Physics of Steady-State Advanced Tokamaks

Rob Goldston
Princeton Plasma Physics Laboratory

American Physical Society, Division of Plasma Physics November 7, 1995

Outline of Talk

- → Reactor advantages of a Steady-State
 Advanced Tokamak (SS/AT).
- Theoretical basis.
- Experimental basis.
- Future directions in SS/AT research.

Color key: Good news, Bad news

Economic Fusion Power Requires High Mass Power Density and Engineering Q

Krakowski, LANL, 94

- High mass power density means high electrical output power, relative to the amount of high-tech hardware.
- High engineering Q means low recirculating power, increasing blanket lifetime per unit energy output, and reducing capital cost.

A Steady-State Advanced Tokamak must have Certain Key Features

 High confinement, to permit high Q at reduced size and/or field. The "usual" confinement scalings give:

$$M_{ig}$$
 P /P_{loss} ~ 2T²>/(/_E) = _E 2T²>/²

H²I_p²A²(*/)²
 \Rightarrow high H* = H β */ β

High β, for high power at given size and field at the coil.

$$B_o B_{coil} / {}^{1/2} {}^*B_o{}^2 {}^*/ {}^*N {}^*/ (I_p/aB)$$

 $\Rightarrow high \beta^*N$

• High usable bootstrap fraction, for high Q_{CD} . \Rightarrow high $\epsilon^{1/2}\beta_p$, with good alignment of j_{bs} and j_{tot}

These must be achieved consistently with:

- Highly dispersive divertor operation.
- Low disruptivity.

Steady-State Advanced Tokamak Physics Improves the Economics of Fusion

Galambos et al., 1995

- The Cost of Electricity can be reduced by a factor of 2.
- The cost of a minimum size fusion reactor can be reduced by a factor of almost 4.

Outline of Talk

- Reactor advantages of a Steady-State Advanced Tokamak (SS/AT).
- > Theoretical basis.
- Experimental basis.
- Future directions in SS/AT research.

High-n Ballooning Modes are Robustly Stable with Reversed Shear

Chance and Greene, PPPL, 1981 Sabbagh et al., Columbia U., 1989

- dl / B increases with R because B falls but with reversed shear (dq/dr < 0), dl decreases as R increases.
- Net effect: robust stability against high-n interchange drive for all values of β!
- Banana toroidal precession becomes negative (dW/dr > 0), making trapped-particle mode resonances stabilizing.

Reversed Shear is Synergistic with High Bootstrap Fraction

Ozeki et al., JAERI, 1992

- j_{bs} p low B_p (high q in core) increases f_{bs} I_{bs}/I_p . j_{bs} peaks off axis reversed shear
- Important role for non-inductive current drive to "pin" the reversal point at large minor radius large R/S region.
- $\beta_N = 3$ $\beta_t = 2.12\%$ $\beta_t / \epsilon = 8.7\%$ $f_{bs} = 65\%$
- Stable to n = 1 − 4, ∞, with no conducting wall.

The Reversed Shear Regime can Attain Extremely High β_N and f_{bs}

- Stable to n = 1 6, ∞ , conducting wall at 1.3a.
- Shear reversal stabilizes Trapped Electron Modes.
- The shear reversal also raises $\eta_{i,crit}$ (dln T_i /dln n_i)_{crit} from ~2 to ~4, stabilizing Ion Temperature Gradient Modes.
- Implies the possibility of a self-consistent transport barrier with high pressure gradient in the reversed shear region.

Simulations including Transport, Currentdrive, and MHD Stability access Highperformance Reversed Shear Regimes

Turnbull et al., GA, 1995

- $\beta_N = 5.7$ $\beta_t = 7.5\%$ $\beta_t/\epsilon = 19.8\%$ $f_{bs} = 67\%$
- Stable to n = 1,2, ∞, unstable to n = 3, with stabilizing wall.
- Transport coefficients ~ VH-modes in DIII-D.
- Demonstrates a degree of consistency between transport, current drive modeling, and MHD stability.
- Illustrates the need for experimental verification of selfconsistency in pulses much longer than L/R.

