatomy of an FRC

This section introduces the geometry of the FRC. A
toroidal/azimuthal cross section (r, z) of an example FRC is
shown in figure 2. Like most FRCs considered for fusion reac-
tors, this example FRC is prolate rather than oblate, with an
elongation (half-length/radius) of 2.

The FRC contains current �j = jφφ̂ only in the azimuthal
direction, and a magnetic field �B only in the r̂ and ẑ directions.
There is no toroidal/azimuthal magnetic field. The magnetic
field is composed of externally applied vacuum field and self-
generated plasma field generated by jφ.

The FRC is divided into two volumes. The closed field line
volume corresponds to the area shaded green in the figure. In
this volume, magnetic field lines are closed and particles are
nominally trapped. The open field line volume corresponds to
the area shaded white in the figure. In this volume, magnetic
field lines exit the vacuum vessel, so particles following a field
line exit the reaction volume and hit the wall. However, if the
FRC is embedded in a magnetic mirror, this loss of particles
can be mitigated by mirror confinement. The surface between
these two volumes is called the separatrix and corresponds to
the red dashed line in the figure.

The FRC has a line at which the magnetic field is zero.
This is called the o-point null line, and corresponds to the
magenta + in the figure. The pressure profile P(r, z) has a
maximum at this point. Inward of the null, the magnetic field
faces one axial direction, by convention +ẑ as in the figure.
Outward of the null, the magnetic field faces the other axial
direction, −ẑ.

In an ideal MHD equilibrium, the pressure gradient −�∇P
is balanced by the Lorentz force �j × �B. Because of this rela-
tionship between pressure, magnetic field, and current, the
magnetic and pressure profiles assume a self-consistent shape
found using the Grad–Shafranov equation [20, 21].

4. Summary of calculation and applicability

This paper will calculate the self-consistent shape of FRC
equilibria assuming ideal MHD, axisymmetry, and rigid elec-
tron rotation (ωe constant). This calculation is described
in section 5. A specific functional form of the pressure-
dependence of density and temperature is assumed, ne/n0 =
(P/P0)μ, T/T0 = (P/P0)1−μ, where μ is a number between 0

and 1. As we will see in section 5, these assumptions imply
a specific functional form of the pressure flux-function used
in the Grad–Shafranov Equation, P(Ψ) [20, 21]. This func-
tional form is either a simple power law P ∝ ΨN for the
non-isothermal case 0 � μ < 1, or a simple exponential P ∝
eΨ/Ψc for the isothermal case μ = 1.

Notably, the MHD calculation herein assumes an isotropic
pressure, which is of arguable validity outside the separatrix
in the open-field-line region. The mirror confinement and its
associated loss via the loss cone is completely absent from this
model.

We have not performed analysis of the stability of these
equilibria. No kinetic effects are present. No ion flow is
assumed. In an FRC-based compact fusion reactor, these
effects may be important, as the ion thermal gryoradius is
significant compared to the size of the plasma.

Models show that the assumption that electrons rotate
rigidly is good in the limiting case of completely penetrated
RMF field. Indeed, complete penetration is only possible when
the electrons rotate synchronously with the RMF, ωe = ωRMF.
In the more general case that the RMF magnitude is finite,
the plasma is collisional, and/or the plasma radius is large,
the electrons do not rotate synchronously with the RMF but
will still rotate rigidly, ωe < ωRMF [1, 10, 13–16]. Rigid elec-
tron rotation is found in experiment on the TCS-U experiment
[18, 38], MHD simulation [14, 16], and PIC (kinetic) simula-
tion [19].

Rostoker and Qerushi argue that FRCs will rotate rigidly
regardless of whether RMF is present, for example if the FRC
is formed via θ-pinch. They argue this due to collisional equi-
libration, stating: ‘the only drifted Maxwellians that satisfy
the Vlasov equation for systems with cylindrical symmetry are
rigid rotors’ [17].

Subsynchronous rigid rotation (ωe < ωRMF) can also be
described as incomplete RMF penetration [1, 10, 13–16].
Hugrass uses this penetration length: [13, 14]

δRMF =
ωce,RMF

νe,i

√
η

ωRMFμ0
, (1)

where δRMF is the penetration depth of the RMF field, ωce,RMF

is the electron gyrofrequency in the RMF field, νe,i is the elec-
tron–ion collision time, η is the resistivity of the plasma, ωRMF

is the angular frequency of the RMF, and μ0 is the magnetic
permeability of free space.
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Using the Spitzer resistivity for η, we find the following
dependency:

δRMF = ωce,RMF

√
3αS

29/2π3/2

1
ωRMF

(Te/mec2)3/2

Zn2
er3

e c ln Λ
∝ n−1, (2)

where αS ≈ 0.51 is the Spitzer correction to the DC
resistivity, me/c2 ≈ 511 × 103 eV is the electron rest energy,
re ≈ 2.82 × 10−13 cm is the classical electron radius, and
c ≈ 3.00 × 1010 cm s−1 is the speed of light in a vacuum.

