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OPPORTUNITY TO DEMONSTRATE  FUSION ENERGY PRODUCTION  

RJH-97-030a

TFTR Mission (1976)
• Demonstrate D-T fusion energy production
• Study plasma physics of large tokamaks at reactor parameters
• Gain experience with reactor scale engineering
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TFTR Mission

• Need high ion 
pressure and 
good 
confinement.

• Enhanced 
reactivity due 
to beam-target 
reactions.



TFTR EXPLORED THE SCIENCE OF A 
REACTOR CORE

RJH-97-010a

Transport

Alpha 
Physics

MHD 
Stability

Reactor Core

DiagnosticsTheory



RJH-VG-180-3

 TRANSPORT STUDIES:  STATUS 1976

Confined 
Passing 
Orbit

Confined 
Trapped  
Orbit

Bt

• Neoclassical Transport
Variation of Bcauses some particles to mirror
∆r ∝ ρ BT/Bp

D⊥
neo ~  (a/R) 0.5 (BT/Bp)2 D⊥cl

•     Experimental   :  Transport rates much larger than classical or neoclassical
predictions.

•     Theory    : Turbulent Processes Due to Electrostatic Instabilities.

Predicted dependence of the
diffusion coefficient D and
electron thermal conductivity
Ke on the collision frequency
υ.

•     Empirical Scaling    :  Widely used to estimate energy confinement
- Bohm, psuedoclassical, Alcator ....



Bootstrap and 
beam-driven current 

Characterization of transport and 
turbulence and  predictive modelling

1983 1988 1993 1998

 Ohmic DT OperationNBI

L-Mode Supershots ERS

TRANSPORT STUDIES ON TFTR

RJH-97-045a

ERS: Internal 
transport barrier 
formation



REACTOR-LIKE PLASMAS ACHIEVED BY REDUCING  
WALL RECYCLING

• ni(0)·Ti(0)·τE increased by a 
factor of 20:  

L-mode: 0.48 ×1020 m-3·keV·sec

Supershot: 9.9 ×1020 m-3·keV·sec 
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• Empirical scaling fails to predict 
dependence on wall recycling 
and edge conditions.
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THE CORE PLASMA PARAMETERS ACHIEVED IN
TFTR D-T PLASMAS ARE ITER-LIKE.

    TFTR(#80539)      ITER     

β(0), % 6.0 9

Collision frequency - νe* (10-2) 1 .8

ρi/a (10-3) 6.5 2

Electron density (1020 m-3) 1 1.3

Ti (keV)/Te (keV) 36/13 35/35

D/T 1 1

Bt (T) 5.6 5.7

Fusion Power Density   (MWm-3) 2.8 2.5
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• Plasma Surface Voltage is Well Modeled by Including Beam-Driven 
and Bootstrap Currents

• In Ohmic discharges, good agreement with neoclassical resistivity.
• Impacted design of Advanced Tokamaks, Spherical Torus, and 

Stellarators.

NEOCLASSICAL THEORY PREDICTIONS OF 
BOOTSTRAP CURRENT CONFIRMED

RJH-97-025b



RADIAL TRANSPORT MEASUREMENTS INDICATE 
ELECTROSTATICTURBULENCE IS IMPORTANT

~ ~

RJH-97-038

• Experimental transport coefficients:  DT ≈ DHe  ≈ χe ≈  χi >> χi
neo

- excludes strong magnetic stochasticity

• Turbulence spectrum characterized by long wavelength modes (kρi ≈ 0.2)
- anisotropic spectrum

• Ion dynamics are important in turbulent spectrum
- Ti/Ti > ni/ni

Univ. of 
Wisconsin
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RJH-VG-180-5

THEORETICAL PREDICTIONS FOR
ELECTROSTATIC

TURBULENCE SUPPRESSION

• Suppression of Ion Temperature Gradient Modes by
- peaking of density profile
-  Ti > Te

• Flow shear stabilization due to gradients in Er/Bp

• Current Profile Modification: Large shift of the Shafranov
axis in the core region

α = -q2R (dβ/dr)
- increase fraction of trapped particles with favorable drifts



RJH-97-51

D. R. Ernst 
PhD Thesis
MIT (1997)

 MODEL OF ITG MODES WITH RADIAL  ELECTRIC FIELD 
SHEAR REPRODUCES L-MODE TO SUPERSHOT TRENDS

Effect
of Er
Shear
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produces Supershot:

•  Core highly sensitive to edge

•  χi  reduced by factor of ~8

•  Favorable power scaling

Toroidal Ion Temperature

Gradient Mode with E r  shear:

• Instability threshold improves 

with T i/Te and ne(0)/ne(edge)

• Central T i dependent on edge T i 



RJH-97-049

D. R. Ernst, 
PhD Thesis, MIT 
(1997)

HIGHER ION TEMPERATURES  ACHIEVED  IN DT SUPERSHOTS
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• χi  is lower across the 
profile.