The Highest Performance SS/AT Modes Require Wall-Stabilization of External Kinks

- 70% bootstrap, reversed shear modes can be stable to external kinks with no conducting wall, for N 3.
 Similar parameters can be achieved with only elevated q(o).
- If an "ideal" wall can be provided at b/a ~ 1.3, very high values of β_N 5 can be achieved.
 - In a non-circular plasma, particularly with high triangularity, there is strong "geometrical" edge shear.
 - This permits the radius of q_{min} to approach the edge of the plasma, while retaining stabilizing shear.
 - Now the bulk of the current is close to edge of the plasma, and a conducting wall can be very helpful.
 - large stable core reversed shear region.
- With a real, resistive wall at this location, a "wall mode" can grow in an ideal plasma with $\gamma \tau_{wall} \sim 1$ and $\omega \tau_{wall} \sim 1$.
- The growth rate of this "ideal" mode, however, is so slow that non-ideal effects can be strongly stabilizing.

Plasma Rotation Creates a Region of Stability for the Wall Position

Bondeson and Ward, CRPP, 1994

- Ion sound friction pulls the "wall mode" rotation towards the plasma rotation speed, and if the plasma is rotating fast enough (~0.2C_s) and the wall is far enough away that it cannot "hold onto" the mode, this stabilizes the wall mode.
- If the wall is too far away, however, of course the ideal mode is unstable.
- Work on improving the theoretical models for ion sound damping used in MARS and NOVA-W is underway.

Resistive Island Formation can Provide Stabilization with Lower Rotation

Boozer, Columbia U., 1995; Finn, LANL, 1995

- Slowly growing ideal "wall modes" have singular current sheets at all rational surfaces in the plasma.
- Due to the slow growth time, ~τ_{wall}, these current sheets are energetically required to form islands.
- The islands are strongly coupled to plasma rotation via perpendicular viscosity, so the requirement on the rotation speed is only that $\omega_{rot}\tau_{wall}$ and $\omega_{rot}\tau_{res} >> 1$.
- Suggests a close relation to low- "locked modes."
- Pomphrey et al., and Fitzpatrick find edge viscous/inertial stabilization with rotation speeds ~ Bondeson & Ward's.
- Betti and Sorotokin find energetic banana particles provide kinetic stabilization in the absence of rotation.

Outline of Talk

- Reactor advantages of a Steady-State Advanced Tokamak (SS/AT).
- Theoretical basis.
- ⇒ Experimental basis.
- Future directions in SS/AT research.

The Existence of the Bootstrap Current has Been Verified Experimentally

Zarnstorff et al., TFTR, 1986

- The bootstrap current has now been observed experimentally on many tokamaks.
- It is fundamental to the Steady-State Advanced Tokamak concept.

Deep Pellet Injection on JET, before Sawteeth, Gives Enhanced Performance

Smeulders et al., JET, 1995

- Very high pressure gradients are observed in the plasma core, greater than usual first-stability limits for q(o) ~ 1.
- Core thermal confinement improves by a factor of ~ 2.
- Limited experimental data (equilibrium fits and X-ray identification of mode-rational surfaces) indicate *reversed shear* in the plasma core.
- Transient, because the q(r) profile is not sustained.

DIII-D Finds Enhanced Central Beta Limits with Reversed Shear

Lazarus et al., ORNL, DIII-D 1992

- Very high pressure gradients are observed in the plasma core, greater than usual first-stability limits for q(o) ~ 1.
- Central β = 44% is achieved.
- MHD active, and transient.

Tore Supra has found Enhanced Core Confinement with Off-axis LHCD

Kazarian-Vibert et al., Tore Supra, 1995

- Low-field operation makes the plasma core inaccessible to Lower Hybrid waves.
- Fast electrons are measured to be localized well off axis.
- Strongly reduced electron thermal transport is found in the plasma core with shear reversal or near reversal.
- This regime is stationary for the full LH pulse, but it has only been explored so far at low β_N.

The Motional Stark Effect Diagnostic has Dramatically Improved Experimental Capabilities for Advanced Tokamak Studies.