Using example parameters in table 1 of Te = 50 keV, ne =
4 × 1014 1/cm3, ωRMF = 2π × 106 rad s−1, we find that a BRMF

as low as 16 Gauss is sufficient for penetration length of
δRMF = 50 cm. This is long compared to the FRC radius of
25 cm, so RMF penetration can be considered complete at the
design BRMF amplitude of 200 G. Penetration sets one crite-
rion on the minimum BRMF amplitude, but power deposition
and transport sets a more stringent one in the case of the design
point tabulated. Hence, 200 G rather than 16 G.

A full discussion of RMF current drive is beyond the
scope of this paper, but note that a very small RMF field,
200 G, can reverse a vacuum field two orders of magnitude
larger, 5 T. An intuitive justification for this is often for-
mulated in terms of torques, by a balance of RMF torque
and collisional torque between the electrons and background
ions. In a reactor-relevant regime, collisionality is small and
it does not take a very large RMF torque to balance the small
collisional drag torque. For a more complete discussion, see
Hoffman et al [1].

Much discussion has been given to the possibility that the
ions will collisionally spin up and become synchronous with
the electrons [39]. This would cancel out the FRC current and
no plasma would be confined. It is claimed that existing low-
temperature experiments have ion populations which share
momenta with the neutral gas populations and the wall, which
act as ion momentum sinks. Suggestions for reactor-scale solu-
tions include ion momentum injection via a neutral beam and
using the RMF to couple to the ions, either alone or in addition
to an electron RMF signal.

5. The pressure flux functions produced by rigid
rotation

In this section we will derive the pressure flux function to
substitute into the Grad–Shafranov equation [20, 21]. The
Grad–Shafranov model has the pressure flux function as a
free parameter, but as we will see here, the condition of rigid
electron rotation implies a functional form.

The central assumption of this model is that synchronous-
electron current (equation (5)) is the diamagnetic current
(equation (3)), that is that �j × �B balances �∇P. The net effect
of RMF is that it forces density to migrate across field lines
until the pressure profile is such that the diamagnetic electron
velocity rotates synchronously.

5.1. Diamagnetic current condition, MHD equilibrium

We assume an ideal axisymmetric MHD equilibrium and that
the plasma pressure at any given point is a function only of

the enclosed flux, P(Ψ(r, z)). The equilibrium equation is sim-
plified when it is assumed that there is no toroidal magnetic
field.

The equilibrium condition is

�j × �B = �∇P. (3)

By assuming axisymmetry, no toroidal field, and an
isotropic pressure flux function P(Ψ), this equation becomes:

jφ = 2πr∂ΨP, (4)

where φ is the toroidal or azimuthal direction, P = ΣnT
is the plasma pressure, r is the radial coordinate,
Ψ(r, z) =

∫ r
0 dr′2πrBz(r′, z) is the enclosed flux at point

(r, z), ∂ΨP is the derivative of the plasma pressure P with
respect to the magnetic flux Ψ. Ψ has not been normalized by
2π as is sometimes the custom.

Equation (4) is an intermediate step in the derivation of the
Grad–Shafranov equation [20, 21].

5.2. Rigid rotor current condition

We assume that the current is due to all electrons rigidly
rotating in synchrony (rigid rotation). The electron current is:

jφ = enerωe, (5)

where ωe is the angular frequency of the azimuthal electron
rotation, assumed to be uniform throughout the plasma, and
ωe � ωRMF. In order to compute P(Ψ), we will substitute
equation (5) into equation (4):

2πr∂ΨP = enerωe. (6)

If instead the current drive were due to ions rotating against
stationary electrons, an ion momentum term would have
to be added to the Grad–Shafranov equation. These results
still hold (with subscripts e, i transposed) in the regime that
mir2ω2

i � Ti.
We will now discuss the relationship between density, tem-

perature, and pressure:

niTi + neTe = nT = P, (7)

where
ne = ni = n (8)

and
T = Ti + Te (9)

are valid when Z = 1, the ion charge state is 1.
To proceed, we must make an assumption of the rela-

tive contributions of density and temperature to the pressure
change. We use the common parameterization that density
and temperature vary as a power law with the pressure whose
exponents sum to 1:

ne/n0 = (P/P0)μ (10)

T/T0 = (P/P0)1−μ, (11)

4
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where μ is a number between 0 and 1, and P0 = n0T0 are
the pressure, density, and temperature at some arbitrary point.
μ = 0 corresponds to the constant-density case, where varia-
tion in temperature is responsible for the variation in pressure.
μ = 1 corresponds to the isothermal case, where variation in
density is responsible for the variation in pressure.

