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Topics

• Guiding center model of single particle motion at small gyroradius

• Gyroangle and locally orthogonal coordinates tied to magnetic field

• Second order expansion: Hamiltonian/Lagrangian

• 3D field: magnetic field torsion and coordinate system twisting

• GC higher order validity and global coordinate system existence

• Time-scales, magnetic vector potential, and geometric approximations

• Summary

(for details, see L. Sugiyama, Phys. Plasmas 15, 092112 (2008))



Guiding Center Model - Single Particle Motion

• Guiding Center (GC) model for the motion of a single

charged particle separates the motion into fast gyration

around magnetic field lines and a slowly varying GC

motion, with particle position

x = X +
ǫv⊥

Ω
ζ̂. (1)

Particle velocity v = (v‖, ζ, v⊥) is written in terms of

a gyroangle ζ with direction v⊥ = v⊥ζ̂ × b̂, where

v⊥ = b̂ × (v × b̂), b̂ = B/B, x is the particle and X

the GC position.

– Expansion in small gyroradius ρ/L ∼ ǫ < 1, where ρ = v⊥/Ω, Ω = ZeB/mc,

and L is a system scale length. Fast gyrofrequency (∂/∂t)/Ω ∼ ǫ.

• Gyroangle defined in local orthogonal coordinates tied to the magnetic field lines

at each point in space, axes (ê1, ê2, b̂). Originally defined from particle position,

transformed to GC position.



3D Magnetic Field

• Always possible to define locally orthogonal coordinates at each point of the mag-

netic field. Relation between coordinates at different points not specified.

• Gyroaverage defined in terms of cumulative gyroangle, 〈f〉 ≡
∮

dζ f =
∫ 2π

0 dζ f

over non-closed curves. In 3D fields, a globally consistent definition may not exist!

• In 2D slab (straight, uniform magnetic field lines), a simple connection exists and

the GC expansion in small gyroradius is exact to all orders.

• In 3D, the curl of a vector field in a given direction is twice the rate of rotation of

the field around that axis, as seen when moving in that direction.

– Magnetic field torsion τ ≡ b̂ ·∇× b̂ is the twisting of the field line when moving

along itself. (Usually nonzero — plasma parallel current J‖ = b̂ · ∇ × B = Bτ .)

– Torsion also introduces twisting of the local field-tied orthogonal coordinate sys-

tem, R = (∇ê1)·ê2 = −(∇ê2)·ê1. (Def’n: given a vector x, x·R = (x·∇ê1)·ê2.)



• For nonzero τ , gyromotion mixes parallel and perpendicular directions.

– For any small closed curve C surrounding a field line that encloses a surface S that has normal

direction n̂S along b̂ at one point P on the field line,

lim
S→0

1

S

∮

C

dl · b̂ = lim
S→0

1

S

∫ ∫

S

dS n̂S · ∇ × b̂ = b̂ · ∇ × b̂|P . (2)

• An infinitesimal path around a
field line does not close.

Difference in parallel transport of vector

N along two parallel paths around B (B

points out of page). Inset: Closed path

corresp. to Eq. (2). Torsion contribution

is out of plane.

• The angle nonuniformity due to torsion is a real physical effect; appears in many

areas (Aharonov-Bohm effect, Berry phase, related to Dirac magnetic monopole)



• Equations of motion

dr

dt
= v, m

dv

dt
= qE(r, t) +

q

c
v × B(r, t) (3)

• Transform particle to guiding center phase space coordinates

(r, v, t) → (x, v‖, ζ, v⊥, t) → (X, U‖, ζ, w, t),

where w ≡ (µB/m)1/2

• Time derivative dζ/dt contains 3D effects

dζ/dt = (∂ζ/∂t) + (v · ∇)ζ

∂/∂r = ∂/∂x + (∂v‖/∂x)(∂/∂v‖) + (∂v⊥/∂x)(∂/∂v⊥) + (∂ζ/∂x)(∂/∂ζ)

∂ζ/∂x = (v‖/v⊥) (ζ · ∇)b̂ + R. (4)

• Poisson brackets used in the Hamiltonian and Lagrangian equations

{F,G} = (∂F/∂x)(∂G/∂v) − (∂G/∂x)(∂F/∂v) + ǫ−1B · ((∂F/∂v) × (∂G/∂v))(5)

Bracket {ζ, w} contains the torsion.



GC expansion in small gyroradius

• ǫ0: GC moves along B.