Levinton et al., FP&T, PBX-M, 1989

- v x B electric field in frame of fast-moving neutral beam atom causes strong Stark splitting in H (Balmer) line.
- Polarization of the Stark-split line gives orientation of B.
- Orientation of B gives magnitude of B_p.
- B_p(R) strongly determines q(r) in equilibrium code fits using other known data such as external B fields and p(r).

JET Demonstrated the Technique of Early Heating to Freeze in a Hollow q(r)

Söldner et al., JET, 1994

- By heating during the current ramp, it is possible to maintain
 q(o) ~ q(a) > q_{min} in JET for a few seconds.
- This technique was used with LHCD alone, giving enhanced core confinement as on Tore Supra.
- In combination with strong NBI, plasma properties were not enhanced, but they also were not degraded by the low l_i associated with reversed shear.

Two Confinement Regimes are Observed in TFTR Reversed-Shear Plasmas

Zarnstorff, TFTR, Wednesday AM, 5IA.02

- Many TFTR R/S discharges are similar to "supershots."
- A reproducible transition to an *Enhanced Reversed Shear* regime occurs, however, at high beam power.
- Core particle inventory integrates the beam source.
- Ion thermal energy loss is almost uniquely via Qie.
- Electron thermal transport is also clearly reduced in some experimental conditions.
- Transient, destabilized to n=1 mode when q_{min} ~ 2.

Plasma Parameters in TFTR ERS Modes are Impressive

Zarnstorff, TFTR, Wednesday AM, 5IA.02

- $P(o)/<P> \sim 8$, $P(o) = 4.6 \cdot 10^5 Pa$
- $n_e(o) = 1.2 \ 10^{20}$, $T_i(o) = 20 \text{ keV}$, $T_e(o) = 8 \text{ keV}$
- H = 2.2, $H^* = 4.2$; $\beta_N = 2.0$, $\beta_N^* = 3.8$, $f_{bs} = 0.75$
- 3.5 · 10¹⁶ DD neutrons/sec at modest B and P_{NB}
- Small v < 150 km/sec due to balanced injection transport reduction not due to sheared toroidal flow

Zarnstorff, TFTR, Wednesday AM, 5IA.02

- Careful error analysis indicates that ion thermal transport is clearly much less than predicted by neoclassical theory.
- Particle transport is near true neoclassical (electron-ion).
- Neoclassical MHD activity which causes roll-over in performance – is completely absent, as predicted.
- Core density fluctuations are dramatically reduced.

DIII-D Finds Enhanced Core T_i and V_{ϕ} in Reversed-Shear H-mode Plasmas

Rice, LLNL, DIII-D, Wednesday AM, 5IA.04

- β_N up to 4 has been achieved in R/S ELM-free H-modes.
- Global confinement is ~VH Mode ~ 3x L-mode.
- The ELM-free edge / Core RS regime is transient, ended by edge-driven MHD termination activity, as in VH-modes.
 Probably associated with high bootstrap current density just at the plasma edge.

Reversed-Shear Discharges in DIII-D with L-Mode Edges are Also Attractive

Rice, LLNL, DIII-D, Wednesday AM, 5IA.04

- H ~ 2, with high β */ β
- P(o)/<P> = 5, $n_e(o) = 6 \cdot 10^{19}$, $T_i(o) = 20 \text{ keV}$, $T_e(o) = 5.5 \text{ keV}$
- High DIII-D neutron rates ~ 8. 10^{15} /sec at moderate β .
- Strongly peaked density profiles, good for reactivity.
- Transient, terminated by infernal modes.

Reversed-Shear Core Transport Reduction Adds to H-mode Edge Barrier in DIII-D

Lao, GA, DIII-D, Thursday PM, 8I2

- Core confinement of both ions and electrons improves with reversed shear, with L-mode edge. (RS ERS transition?)
- Edge confinement improves with L → H transition, ion core improves further.
- Core particle confinement improved in L-mode / ERS. No significant density peaking in well-developed H-mode.

JT-60U is Studying R/S Plasmas

Kimura, JT-60U, Wednesday AM, 5IA.03

- R/S regime is accessed using early-heating technique.
- Initial results suggest transport barrier for ion heat, electron heat, and particles.
- Clearly more research is needed to understand confinement in reversed-shear plasmas.
- Attend Invited Papers Session 5IA tomorrow A.M. to hear the latest news.