The behavior for μ = 1 must be treated differently from the
behavior for 0 � μ < 1.

5.3. The case of 0 � μ < 1

This case, encompassing all situations except the isothermal,
was explored by Storer in 1982 and 1983 [25, 26]. The special
case of μ = 1/2 was explored in detail by Donnelly et al in
1987 [27].

Equations (6) and (10) have the solution: [25]

P ∝ (Ψ−Ψ0)
1

1−μ (12)

ne ∝ (Ψ−Ψ0)
μ

1−μ (13)

T =
1 − μ

2π
eωe(Ψ−Ψ0), (14)

where Ψ0 is the value of the flux at the plasma-vacuum
boundary, which may or not be the separatrix. Ψ = 0 at the
separatrix.

Several interesting features are apparent:
Steep power law: equation (12) is what is substituted into

equation (4) to find the Grad–Shafranov equilibrium. This is
a power-law function, P ∝ ΨN , N = 1

1−μ � 1. The least steep
exponent is N = 1, the Solov’ev function, which corresponds
to μ = 0. This analysis indicates that the Solov’ev solution is
only valid for rigid electron rotation when the density is con-
stant, and only the temperature varies. If the density is allowed
to vary at all, N > 1 and the pressure flux function becomes
more steep. We will find in section 8 that a steep function of
flux results in a pressure profile that is peaked at the magnetic
axis.

The specificity of T: T, as specified in equation (14), does
not have a multiplicative free parameter as P, n do in equations
(12) and (13). It is always linear to the flux, and the constant
of proportionality is always 1−μ

2π eωe. For T to reach a large
thermonuclear value, ωe and Ψ must be large enough.

This analysis breaks down when μ = 1. This case is dis-
cussed in section 5.4. The μ = 1 case is not T = 0 as equation
(14) would imply; rather it is T constant. In order for the μ = 1
case to be the limiting case of equation (14) as μ→ 1, it must
also be that Ψ0 →−∞.

Equation (14) implies that T can go to infinity as ωe does
the same. However, when ωe ∼ Ωe, the cyclotron frequency
of the electrons, then RMF no longer drives electrons and the
assumption of rigid electron rotation is invalid. Equation (14)
should only be considered valid for ωe < Ωe.

The free plasma boundary: the plasma-vacuum boundary
is not necessarily the separatrix; there could be significant den-
sity in the open field line region outside the FRC. In fact this
may be unavoidable, as transport of particles out of the FRC
may fill this region. However, recall that it was noted in section
4 that this isotropic-pressure MHD model is not applicable in

the open field line region, with its mirror confinement and loss
cone. The specific profiles outside the separatrix obtained by
settingΨ0 < 0 should be considered only qualitatively correct,
not quantitatively.

5.4. The isothermal case,μ = 1

While Storer did not consider the case that the plasma could be
isothermal, μ = 1, examination of this case actually precedes
high-power RMF experiments. Christofilos and the Astron
group modeled the Astron fusion reactor design using an
isothermal rigid-rotor profile as early as the 1950s [28, 29].
The well-known rigid rotor 1D radial profile is implicitly
isothermal [30, 40, 41].

These equilibria have been applied to non-RMF-driven
FRC equilibria. The justification for using a rigid rotor model
even when there is no RMF to drive to synchrony is often
along the lines of Rostoker and Qerushi: ‘the only drifted
Maxwellians that satisfy the Vlasov equation for systems with
cylindrical symmetry are rigid rotors’ [17]. Because no RMF
was assumed to drive the electrons at some angular velocity
ωe, the value of ωe was considered a free parameter, either
assumed or used to fit to experimental measurements.

Several groups have written the Grad–Shafranov equation
with a pressure flux function that corresponds to the isother-
mal case (exponential with flux), whether or not they explicitly
recognized their equation as such [17, 29, 31, 32].

Belova used the Grad–Shafranov equation with an isother-
mal pressure flux function to produce their starting FRC
equilibria for analysis of stability [31]. Gota used the
Grad–Shafranov equation with an isothermal pressure flux
function to fit to experimental data [32].

In the isothermal case, equations (6) and (10) have the
solution:

P ∝ eΨ/Ψc (15)

ne ∝ eΨ/Ψc (16)

Ψc =
2πT
eωe

, (17)

where Ψc is a characteristic flux determined by T and ωe. Ψc

controls the steepness of the profiles. As Ψc decreases, profiles
become steeper.

