ALPHA PARTICLE CONFINEMENT IN TFTR D-T PLASMAS WITH REVERSED AND MONOTONIC MAGNETIC SHEAR

Martha H. Redi

Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ USA

39th Annual Meeting of the Division of Plasma Physics of the American Physical Society 17-21 November 1997, Pittsburgh, PA

Acknowledgements: S. H. Batha , R. V. Budny D. S. Darrow , F. M. Levinton D. C. McCune, S. S. Medley M. P. Petrov, R. B. White M. C. Zarnstorff, S. J. Zweben and the TFTR Team

OUTLINE

* Introduction: Guiding center code simulations

- Monotonic and Reversed Shear
- * Global losses
 - Comparison with lost alpha detector data

* Confined alpha profiles

- Comparison with PCX confined alpha data

STOCHASTIC RIPPLE DIFFUSION BY TOROIDAL FIELD RIPPLE

* Trapped ion banana orbits "walk" out of the plasma.

- Lose alpha heating of fusion plasmas. Cause intense local heating of vessel wall =0.

* Stochastic Ripple Threshold: simple model of Goldston, White, Boozer

- $s = (/(N q))^{1.5} (1/q')$ at trapped ion bounce point
- Toroidal field ripple: = (BMAX-BMIN)/(BMAX+BMIN)
- If / s > 1, the ion undergoes stochastic ripple diffusion

* ORBIT guiding center code calculates alpha guiding center orbits

- in flux coordinates for real magnetic geometry
- with pitch angle scattering and slowing down

* New threshold for stochastic ripple diffusion, / s > 1

- WGRB, White, Goldston, Redi, Budny, Phys. Plas. 1996
- Universal theory, first principles, no renormalization factors, unlike GWB
- Explicit construction of primary resonances and route to chaos
- Includes poloidal dependence, non-circular confinement domain
- Includes toroidal precession, important for fast ions

ALPHA BANANA TIP CONFINEMENT DOMAIN REDUCED IN REVERSED SHEAR

GUIDING CENTER CODE ALPHA PARTICLE LOSSES FOR TFTR (%)_

- * Loss occurs earlier in slowing down process for reversed shear.
- * Effect of collisional ripple loss smaller in reversed shear

* First orbit and ripple losses have different poloidal angle footprints

- First orbit loss distribution peaked at ~- 60° with 0° > -180°
- Ripple loss distribution peaked just below $= 0^{\circ}$

* Measurements of alpha loss per DT neutron at =-90°

- Reversed shear loss ~ 3x monotonic shear loss (1.6 MA RS/ERS, supershots)
- Agrees with expected reversed shear first orbit loss increase due to higher q(0)

* Measurements of alpha loss per DT Neutron near midplane (-20°)

- No good comparison shots for reversed shear vs supershot losses
- Measurements near midplane are difficult to interpret in detail due to shadowing effect of outer limiters

III. COMPARISON WITH PELLET CHARGE EXCHANGE DIAGNOSTIC

* Pellet charge exchange diagnostic (PCX) detects only v///v=-0.05 at midplane.

- Simulated data: select ions after s or 2 s, in v///v = -0.15 to +.05 and $| | \le 0.1$
- Reduced phase space: Must simulate 200x orbits as for global loss

* Reversed shear: all trapped alphas lost initially

- Pitch angle scattering refills trapped distribution
- Statistics: must follow 100x orbits as for monotonic shear

* To minimize computational run time

-WGRB loss algorithm and accelerated collision rates, PA and s.

- Gives good global loss estimates even for reversed shear equilibria.
- -Conservation laws for E, μ to project the final orbits to =0 to improve statistics.

Good Agreement of PCX and Neoclassical Transport Simulations with Collisions and Ripple Loss

* Simulations of neoclassical transport of alphas with ripple and collisions in good agreement with measured TFTR DT data

- Entire plasma above threshold for 3.5 MeV alpha particles in reversed shear
- All trapped alphas are lost at birth from stochastic ripple and first orbit losses
- Pitch angle scattering of passing ions continues alpha loss during slowing down

- Simulations of reversed shear: 40% alphas lost, 1/2 from stochastic ripple diffusion; 2x loss of comparable monotonic shear

* Can a viable reversed shear ITER be designed with minimal TF and Z_{eff} to maximize alpha heating?