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The control of quantum phenomena is being actively pursued today for
two general reasons: (1) producing products that are inaccessible to more
conventional means; (2) revealing the fundamental nature of interactions in
atoms and molecules. A quantum system without control typically evolves
in an undesirable fashion. Therefore, a tailored control field is introduced to
redirect the quantum dynamics towards a desirable, perhaps even an opti-
mal outcome. Quantum optimal control theory (OCT) and optimal control
experiment (OCE) methods have been successfully employed to identify op-
timal controls for a variety of quantum systems. To seek the maximum
degree of control, a quantum control objective must be chosen. Regardless
of the objective function chosen, the dynamics of the system is always guided
by the unitary evolution operator U, which is a functional of the control field
C(t).

Two commonly used objectives are the optimization of state-to-state
transitions and the generation of arbitrary unitary transformations. For the
former, the goal is to maximize the probability P,y = |U;¢|* of making a
transition from some initial state |¢ > to some final state |f >. For the
latter, the goal is to generate (by controlling C(¢)) a unitary operator U
that best matches a given unitary operator W. This can also be stated as
minimizing the cost function J = ||[U — W/||, the Hilbert-Schmidt distance
between U and W.

Good solutions for quantum optimal control problems have been found
for both objectives. However, OCT studies show that the search effort
required for the the ||[U — W|| objective greatly exceeds that for the Py
objective. In particular, the ||[U — W/|| objective becomes exponentially
more difficult to search with rising dimension while the Py objective is
largely unaffected by rising dimension. A useful tool in analyzing these
problems is the concept of a quantum control landscape. The landscape
critical topology of these two objectives is well understood. However, the
difference in searchability between them is still not well understood.



A grid-walking algorithm called the 'TLGW Method’ has been developed
to analyze the structure of these landscapes. For each run of the 'LGW
Method’, a grid-size J is chosen. This grid-size defines a cartesian grid on
which a 'walker’ can move; the 'walker’ can move by a step size § in each
of the 2N coordinate directions (where N is the dimension of the control
space). At each iteration of the algorithm, the 'walker’ moves in the most
favorable direction (towards the objective value) until it gets stuck.

The 'LGW Method’ gives insight into the texture of the landscapes in
the neighborhood of critical point regions. Our findings show that the tex-
ture of the Py landscape does not change with rising dimension. On the
other hand, the texture of the unitary landscape grows tremendously more
complex with rising dimension. Thus, the difference in searchability between
the two objectives can be at least partially explained by the differences in
texture elucidated by the 'LGW Method’.

The '"LGW Method’ offers two measures of the texture of landscapes:
convergence probability and average terminal value (ATV). To calculate the
convergence probability for a given § size, one first sets a threshold value.
Then many sample runs are conducted and the percentage of runs that
exceeded the threshold value is the convergence probability. The average
terminal value (for a given § size) is simply the average of the values at
which the runs terminated (the 'walker’ got stuck).

It was found that regardless of the threshold value chosen, the critical §
size for approximately half the runs to converge (convergence probability of
50 percent) remains constant with increasing dimension for the P;¢ objective.
On the other hand, the critical ¢ size decreases exponentially with increasing
dimension for the unitary objective. This means that for higher dimensions,
a finer mesh or gridsize is required to reach the threshold objective value.

It was also found that as a function of §, the approximation ATV ~
¢(N)&? holds for both objectives. Here, the coefficient c is a function of the
dimension N. For the P;; objective, c¢ is nearly constant with dimension.
However, for the unitary objective, ¢ increases super-exponentially with di-
mension. This means that for higher dimensions, a finer mesh or gridsize is
required to reach a given average value.

Both of these analyses are strong indicators that the texture of the land-
scape for the unitary objective is much more complex than that for the
P,y objective. The texture of the unitary landscape depends heavily on the
dimension whereas the texture of the F;; landscape is largely invariant to
dimension.

Although we know that the texture of these landscapes influences the
search effort for finding optimal controls, the precise relationship is unknown.



A fundamental investigation of the 'TLGW Method’ itself will give us more
insight into this relationship. To analyze the algorithm, it helps to run it
on ’toy’ functions where the analysis is much simpler. For several of the
simplest 'toy’ functions, an analytical formula has been derived for both the
convergence probability and ATV as a function of §. Interestingly, certain
features of the convergence probability and ATV plots do not seem to de-
pend on what function is used, and are therefore intrinsic to the algorithm.
For example, the plot of the convergence probability vs. § follows an S-
shaped curve for almost all functions tested. Also, ATV ~ ¢(N)d? holds
not only for the two quantum objectives, but for many of the ’toy’ functions
as well. Understanding these patterns will enhance the LGW Method’s use
in elucidating the structure of quantum control landscapes. In fact, there
is no reason the 'LGW Method’ must be limited to quantum landscapes.
The "LGW Method’ can be run on any landscape and may be useful when
applied to similar landscape problems that arise in other areas.