As a reminder, when temperature is not constant, equations
(12)–(14) hold rather than equations (15)–(17). Several inter-
esting features are apparent:

Steep pressure function: depending on the values of the
factors in equation (17), equation (15) could be an extremely
steep function of Ψ. As we will see in section 8, this translates
into an extremely peaked pressure profile in space.

Other researchers have noted that isothermal synchronous
rotation can lead to a very peaked radial density profile n(r)
[17, 28]. However we will discuss in section 8 that this steep
profile has a tendency to be axially steep also, tightly peaked
at the magnetic axis.

No plasma boundary: according to equation (16), there
cannot be a plasma flux boundary outside of which the density
is zero. There is always plasma outside the FRC separatrix,
in the open field line region. While it was noted in section 4

5
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that this isotropic-pressure MHD model is inapplicable in the
open field line region, this finding is at least qualitatively cor-
rect: it can be understood by examining the diamagnetic drift
velocity where n goes to zero as T stays finite: it is locally infi-
nite at this point and therefore cannot obey the rigid rotation
criterion.

This lack of a boundary is visible even in the well-known
rigid rotor 1D radial profile, which exponentially decays to
n(r) → 0 but never reaches it.

Depending on the values of the factors in equation (17), the
drop-off of density outside the separatrix could be either steep,
in which case plasma contact with the wall could be practi-
cally mitigated, or shallow, in which case wall contact is a large
effect. We will explore this behavior in section 8.

This lack of a boundary, a flux level outside which n = 0,
explains the lack of consistency between the μ < 1 pressure
flux function (power law, equation (12)) to the μ = 1 pressure
flux function (exponential, equation (15)). The latter does not
follow from simply taking the limit as μ→ 1. For all μ < 1,
there is some flux boundary Ψ0 outside which T = 0; this
feature is absent in the case of μ = 1.

6. Likely values of μ in experiment and reactor

The analysis presented in this paper assumes that the value ofμ
is known. Recall that μ is a measure of the relative peakedness
of the density and temperature flux functions. At μ = 0, the
density is constant and the temperature is peaked. At μ = 1,
the temperature is constant and the density is peaked. In an
experiment or a fusion reactor, several coupled processes will
determine μ. A few of these processes are: transport of parti-
cles and energy, wall interaction, localized power deposition,
and particle sources.

Storer fits calculated equilibria to experimental data
and obtains N = 1.6, μ = 0.375 [26]. This was a small,
cool (Te ≈ 17 eV) Rotamak which was wall-limited [23].
Because the wall was cooled by edge contact, it is under-
standable that the pressure balance was determined more
strongly by a temperature gradient than a density gradient
(μ < 0.5).

In a fully-ionized, less collisional reactor-scale plasma, the
situation will change. Transport of energy tends to be sig-
nificantly faster than transport of particles [42]. This will
result in a density profile that is more peaked and a temper-
ature profile that is more broad. This situation corresponds
to μ > 0.5. In fact, if the recycling can be kept to a negli-
gible level, the edge of the plasma may be at thermonuclear
temperatures and the plasma may be effectively isothermal
[43]. Indeed, one philosophy of tokamak design holds that a
hot (thermonuclear temperature) edge is beneficial to fusion
reactors [44].

Gota fits calculated equilibria to experimental data, eval-
uating the result for three assumed pressure flux functions
[32]. The functions are the Solov’ev case (P ∝ Ψ, μ = 0), the
quadratic case (P ∝ Ψ2, μ = 1/2), and the isothermal case
(P ∝ eΨ/Ψ0 ),μ = 1. They note that, for their experiment, the

Grad–Shafranov equilibria using the three different profiles
are ‘almost the same’.

7. The solver: iteratively determined
Grad–Shafranov equilibria

Two equations were Picard iterated to determine the self-
consistent Grad–Shafranov equilibrium. One of them was
equation (4), reproduced here with more explicit dependences:

jφ(r, z) = 2πr∂ΨP(Ψ(r, z)). (18)

The other is Ψ generated from the resulting jφ, as deter-
mined from the elliptic integral Green’s function of Ampere’s
law for flux in cylindrical coordinates:

Ψ(r, z) =
∫

dr′
∫

dz′ jφ(r′, z′)G(r, z, r′, z′) +Ψv +ΨFC,

(19)
where Ψv is the vacuum flux and ΨFC is the flux from flux-
conserving current loops, if any.

An initial guess for Ψ was determined heuristically.
Equations (18) and (19) were successively applied to the exist-
ing jφ and Ψ guesses until the variation was smaller than a
tolerance. In this manner a self-consistent equilibrium was
computed.