• Maximum linear growth rate 
decreases with ion mass.

• Er shearing rate increases 
with Ti.

• Radial Electric Field Shear  
Reproduces Strong 
Isotope Effect.



CURRENT PROFILE MEASUREMENTS ENABLED 
EXPLORATION OF NEW OPERATING REGIMES

RJH-97-024

Fusion Physics 
and Technology

F. Levinton
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REVERSED-SHEAR PLASMAS CAN TRANSITION TO A 
REGIME OF ENHANCED CONFINEMENT: ERS

• RS - Similar to supershots: low χe, χi 
• ERS - Reduced D e, Di, χi

- turbulent fluctuations suppressed within "transport barrier"

RJH-97-026a
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ION THERMAL CONDUCTIVITY  IS DRASTICALLY REDUCED IN 
CORE OF ENHANCED REVERSED SHEAR MODE

RJH-97-
013a

• De reduced by factor of 10-50 approaching D e
neo

• χ
e relatively unaffected. 



E. Synakowski; E. Mazzucato 
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TRANSPORT BARRIER EVOLUTION CONTROLLED WITH 
NEUTRAL BEAM TORQUE

ERS relaxation coincides with an increase in fluctuations
Demonstrates the role of ExB velocity shear stabilization.

RJH-97-027



LARGE EXCURSION IN Vθ
C PRIOR TO OBSERVED 

CONFINEMENT CHANGE  IN ERS

R.E. Bell
F. Levinton
E. Synakowski

RJH-97-014a

• Excursion in Vθ
C implies a 

large radial electric field.
- Large electric field 

excursions observed 
on MSE measurements

• Transition first evident as 
an increase in ion (carbon) 
pressure

• What is the cause for the 
excursion in Vθ

C >>  Vθ
NC?
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RJH-VG-180-6

MHD STUDIES: STATUS 1976

• MHD equilibrium used to estimate the pressure limits
- βp  ~ R/a

• Experimental and theoretical work identified 
- Resistive tearing modes
- Sawteeth
- Disruption mechanisms

Experimental arrangement of x-ray
detectors and sawteeth on the ST
tokamak

Development of sawteeth and an
m= 2 mode before a disruption
on TFR



PROGRESS IN MHD STABILITY IS CRITICAL FOR FUSION

• High power heating experiments revealed plasma pressure limits. 
(1980s)

• Two-dimensional ideal MHD stability limits evaluated for optimized
profiles:
- Low n-modes:  βN = βT/(Ip/aBT) < 2.8   (Troyon scaling)
- Ballooning modes:  βN = βT/(Ip/aBT) < 4.4   (Sykes scaling)

Pfusion = ∫ni
2 < σν > (17.6 MeV)dV ~ ∫ni

2 Ti
2 dV [< σν >/Ti

2]
∝ β i

*2B4V ~     (βi
*/βt)

2       •        (IpBT)
2  κR      •      βN

2         •           [< σν >/T2]

                       
    Hot Ion & Machine MHD Stability  Non-Maxwellian

Pressure Parameters
Profile
Peaking



MHD STABILITY STUDIES ON TFTR

1983 1988 1993 1998

Characterization of MHD Pressure Limit

3-D MHD 
Theory

 Ohmic DT OperationNBI

Sawtooth Stabilization

Prediction of 
Neoclassical MHD 
Modes

L-Mode Supershots ERS

RJH-97-046a

Identification of 
Pressure Limit 
Disruption Mechanisms

Identification of
Neoclassical 
Tearing Mode



S. Sabbagh

IDEAL MHD PROVIDES GUIDANCE OF β LIMIT 
DEPENDENCE ON PROFILE SHAPING
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•  Theoretical β limit computed from PEST with q(0) = 1
- with q(0) < 1, experimental βN exceeds ideal calculation

RJH-97-050

Current Profile Peaking (li)
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ADVANCED REGIMES ACHIEVED HIGH NORMALIZED BETA BUT AT 
REDUCED MACHINE PARAMETERS

PDT  ∝  (<pi
2>/<p>2)    ×   βN
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Hot ions,
profiles
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0