〈x〉 = X, 〈v〉 = v‖ (6)

• ǫ1: GC drifts across B appear

ζ̇ = Ω

[

1 +
ǫw

B

U‖

w

(

1

2
b̂ · ∇ × b̂ + b̂ · R

)]

〈v‖〉 = U‖

[

1 −
ǫw

B

w

U‖

(

1

2
b̂ · ∇ × b̂ − b̂ · R

)

]

(7)

– Torsional terms τ = b̂ · ∇ × b̂ and τg = b̂ · R appear.

– Nonuniform gyroangle due to torsion→ nonuniform gyroperiod, velocity space

nonuniformities:

Particle sees longer or shorter gyroperiod depending on whether it moves parallel

or anti-parallel to B, and how far it moves along B in one gyroperiod. Due to

magnetic torsion, the baseline direction for defining ζ rotates along B by (1/2)τ .

(Northrup-Rome 1978: ⊥ motion to O(ǫ2), ‖ to O(ǫ))



• ǫ2: No direct derivation from equations of motion. Hamiltonian/Lagrangian non-

canonical phase-space variable methods were developed to extend the expansion to

second and higher orders (Littlejohn 1979-83, Brizard 1989).

Eliminate the geometrical terms b̂ · ∇ × b̂ and b̂ · R from the dynamical equations, keeping them

only in the gyroangle time derivative ζ̇ and 〈v‖〉.

Method: add free functions (gyrogauge) to the Lagrangian and define their gyroaverages appropri-

ately.

Effective magnetic vector potential A∗ simplifies the expression for the guiding

center phase space Lagrangian Γ (Littlejohn 1983, Brizard-Hahm 2007),

A∗ = A + ǫ U‖b̂ − ǫ2µR

Γ = (1/ǫ)A∗ · dX + ǫµ dζ − ((1/2)U2
‖ + µB)dt. (8)

The curl ∇ × A∗ in GC space coordinates X is needed for the equations of motion.

Problem: The effective magnetic field B∗ = ∇ × A∗ (Northrup) or the quantity

∇×R (Morozov-Solov’ev) is always defined for GC problem, but the correspond-

ing vector potentials A∗ or R do not have to exist everywhere.

At O(ǫ2), existence of R requires globally consistent magnetic coordinates (vec-

tor fields ê1 and ê2) such that the gradients ∇ê1 and ∇ê2 are defined.



Torsion and geodesic torsion

• If plasma has good magnetic flux surfaces Ψ, B · ∇Ψ = 0, then ê1 can be defined

so that τg = b̂ · R is the (negative) geodesic torsion τG of a field line on a flux

surface.

• Vector curve as function of arc-length s: Serret-Frenet equations (DoCarmo 1975)

Tangent unit vector t̂, normal n̂ in κ = b̂ · ∇b̂ (curvature) direction, binormal β̂ ≡ t̂ × n̂.

t̂′(s) = κn̂

n̂′(s) = −κt̂ − τ β̂

β̂
′
(s) = τ n̂. (9)

• Curve on an oriented surface: Darboux equations

N̂ is inward normal to surface, T̂ = t̂, binormal V̂ = T̂ × N̂.

T̂′(s) = κNN̂ + κGV̂

N̂′(s) = −κNT̂ − τGV̂

V̂′(s) = −κGT̂ + τGN̂. (10)

Geodesic torsion τG is rotation of surface-normal and binormal axes around field line.

κN is the normal curvature and κG the geodesic curvature. τ − τG = dθ/ds, where cos θ = N̂ · n̂.

Defining ê1 = −N̂ = ∇Ψ/|∇Ψ|, then τg = b̂ · R ≡ b̂ · (∇ê1) · ê2 = −τG.



Locally orthogonal magnetic coordinates for 3D fields

• Existence of locally orthogonal magnetic coordinates throughout a volume is equiv-

alent to existence of a family of triply orthogonal surfaces in the volume, one family

aligned with each axis. (Triply orthogonal: a unique surface from each family passes

through each point and the three intersecting surfaces are pairwise orthogonal.)

• Fails where a consistent perpendicular directions cannot be

defined for field lines across a curve or surface

– On magnetic axes, O-points, and X-points.

– On boundaries between magnetic regions of different

topologies

– In truly stochastic fields



• Requires good magnetic flux surfaces, but may still fail.

– Choose ê1 = ∇Ψ/|∇Ψ| to be the normal to the surface, so τg = −τG. The

coordinate systems are then consistent on each flux surface. The problem is to

match coordinates across flux surfaces.

• For toroidal plasmas, existence is closely related to Newcomb’s solvability condition

for b̂ · ∇ψ = S. A solution exists in a toroidal plasma if and only if
∮

dl S = 0 on

all closed field lines on rational magnetic surfaces.