Useful Grad–Shafranov solvers must include the possibil-
ity that some axial field coils conserve magnetic flux. On a
short timescale, all electrically conductive loops such as the
vacuum vessel wall will conserve flux. On a long timescale,
any superconducting coils operating in a persistent mode will
conserve flux.

For computations including flux conserving current loops,
the flux conserver (FC) current IFC was determined using the
equation

�IFC = M−1�ΨP,FC, (20)

where�IFC is the list of FC currents, �ΨP,FC is the list of plasma
fluxes computed from jφ evaluated at the FC locations, and M
is the matrix of mutual- and self-inductances between the flux
conserving loops.

The function ∂ΨP(Ψ) in equation (18) comes from either
equations (12) or (15) (if isothermal). Both of these equations
have a free multiplicative factor. This factor can be assumed,
or can be used to satisfy a useful constraint, such as a loca-
tion that lies upon the separatrix or the maximum value
of the flux. If this approach is to be used, the value of
the free factor is set every iteration after equation (18)
is applied, by enforcing the constraint. Other constraints
might be: diamagnetic loop measurement constrained to be
a specific value, line-averaged density constrained to be a
specific value, maximum flux constrained to be a specific
value, etc.

Any configuration of axial field coils (producing Ψv) and
flux-conserving loops (producingΨFC) may be used. Each cor-
responds to a different experiment or reactor. For generality,
the results given in this paper are for constant vacuum mag-
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Figure 3. FRC separatrices for various values of N, where P ∝ ΨN . Different values of N correspond to different relative peakednesses of
density and temperature.

Figure 4. FRC separatrices for various values of N. A barrier of flux-conserving loops has been placed at r = 20 cm. These flux conservers
(FCs) are able to counteract the tendency for the FRC to become oblate.

netic field, Ψv ∝ r2, and unless otherwise stated there were no
flux conserving loops.

8. Results

8.1. The case of 0 � μ < 1

Several equilibria were found for various N = 1
1−μ values,

corresponding to various dependencies of the density and
temperature on the pressure. N = 1 corresponds to the
constant-density, varying-temperature case, and the Solov’ev
solution is recovered. As N increases, the density profile
becomes more and more peaked compared to the temperature
profile.

The equilibria were computed assuming a uniform vacuum
field of 5 T and an RMF frequency of 2π × 0.5 × 106 rad s−1.
The separatrix radius was constrained to be 20 cm.

Increasing oblateness: figure 3 shows the separatrices
of FRCs calculated with several values of N. N = 1 corre-
sponds to the Solov’ev case, and a spherical Hill’s vortex is
recovered. As N increases, the separatrix becomes more and
more oblate.

This oblateness can be mitigated with the use of flux
conserving current elements in close proximity to the FRC.
Another set of solutions is depicted in figure 4. The difference
is that a cylindrical shell of closely spaced, flux conserving
loops was placed around the plasma, constraining its radial

growth. For these solutions, the X-point was constrained to lie
at 20 cm. As can be seen in that figure, FCs are able to keep
the FRC prolate. By tailoring the placement of axial field coils
and flux conserving loops, it is possible to control the shape of
the plasma separatrix.

Yet another set of solutions is depicted in figure 5. This
set of solutions keeps N = 3 and varies the Ψ0 parameter in
equation (12), the flux limit outside of which the density and
temperature are zero. As density and temperature is allowed
to exist outside the separatrix (Ψ0 becomes negative), the sep-
aratrix becomes less oblate and more prolate. However, there
is significant density outside the FRC, where plasma is less
well confined and it can hit the walls or flow to a diver-
tor or end cell. The flux limit, Ψ0, is shown in figure 6. As
Ψ0 becomes more negative, more of the plasma is in the
open field line region and approaches the wall of the vacuum
vessel.

It may be that transport requiresΨ0 < 0 in experiments and
reactors. This would mean that there is always some amount
of plasma outside the separatrix, in the open field line region.
Confinement is poorer in the open field line region. It is mir-
ror confinement rather than cross-field confinement, causing
axial losses. Some implications of this are discussed briefly in
section 9.

Increasingly peaked density: figure 7 shows the radial
profile of the density n(r) at z = 0. For the N = 1 case, the den-
sity is constant as was assumed. As N increases, the maximum

7
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Figure 5. FRC separatrices for N = 3. Various values of the limiting flux Ψ0 are used. Outside this flux, n, T = 0. As plasma is allowed to
exist outside the separatrix (Ψ0 becomes negative), the separatrix becomes less oblate. Ψo is given in units of volt-seconds (Vs).