DIII-D Sees Wall Modes at High β and low I_i

Navratil, Columbia U., Chu, GA, DIII-D, 1995

- Observed β limit is inconsistent with wall at infinity,
 matches calculations for ideal wall at real wall location.
- Mode growth rates are ~ consistent with "wall modes."
- q = 3 surface is still rotating (~2 kHz) as wall mode grows.
- MARS calculations are in qualitative agreement, but suggest that ~2-3x higher rotation speed may be required for stability.

PBX-M Sees Very Slowly Growing Modes when the Plasma is Well-coupled to the Thick Aluminum Shell

Okabayashi, Pomphrey, PBX-M, 1995

- Observed β limit is inconsistent with wall at infinity,
 matches calculations for ideal wall at real wall location.
- Mode growth rates are ~ consistent with "wall modes."
- q = 3 surface is still rotating (~2 kHz) as wall mode grows.
- NOVA-W calculations are in qualitative agreement, but suggest that ~2-3x higher rotation speed may be required for stability.

HBT-EP Has Greatly Enhanced Stability with Conducting Shells Close to Plasma

Ivers, Columbia U., HBT-EP, Wednesday AM, 5IA.01

- High values of N are achieved by rapid initial formation.
- Successful position control does not depend on shell location.
- Disruptions are most often prevented if dl_p/dt > 0, and b/a < 1.2.

Wall Stabilization is Now Well Established, but Work is Needed to Determine the Plasma - Mode Coupling Mechanism

- Theoretical model for ion-sound damping is "heuristic."
- Resistive island formation / wall-mode stabilization needs to be calculated numerically and compared with experiment.
 - PBX-M observation that "wall modes" tend to favor a specific phase orientation suggests a connection to lowfield-error induced "locked modes."
 - DIII-D observation that -limit falls with increasing field error suggests a similar conclusion (or could be due to rotation braking).
 - Wall mode growth times are similar in DIII-D and PBX-M
 (~ edge resistive growth times of 5 10 ms) despite very
 different wall times (2ms vs. 40ms).
- Experimental studies are needed to distinguish effects
 - Resistive vs. ion-sound damping
 Need studies with higher S R A and variable rotation.
 - Rotation vs. kinetic stabilization
 Need high / low l_i studies with variable rotation.

Outline of Talk

- Reactor advantages of a Steady-State Advanced Tokamak (SS/AT).
- Theoretical basis.
- Experimental basis.
- > Future directions in SS/AT research.

SS/AT Research Priorities

• Underlying science

- Threshold physics of ERS.
- Physics of flucutation reduction.
- Under what circumstances are i, e, and De reduced?
- What does this tell us about transport in tokamaks?

Current profile control

NBCD, FWCD, MCCD, LHCD, ECCD

• Pressure profile control

IBW, other internal barriers, pellet injection, channeling

Shaping effects on performance

, , R/a

Integration with dispersive divertor operation

SND, DND, Edge L vs. ELM'ing H, vs. ELM-free H

• α physics

Stability, heating, burn control

Wall stabilization

Rotation speed requirement, underlying mechanism

Performance limits

• N^* , H^* , f_{bs} P_{fus}

TPX would have been the Right Next Step in SS/AT Research

- Strong shaping and active current profile control.
- Divertor optimized for low recyling, strong pumping.
- Long pulse (1000 sec) >> $\tau_{L/R}$, >> wall-equilibration time.
- Substantial plasma performance (IpR/a = 9MA ~ TFTR's)
- DT capability to study α stability of SS/AT operating modes.

Operating U.S. Facilities Have Strong Capabilities for Advanced Tokamak Studies

DIII-D

- Strong shaping.
- Radiative divertor.
- Nearby conducting wall.
- FWCD, MCCD, ECCD for current profile control.
- 10 sec pulse-length extension.

TFTR-AP

- Large size, high field, high temperature for reactor-like parameters, e.g. S $\propto \tau_R / \tau_\Delta \propto RBT^{3/2}/n^{1/2}$
- Nearby conducting wall.
- Capability for co / ctr / bal NBI, RF heating.
- FWCD, MCCD, LHCD for j(r) control;
 IBW for p(r) control.
- NB pulse-length extension for ~5 sec. heating.
- DT for α -stability tests, α -heating experiments.
- High fusion power in AT regimes.

