Project Overview and PPPL Plan

Guoyong Fu

Goal

- Predictive simulations of energetic particle-driven instabilities and transport in burning plasmas
- Predictive simulations \rightarrow code Verification/Validation;
- EP instabilities \rightarrow Gyrokinetic/MHD hybrid model;
- Transport \rightarrow long time nonlinear simulations;
- Burning plasmas → massively parallel computation to resolve multiple high-n modes

CSEPP Roadmap

	2008	2009	2010
Code Development	Extend particle domain decomposition to 3D; Add source/sink; Design workflow; Formulate nonlinear GKM model; Build initial version of GKM (MHD+ hot particles) Explore reduced models	Add more particle domains; Implement weight control; Implement workflow; Build 1 st version of GKM (gyrokinetic Alfven + hot particles); Develop reduced models;	Scale GKM to 10k processors; Complete GKM code; Explore JFNK implicit method; Explore continuum method;
V&V	M3D-K verification with single mode saturation	GKM verification with NOVA-K and single mode saturation	GKM validation with DIII-D results of beam-driven modes and transport. Explore reduced models for code verification.
Physics application	M3D-K simulations of beam- driven modes in NSTX	Fishbone; Beam-driven modes in DIIID (single mode case); Alpha-driven TAE in ITER	Fishbone with source/sink; High-n TAE in ITER;

PPPL Plan (2008-2009)

- Extend particle domain decomposition to 3D (scale to 1000 processors);
- Add source/sink (with CU);
- Formulate nonlinear GKM model (with IFS);
- Build GKM0 (initial GKM version);
- M3D-K simulations of beam-driven Alfven modes in NSTX.

Extend particle domain decomposition to 3D

We have currently 2D domain decomposition(poloidal and toroidal);

We plan to add domain decomposition in radial direction in order to use more than 100s of processors.

B = 16

Linear solves are independent on each processor

Linear solves are parallel over processors

Add source/sink

- Need source and sink for long time simulations;
- Source (NBI injection, alpha particle birth);
- Sink (collisional slowing down, particle loss to the wall)

Formulate nonlinear GKM model

- Formulate nonlinear GKM mode based on gyrokinetic equation;
- Use hybrid model to recover exactly the MHD dynamics;
- Treat kinetic effects of both thermal species and energetic particles on equal footing;
- Kinetic effects are treated using PIC method (kinetic closure rather than fluid closure).

M3D-K simulations of beam-driven Alfven modes in NSTX.

- Continue M3D-K simulations of beamdriven Alfven modes in NSTX plasmas;
- Emphasize multiple mode dynamics;
- Test source/sink with collisions;

NSTX observes that multi-mode TAE bursts can lead to significant fast-ion redistributions/losses

Multi-mode simulations show strong mode-mode interaction.

amplitude