1

2

0
1
2
3

79017

dB/dt (outside plasma)

Time (s)

(a
.u

.)
10

16
/s

m/n=3/2

Troyon-normalized β

23 MW NBI

3.5 4.0 4.5 5.0

DD neutron rate

• Magnetic islands with low poloidal and toroidal mode numbers (m/n) can 
reduce the sustainable beta and fusion performance in steady-state

⇒ "Soft" β-limit

NEOCLASSICAL MHD INSTABILITIES CAN DEGRADE

CONFINEMENT BELOW IDEAL β-LIMIT 

Z. Chang
RJH-97-040

β N

University of 
Wisconsin



• Nonlinear numerical simulations find n=1 kink drives local 
ballooning modes unstable leading to disruptive collapse
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SUCCESSFUL SIMULATION OF THE COMPLEX INTERPLAY 
BETWEEN n=1 KINK AND BALLOONING MODES.



REVERSE SHEAR PLASMAS ARE ROBUSTLY STABLE TO 
HIGH-n MODES IN PLASMA CORE

•  Robust stability region 
extends to 80% of minor 
radius in some plasmas.

•  Low n neoclassical 
tearing modes are 
observed to be stable 
in the reverse shear 
region.

• Confirmation of theory

S. Sabbagh
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THEORY SUCCESSFULLY PREDICTS ISLAND 
WIDTHS FOR LOW m/n NEOCLASSICAL MODES

• m/n=4/3 island
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• Further work required on threshold criteria.

Z. Chang

RJH-97-017

• Further work required on threshold criteria.

University of 
Wisconsin



DISRUPTIONS IN ERS DISCHARGES  ARE 
CONSISTENT WITH IDEAL MHD THEORY

• Pressure limit due to sharp 
pressure gradients and 
evolution of current profile.

• ERS beta limit consistent with 
low-n infernal mode 
destabilization.
- βN < 2.

• Mode localization and 
structure in good agreement.

 
• Control of transport barrier 

and current profile evolution 
is essential.
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• Excess bootstrap 
current causes       
q-profile to evolve 
towards unstable 
configurations.

HIGHLY PEAKED PRESSURE PROFILES IN ERS PLASMAS 
CREATE TOO MUCH BOOTSTRAP CURRENT  INSIDE qmin

0.0 0.5 1.0
0

0.5

1.0

1.5

2.0

2.5

Total

Bootstrap

Beam

r/a

C
ur

re
nt

 D
en

si
ty

  (
M

A
/m

2 )

RJH-97-032 PPPL
PRINCETON
PLASMA PHYSICS
LABORATORY



RJH-VG-180-2

SAFE TRITIUM OPERATION DEMONSTRATED

• Tritium neutral beam and gas puffing used to fuel the plasma

• Tritium Purification System successfully processed tritium in a
closed cycle.
-  99 grams of tritium processed

• Dose at site boundary <0.4 mrem/year
- Design goal < 10 mrem/year.



HIGHEST FUSION PERFORMANCE IN TFTR ACHIEVED 
IN LOW RECYCLING SUPERSHOT PLASMAS

• Increased fusion power by:
- Reducing recycling by Lithium conditioning
- Increasing plasma current and toroidal field for stability (Ip=2.7MA, BT=5.6T)
- Operating at maximum neutral beam power
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Pfus = 10.7 MW,  Pfus / Pheat ≈ 0.27,  βα(0) ≈ 0.3%

RJH-97-023



RJH-97-033 R. Budny

 D-T NEUTRON EMISSION IN SUPERSHOTS IS CONSISTENT 
WITH CALCULATIONS BASED ON PLASMA PARAMETERS
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• Validates classical beam  thermalization
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RJH-VG-180-8

ALPHA-PARTICLE PHYSICS: STATUS 1976

• Transfer of energy to the background plasma by Coulomb collisions (1950’s)

• Passing and Trapped particle orbit effects

• Slowing-down spectrum of beam ions in good agreement with theory

Alpha Particle Orbits

Confined Passing 
Alpha

First-Orbit loss 
Alpha

Confined 
Trapped 



TAE Instabilities
Predicted

TAE Excitation  with 
NBI / ICRF

α-Confinement 

1983 1988 1993 1998

 Ohmic DT OperationNBI

L-Mode Supershots ERS

ALPHA-PARTICLE PHYSICS ON TFTR

α-Driven 
TAE 
Instabilities

RJH-97-047a

α-Loss 
induced by 
MHD

α-Heating



RAPID ASH TRANSPORT FROM THE CORE 
TO THE EDGE IN SUPERSHOTS

DHe / 
χ

D ~ 1
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RJH-97-019

University of
Wisconsin

• 0  ≤  Dα  ≤  0.03 m2/s
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Eα = 0.15-0.6 MeV