Figure 6. The same equilibria as figure 5. The spatial location at which Ψ0 is reached for various values of Ψ0. Outside these contours,
n, T = 0. As Ψ0 becomes more negative, the plasma persists farther outward of the separatrix. Ψo is given in units of volt-seconds (Vs).

density grows larger and the density profile becomes more
peaked and narrow.

As discussed in section 4, at some point the increasing den-
sity will cause imperfect penetration of the RMF, saturating
the effect and limiting the density peakedness.

The fact that the density is more peaked is not of itself use-
ful. We will compute its effect on the volume-averaged pres-
sure and a quantity relevant to fusion power density in the
next subsections. Surprisingly, locally the density profile is so
peaked that β � 1 over a small volume.

Increasingly peaked temperature: figure 8 shows the
radial profile of the temperature T(r) at z = 0. Recall that
T = Te + T i as defined in equation (9). For the N = 1 case,
the temperature is proportional to the flux Ψ. As N > 1, T(r)
becomes more peaked, though less so than n(r).

This is a surprising result. One might instead expect T(r) to
become less peaked as N increases, as the dependence of tem-
perature on pressure T(P) becomes less steep as per equation
(11). However, as N increases the pressure flux function P(Ψ)
becomes steeper as per equation (12). The net effect is that
the pressure profile P(r) as determined via Picard iteration
becomes steeper faster than the temperature dependence on
pressure T(P) becomes shallow, and the net effect is that the
temperature profile T(r) becomes more steep.

Decreasing volume-averaged plasma pressure: figure
9 shows the plasma pressure P, averaged over a cylin-
der with the radius of the separatrix and the half-length of

the radius of the separatrix (20 cm). While the maximum
density clearly increases, as can be seen in figure 7, it is
squeezed into an ever smaller volume, and so the volume-
averaged pressure decreases. Consequently the FRC has a
lower volume-averaged pressure ratio, 〈β〉, at higher N. This
may at first seem deleterious to a fusion reactor. However,
the fusion power density is not proportional to plasma pres-
sure P; rather it is proportional to n2 with a highly nonlinear
function of T.

In this paper, β is evaluated as the volume-averaged plasma
pressure over the volume averaged vacuum magnetic pressure,

〈β〉 ≡
∫

dVnT∫
dVB2

0/2μ0
, (21)

where
∫

dV is the integral over the specified volume and B0 is
the vacuum magnetic field.

Increasing volume-averaged square pressure: figure 10
shows the square plasma pressure, 〈n2T2〉, averaged over a
cylinder with the radius of the separatrix and the half-length of
the radius of the separatrix (20 cm). It is an increasing function
of N. In the balance between increasing density and decreas-
ing volume, the increasing density wins out and the quantity
increases.

These values of 〈n2T2〉 were generated using ωe = 0.5 ×
2π × 106 rad s−1. Flux field Ψ and pressure P were produced
via Picard iteration. Temperature is specified per equation (14),
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Figure 7. The same equilibria as figure 3. Radial profiles of density n(r) at the z = 0 plane for various values of N. As N increases, the
density profile becomes more peaked and the maximum density increases. We have assumed that ne = ni = n.

Figure 8. The same equilibria as figure 3. Radial profiles of temperature T(r) at the z = 0 plane for various values of N. As N increases, the
temperature profile becomes more peaked and the maximum temperature decreases. These high temperatures, T > 100 keV, are relevant to
advanced fuels such as D + 3He.

Figure 9. The same equilibria as figure 3. These are the volume-averaged plasma pressure for various values of N. The volume was taken to
be a cylinder with radius r = 20 cm, the separatrix radius, and L = 40 cm long. Recall there is no plasma outside the separatrix in these
equilibria. The volume-averaged pressure decreases with increasing N.

which then specifies density n via the pressure relationship,
equation (7). Recall that ωe is essentially a free parameter.
Thus, ωe could be set (by setting ωRMF) so that Tmax, the
maximum temperature, were constant in N.

At high N, density is much more peaked than T . We can
therefore approximate T ≈ Tmax as constant over the region

of high n2. Applying the procedure in the preceding para-
graph (Tmax constant), this quantity 〈n2T2〉 ≈ T2

max〈n2〉 ∝ n2

therefore approximates the fusion power density.
The results in figure 10 indicate that the fusion power out-

put from a Rotamak-FRC whose temperature is more con-
stant than its density (μ > 0.5) can be higher than the power

9
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Figure 10. The same equilibria as figure 3. These are the volume-averaged square plasma pressure for various values of N. The volume was
taken to be a cylinder with radius r = 20 cm, the separatrix radius, and L = 40 cm long. The volume-averaged square pressure increases
with increasing N. Recall there is no plasma outside the separatrix in these equilibria. The volume-averaged square pressure is a good
approximation for the fusion power when the maximum temperature is constant and the temperature profile is less peaked than the density
profile.