• C-Mod

- Slot vs. open divertor.
- FWCD, MCCD, LHCD for current profile control.
- 7 second pulse-length at 5T.

J (A/cm 2)

DIII-D will Make Major Contributions to SS/AT Research

 $I_p = 1.3 \text{ MA}, \quad B_t = 1.75 \text{T}, \quad \beta_N = 5.3, \quad f_{bs} = 0.69$

C-Mod will Study Current Profile Control and Steady-State Scenarios

- With ICRF (shown above) and Lower Hybrid power, C-Mod will have tools for heating and current profile control.
- Operation at 5T / 7 sec pulse length will permit current profile control studies at moderate values of N.

Shaping Effects are Important for the Steady-State Advanced Tokamak

- Experimental results to date point to higher β_N 's and higher H's with strong shaping (especially triangularity).
- The higher current accessible with greater elongation and triangularity is favorable for t and E even at fixed N and H.
 - The current accessible with κ_{95} = 1.8, δ_{95} = 0.5 (TPX) is 40% higher than can be attained at κ_{95} = 1.6, δ_{95} = 0.24 (ITER EDA), for fixed R, a, B.
- Theoretically, the **highest performance** wall-stabilized SS/AT modes need **high** δ to allow qmin to move outwards, giving the **largest possible volume of reversed shear.**
- An engineering price is paid for these advantages, however.
 - High elongation requires closer feedback coils for vertical stability.
 - High triangularity leads to a segmented transformer, with significantly unbalanced currents, making strong out-ofplane loads on inner TF legs.
 - Also implies a DN divertor to minimize heat load on short inner divertor leg.

TFTR will Contribute to SS/AT Research While Making P_{fus} ~ 20MW

- $_{N} = 2 (_{N}^{*} = 4)$ calculated stable for all n (PEST) in this regime, and already achieved experimentally.
- Final n_e profile from equilibrium solution using measured D_e (with floor). T_e, T_i, and equilibrium solved using observed _e, _i (with floor). Z_{eff} = 1.5. No j(r) nor p(r) control included.
- With heating temperatures do not come into steady state.
 Q(o) > 5 when Q(a) ~ 1. Beam pulse ~5 seconds planned.

Alfvén Eigenmodes are Sensitive to q(r)

Fu, PPPL, 1995

- Instability drive increases as q(o) increases.
- Reversed shear begins to stabilize TAE.
- This is an area that needs theoretical and experimental work to validate reversed shear scenarios for DT operation.

SS/AT Studies may be Possible in ITER

$$I_p = 12.2 \text{ MA}$$
 $B_o = 3.9 \text{ T}$
 $R_o = 8.63 \text{ m}$ $a = 2.5 \text{ m}$
 $\kappa_x = 1.92$ $\delta_x = 0.53$
 $q_{95} = 3.7$ $P_{fus} = 1.5 \text{ GW}$

- For this to become a reality, it will be necessary to support all aspects of SS/AT operation, including:
 - Active current profile control both on and off axis.
 - Strong particle control to reduce main-chamber recycling while sustaining a detached divertor.
 - Tight plasma shape control at high p, very low l_i.
- In constrained budgets, PCAST recommended rescoping
 ITER to a moderate-pulse ignition experiment.
- Advanced tokamak physics capabilities should be built into such a device from the beginning.

Conclusions

- The Steady-state Advanced Tokamak offers as much as a factor of 2 reduction in the Cost of Electricity compared with a pulsed, standard performance tokamak.
- MHD / transport / current drive studies indicate that highperformance Reversed Shear SS/AT regimes exist. The best regimes rely on wall stabilization of the external kink.
- Experimental results support many key aspects of highperformance SS/AT regimes.
 - The bootstrap current is observed experimentally.
 - High confinement and high pressure gradients are observed with reversed shear.
 - Wall stabilization of the external kink exists, but is not fully understood.
- Existing, operating devices in the U.S. program can make major contributions to SS/AT research.
- A next-generation device for SS/AT research needs to carefully incorporate the necessary technical features.