ALPHA PARTICLES ARE WELL CONFINED

Charge exchange 
between fast beam 

neutrals and 
nonthermal alphas
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BeamDetect

Optical 
Emission
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ESCAPING ALPHA FLUX AT 90° DETECTOR IS 
CONSISTENT WITH CLASSICAL FIRST ORBIT LOSSES

RJH-97-020

S. Zweben
D. Darrow  
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• TRANSP calculation includes:
- orbit trajectories
- classical slowing down
- time dependence of alpha production

CONFINED ALPHAS IN THE PLASMA CORE SHOW CLASSICAL 
SLOWING DOWN SPECTRUM
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INITIAL EVIDENCE OF ALPHA-PARTICLE HEATING

• pα(0) in TFTR 
comparable to that in 
ITER.

 • Alpha heating ~10% 
of power through 
electron channel

• Plasmas matched for 
dominant Te scaling 
in D only plasmas
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• Comprehensive study of alpha heating requires Pα> Paux.
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G. Taylor
J. Strachan



ENHANCED LOSS OF ALPHA-PARTICLES OBSERVED IN 
PRESENCE OF MHD ACTIVITY 
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• Strong toroidal anisotropy 
in α-loss apparent when 
mode is rotating.
- Concern for plasma 

facing components in 
ITER
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SAWTEETH CAUSE A LARGE RADIAL REDISTRIBUTION 
OF ALPHA PARTICLES

Alpha heating profile in ITER will strongly depend upon the 
sawtooth activity, although only transiently
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RJH-VG-180-9

 TOROIDAL ALFVÉN EIGENMODES CAN CAUSE
SUBSTANTIAL FAST ION LOSS

• TAE modes observed in D plasmas driven by:

-   Beam ions
-   RF tail ions
- 10-30% loss of fast ions was observed

• Theoretically, energetic alpha particles can drive Alfvén
waves unstable.

- Vα ~ VAlfvén
- R∇βα > C
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ALPHA DRIVEN TAES IN WEAK SHEAR DISCHARGES

RJH-97-036 R. Nazikian

Theoretical Prediction: Fu, Spong

• Reduce magnetic shear, beam damping and raise q(0)
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CALCULATED CRITICAL βα DECREASES WITH INCREASING q(0)

• Low shear and high q(0) are observed to be destabilizing.

• Implications for Advanced Tokamaks.
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TOKAMAKS HAVE MADE EXCELLENT PROGRESS 
IN FUSION POWER

10-11

10-8

10-5

10-2

101

104

1970 1980 1990 2000

F
us

io
n 

P
ow

er
 (

M
W

)

YEAR

T-3A

ST

PLTORMAK

ATC

PLT

ALC-A PLT

ALC-C

JETASDEX
PDXPLT

D-III
JET

TFTR

JET

TFTR
JET

D-IIID

JET (DT)

ASDEX

JT-60U

TFTR (DT)

TFTR

Ohmic 

RF 

NBI- D 

NBI-DT 

JET (DT)

RJH-97-031



RJH-VG-180-10

 STUDY OF FUSION PLASMAS ON TFTR HAS INCREASED OUR
UNDERSTANDING OF THE UNDERLYING PHYSICS

TRANSPORT
• Characterizing transport and developing a predictive understanding
• Experimental confirmation of the bootstrap current
• Reducing transport and demonstrating control of internal transport barrier

MHD STABILITY
• Better understanding of the role of current and pressure profile in MHD

stability
• Identification of kink-ballooning mode as the disruption mechanism
• Identification of neoclassical tearing modes

ALPHA PHYSICS
• Confinement and loss of alpha particles in good agreement with theory in

MHD quiescent discharges.
• Indications of alpha-particle heating
• Observed MHD effects on alpha distribution function and losses
• Observed Alpha-driven TAE modes in weak-shear discharges
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TFTR HAS MADE MAJOR CONTRIBUTIONS TO
ALL THREE ELEMENTS OF

FUSION PROGRAM

• Fusion Science
- Characterization and control of turbulence
- Detailed comparison of experiment with MHD theory

• Concept Innovation
- Advanced Tokamak
- Alternates

• Development of Fusion Energy and Technology
- Alpha Physics
- Safe operation in D-T.
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