Table 2. Summary of the results of figures 9 and 10. The N = 0
case is the result of a point-plasma model, where the pressure was
calculated from β = 1 in the 5 T vacuum field. The N = 1 case is
the commonly assumed Solov’ev solution, the Hill’s vortex. F is
〈β2〉, which approximates the enhancement to the fusion power as
a result of density peakedness. N is a measure of the relative
peakedness of the density and temperature; N > 1 is likely in
reactor-scale experiments as discussed in section 6.

N 〈P〉 (MPa)
√

〈P2〉 (MPa) Fa

0b 9.95 9.95 1
1c 8.47 12.3 1.52
1.5 6.96 13.0 1.70
2 6.13 13.9 1.96
3 5.07 16.3 2.67
4 4.30 19.2 3.74
5 3.48 25.1 6.36

aApproximate fusion power enhancement factor, 〈β2〉.
bPoint-plasma model. Uniform pressure, β = 1 in 5 T vacuum field.
cSolov’ev solution, Hill’s vortex.

output from an equivalent volume of plasma with β = 1
(plasma pressure over vacuum field). The concentration of
density into a peaked structure is responsible for this result.

Summary table: a summary of these results is shown in
table 2. They are compared to a case called N = 0 but is simply
the result of a point-plasma model where P = nT is determined
from β = 1 in the 5 T vacuum field. For more peaked density
than temperature, which is likely for reactor-scale plasmas, the
fusion power output can be much higher than the equivalent
volume of β = 1 plasma. β is calculated with respect to the
vacuum field as per equation (21).

8.2. The isothermal case,μ = 1

In this section we will discuss the special case of an isothermal
plasma, μ = 1, N = ∞.

The isothermal equilibria are characterized by the param-
eter Ψc in equation (15). Several equilibria were found for
various Ψc =

2πT
eωe

values, corresponding to various tempera-
tures and RMF frequencies.

The equilibria were computed assuming a uniform vac-
uum field of 5 T and a temperature of 50 keV. The separa-
trix radius was constrained to be 20 cm. The values of Ψc =

[0.115, 0.130, 0.200] Vs correspond to RMF angular fre-
quencies ofωe = [2.73 × 106, 2.42 × 106, 1.57 × 106] rad s−1

respectively.
Values of Ψ are given in Vs, or volt-seconds.
Values of Ψc less than 0.115 Vs produced numerical prob-

lems, as the discretization of the grid (8 mm) was too large,
so these equilibria could not be computed accurately. As dis-
cussed in section 4, at some point the increasing density may
cause imperfect penetration of the RMF, possibly affecting the
density peakedness.

Prolate and oblate separatrix: figure 11 shows the separa-
trices for various values ofΨc. The FRC can be either naturally
oblate or naturally prolate, depending on the value of Ψc. As
with the non-isothermal case, the shape of the FRC can also
be manipulated with flux conserving or current-carrying coils
(not shown).

Peakedness of density: figure 12 shows the radial density
profiles n(r) along the z = 0 line for various values of Ψc. A
smallΨc corresponds to a high maximum density and a peaked
spatial profile. A large Ψc corresponds to a low maximum
density and a broad spatial profile.

As discussed in section 4, at some point the increasing den-
sity will cause imperfect penetration of the RMF, saturating
the effect and limiting the density peakedness.

As discussed in section 8.1, this density peakedness also
implies a higher fusion rate. As Ψc decreases (ωe increases),
the density profile becomes more and more peaked, decreasing
〈β〉 but increasing 〈β2〉, which corresponds to fusion reaction
rate. This is shown in figure 13. At Ψc = 0.115 Vs, the numer-
ical stability limit for the resolution used (8 mm), the fusion
rate is enhanced a factor of 2.5 over a β = 1 uniform plasma
volume. As with the non-isothermal case, more peaked implies
more fusion.
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Figure 11. FRC separatrices for various values of Ψc, where P ∝ eΨ/Ψc . Different values of Ψc correspond to different values of T ,ωe. As
Ψc decreases (T decreases or ωe increases), the FRC becomes more oblate. Ψc is given in units of volt-seconds (Vs).

Figure 12. The same equilibria as figure 11. Radial profiles of density n(r) at the z = 0 plane for various values of Ψc. As Ψc decreases, the
density profile becomes more peaked and the maximum density increases. Locally, this highly peaked density can cause small volumes of
β � 1. We have assumed that ne = ni = n. Ψc is given in units of volt-seconds (Vs).

