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Goals and motivation

• Goal: To find the generic analytical expression for the PDF
tails.

• The tails are often qualitatively different from a Gaussian
distribution. The method used is the so-called instanton 
method.

• Motivation: There are theoretical and experimental evidence
that for understanding transport (involving many scales and 
amplitudes) a probabilistic description is needed. 

• Intermittenct systems are badly described by mean field theory 
and the turbulent transport coefficients are invalid.

• Note that the term ”intermittent” will be used for all
phenomena that exhibit strong non-linear features.
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Probability distribution function

• Near the center, the PDF is 
often close to Gaussian but 
reveals a significant deviation 
from Gaussianity at the tails 
(intermittency - the events 
contributing to the tails are 
strongly non-linear.). 

• Rather than a transport 
coefficient, a flux PDF is 
required in order to 
substantively characterize the 
transport process.

• PDF tail – rare events, but 
large amplitude (e.g. large heat 
load on the wall.)

Radial velocity PDF measured at TCV, Garcia EPS2006

Matsumoto, USJP Workshop 2007
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Previous results – Blob density PDF
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Anderson et al PoP 15 122303 (2008) 
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A coupled drift-wave zonal flow system
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A coupled system of drift waves φ1 and zonal flows φ0 (ξ is the
X-coordinate and ζ is the time-coordinate.

PDF tails of ZF formation PDF tails of Momentum flux

Without the influence of ZF the PDF tails of momentum flux is
2/3cRe−∝

Also found experimentally in CSDX by Z. Yan APS2007

Anderson et al submitted to NF 2008
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PDFs of fluctuations vs ZF dominated 
plasma

Matsumoto, USJP Workshop 2007
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Instanton method

• The instanton method is a non-
perturbative way of calculating 
the Probability Distribution 
Function tails.

• The PDF tail is viewed as the 
transition amplitude from a 
state with no fluid motion to a 
final state governed by the 
coherent structure. 

• The creation of the coherent 
structure is associated with the 
bursty event.

• The optimum path is found by 
using the saddle-point method.

Kim and Anderson PoP in press (2008)
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Coherent structures

• Coherent structures are 
major players in transport 
dynamics through the 
formation of avalanche-like 
events with large amplitude.

• There are several examples 
of coherent structures (c.f. 
modon or bipolar vortex 
soliton) to the non-linear 
governing equations.

• Strong theoretical evidence 
that a probabilistic 
formulation is needed to 
characterize the problem. Left:Dastgeer IEEE TPS 2003, Right:

Waelbroeck et al PPCF 46 1331 (2004)
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Model Equations
Time evolution of the potential is governed by an N order 
Interaction term.
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The forcing is assumed to be Gaussian with 
a short correlation time:
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The model for calculating the PDF tails
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The PDF of the mth moment can be defined as:

The integrand can be re-written as a path-integral:

Here, the effective action can be written:

The forcing κ is a Gaussian with a delta-correlation in time.
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Instanton (saddle-point) solutions
• The path-integral will be solved using a saddle point method.
• Assuming that the coherent structure has a spatial profile φ0(x) and a 

temporal evolution F(t) and similarly for the conjugate variable.
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the conjugate structures
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Steepest descent method or saddle point integral
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Assume the function f has a unique global maximum at x0

In the case of the path-integral we have a similar situation, however instead
Stationary points we must look for functions that optimize the action. 
Consider the functional derivatives: 

This gives us two equations in F and μ, respectively
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Instanton solutions

λqF

tncFF
mn

nn

=

+−+=
+−

+−+−

1
0

2
1

0
1 )1(

We find the solution:

To calculate the path-integral we now have to evaluate the 
saddle point action (input the solution above into the action).
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The PDF tails + Corrections 
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To determine the PDF tails we have to evaluate the λ integral:

put

And find the saddle point:

This gives the PDF tails as:
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The first factor comes from the Gaussian integral correction in the
steepest descent method.



18/02/2009 Johan Anderson University of 
Sheffield

16

PDF tail of a general moment
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The PDF tails of moment (m) and with the order of the highest 
non-linear interaction term (n)
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Examples: 
1. Linear system with PDF tails of first moment – Gaussian s=2.

2. Linear system with PDF tails of flux (n*v) – s=1

3. Hasegawa–Mima system with PDF tails of momentum flux – s=3/2

The PDFs tails can be calculated provided that the integral mean value
over the considered coherent structure is non-zero. A coherent structure
For the HM system is the modon. The mean value of Reynolds stress
over this structure is zero. This is solved by having several coupled modons. 
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Threshold diffusion
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A forced model of shear flow that
Been used for a wide range of 
phenomena (solar/atmospheric)

Using the previous result we find the PDF:

A comparison of numerical calculations and the estimated PDFs. In the 
numerical calculations a Gaussian forcing is used. First an extreme case: 
Apply forcing only when |ux| < uxc to allow for relaxation is faster than the 
disturbance. Result PDF mainly Gaussian!

HL Liu J. Atmos. Sci., 64, 579-593, 2007. 
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Quadratic diffusion

Solid line: Non-linear numerical
calculation.
Dotted line: Gaussian fit
Dashed line: A fit to the PDF.

Close to 0 the PDF is close to Gaussian whereas the tails are strongly 
intermittent.
There is a cross-over between occurs roughly at the expected critical 
gradient uxc ≅ sqrt(ν/β) = 0.98.

4

)( xcUeP −∝ξ
The same PDF may be found 
Using the Fokker-Planck 
PDF equation.

Submitted to PRL 2008
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Future work

• Work out corrections to some specific physical 
equations (HM, Burgers etc)

• PDF tails in an electromagnetic model. 
• Self consistent forcing. No external forcing 

instead use the linear instability as the driving 
force.

• PDF tails of multi-structures and multi-
instantons.

• PDF tail for L-H transition.
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Summary

• We have found the PDF tails for general n (degree of the
highest non-linear term) and m (moment) as well as
subleading corrections coming from the saddle point 
method.

• By calculating PDFs we may easily discriminate between 
models and experiments. We need only to know the
slope in the log-log plot.

• We have presented a statistical theory of self-
organisation of shear flows by a simplified non-linear 
diffusion model for the shear flow.

• We have compared the PDF tails from numerical 
calculations and two analytical methods and found very 
good agreement.
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