Figure 13. A set of isothermal equilibria with differing Ψc. These are the volume-averaged square plasma pressure. The volume was taken
to be a cylinder with radius r = 20 cm, the separatrix radius, and L = 40 cm long. The volume-averaged square pressure decreases with
increasing Ψc. The volume-averaged square pressure is proportional to the fusion power when the temperature is constant. Ψc is given in
units of volt-seconds (Vs).

Density fall-off outside the separatrix: recall from section
5.4 that n(r) → 0 is not compatible with isothermal rigid rota-
tion. Thus, density is nonzero outside the separatrix. Figure
14 shows the contours in space where the density falls below
1014 1/cm3. For small Ψc, the exponential fall-off is sufficient
to reduce the density to below 1014 1/cm3 in a short distance

from the separatrix. As Ψc grows larger, the density profile
broadens and the walls must be placed farther and farther away.

Confinement is poorer in the open field line region. It is
mirror confinement rather than cross-field confinement, caus-
ing axial losses. Some implications of this are discussed briefly
in section 9.
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Figure 14. The same equilibria as figure 11. These are the contours at which ne = 1014 1/cm3. This indicates that the high density region
extends farther toward the wall of the vacuum vessel when Ψc increases. Ψc is given in units of volt-seconds (Vs).

9. Discussion and conclusion

We have determined that fully co-rotating RMF-driven
Rotamak-FRC experiments and reactors could beneficially
have much more sharply peaked density profiles than a Hill’s
vortex, the Solov’ev solution. This is because the tempera-
ture profile is likely to be broader than the density profile,
which together with rigidly rotating electrons implies a sharper
functional form of the Grad–Shafranov pressure flux function.
This entails both benefits and challenges to the creation of a
compact fusion reactor.

One benefit is that the peakedness of the density profile
enables a substantial increase in the total fusion power of the
reactor, even while decreasing the 〈β〉. This increase may be
∼ 5–10× depending on the relative broadness of the temper-
ature and density.

One challenge is that the separatrix of the FRC tends to
be naturally oblate. Oblateness can be controlled by separatrix
shaping from current-carrying or flux-conserving coils around
the FRC. Oblateness may also be reduced by allowing there
to be significant plasma density outside the FRC, in the open
field line region.

Another challenge is that density outside the FRC may be
unavoidable. This model does not include field-parallel flows
and mirror loss-cone losses, but this model does suggest that
there may be significant density outside the separatrix.

This model allows RMF to produce arbitrarily peaked den-
sity profiles at high RMF frequencies. In this case, the model
must break down as RMF penetration is imperfect at high den-
sities and high collisionality. This must be an area of future
exploration.

In the case of incompletely penetrated plasma, rigid rota-
tion may only hold up to a certain flux contour. Alternatively,
the entire FRC may spin at the same rate regardless of RMF
penetration [17]. This case is not explored in this analysis,
but one might expect a piecewise flux function in this case,
where fluxes smaller than the penetration flux have the depen-
dence given in equation (12) or (15), and fluxes larger than the
penetration flux have some shallower dependence.

One could decouple the synchronous RMF frequency
and the RF frequency by using a high-azimuthal-mode-
number RMF antenna. Azimuthal mode number refers to

Figure 15. Location of odd-parity RMF antennae leaning into the
oblateness of the FRC. Black: vacuum vessel. Red dashed line:
vessel equator. Blue circles: RMF antennae. Left: side view, ẑ-axis
points upward. Right: top view, ẑ-axis points out of the page.

�Br̂,̂φ,RMF ∝ eimφ, where m is the azimuthal mode number.
m = ±1 is a straight field, which existing RMF antennae pro-
duce. m = ±2 would be a quadrupole field. |m| > 1 fields van-
ish at r = 0. Consider a point of constant RMF phase. It takes
this point m RF periods to make one revolution of φ, so the
RMF-synchronous frequency is a factor of m smaller than the
RF frequency.

An intriguing possibility arises from leaning into the natu-
ral oblateness of FRCs with peaked spatial density profiles.
This may be a novel and interesting parameter regime for
later study. RMF coils facing axially, or a combination of
axially and radially, rather than radially are naturally odd-
parity, see figures 15 and 16, and the lower aspect ratio of
this configuration gives plenty of space to include antennae at
multiple azimuthal locations for high-mode-number RMF
antennae. The coils would be roughly circular, flush with the
oblate vacuum vessel, and spaced azimuthally. This would
allow the radial profile of the RMF to be tailored. It would
also allow a decoupling of the applied RF and synchronous
rigid rotation frequencies.
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