– Early Hamiltonian/Lagrangian GC theory defined a gyrophase ψ in the gyroangle,

ζ′ = ζ+ψ, where b̂ · ∇ψ = (1/2)b̂ · ∇ × b̂ + b̂ · R. It did not satisfy Newcomb

solvability (Hagan and Frieman 1985).



• I. If b̂ ·∇× b̂ = 0 for a vector field with unit direction b̂, then there exists a surface

normal to b̂ (Kelvin, 1850’s, fluid vorticity). Condition B ·∇×B = 0 or ∇×B = 0

is necessary and sufficient for the existence of global planes perpendicular to the

magnetic field lines, since the field then has the form B = f∇g for two functions

f and g.)

• II. Given magnetic flux surfaces, classical differential geometry (DoCarmo, 1975)

states that τg = 0 is the necessary and sufficient condition for existence of a set of

triply orthogonal surfaces, one defined by field lines and one by flux surfaces.

– On an (oriented) surface, at any point there is a maximum and a minimum value

of the surface curvature κN , corresponding to two curves passing through the

point. These are the lines of curvature of the surface at the point and have

τG = 0. Dupin’s theorem states that, if three families of surfaces form a triply

orthogonal system, then the surfaces must intersect in lines of curvature. Thus

the magnetic field lines must have τG = 0 and since they densely cover each

flux surface, τg = b̂ · R = 0 (almost) everywhere. In general fields, τg = 0 is

equivalent to τ = 0, zero torsion.

– τg = 0 is equivalent to êj · ∇ × êj = 0 for all three axes in Eq. (11), so that

three mutually orthogonal surfaces exist, one perpendicular to each axis.

2D Symmetry allows existence



Magnetic coordinate rotation b̂ · R

• Assuming that the gradients ∇êj are defined everywhere, it can be shown that b̂ ·R

depends on all three orthogonal axes,

b̂ · R =
1

2

(

b̂ · ∇ × b̂ − ê1 · (∇ × ê1) − ê2 · (∇ × ê2)
)

. (11)

Derivation:

R ≡ (∇ê1) · ê2 = ê2 × (∇ × ê1) + (ê2 · ∇)ê1. (12)

Since ê1 · ê2 = 0, b̂ · (∇ê1) · ê2 = −b̂ · (∇ê2) · ê1, so that

b̂ · (∇ê1) · ê2 = −ê1 · (∇ × ê1) + b̂ · (ê2 · ∇)ê1

−b̂ · (∇ê2) · ê1 = −ê2 · (∇ × ê2) − b̂ · (ê1 · ∇)ê2. (13)

Adding and using b̂ · ∇ × b̂ = b̂ · ∇ × (ê1 × ê2) = b̂ · [(ê2 · ∇)ê1 − (ê1 · ∇)ê2 gives the result.

• The perpendicular component is

R⊥ = ê1(b̂ · ∇ × ê1) + ê2(b̂ · ∇ × ê2) = b̂ × κ+ ê2(∇ · ê1) − ê1(∇ · ê2). (14)



• Eqs. (11)–(14) assume that the third coordinate axis ê2 defines a continuous vector

field with well-defined gradient and curl, locally orthogonal to ê1 and b̂.

A nontrivial existence condition involves second derivatives of Ψ. Assuming that

flux surfaces with surface normals ê1 = ∇Ψ/|∇Ψ| exist, so that ê1 · ∇ × ê1 = 0,

ê2 · ∇ × ê2 = b̂ · ∇ × b̂ − 2b̂ · (ê2 · ∇)(∇Ψ/|∇Ψ|), (15)

Substituting ê2 = b̂ × ∇Ψ/|∇Ψ|, Eq. (15) becomes a relation between b̂ and ∇Ψ

so that such an ê2 exists.

• Torus: Equilibrium force balance, J × B = ∇p implies a natural coordinate ê2′ =

∇I/|∇I| with ê2′ · ∇ × ê2′ = 0, that is not generally orthogonal, ∇I · ∇Ψp 6= 0.

In canonical magnetic coordinates (Boozer), not necessarily orthogonal, B = ∇Ψp×∇φ+∇Ψt×∇θ,

and good flux surfaces Ψp require that Ψt = Ψt(Ψp). Then B = ∇ × (I∇Ψp), where I(Ψp, θ, φ) =

−(dΨt/dΨp)θ − φ.



Coordinate existence condition has n-dimensional

analogue

• In terms of manifolds and differential forms, the corresponding n-dimensional result

for the existence of locally orthogonal coordinates tied to a field shows that the

problem is one of linking the twisting of the different coordinate systems, ie, the

affine connections (Flanders, 1989).

• Possible iff the generalized differential curvature form Ω ≡ 0.

• In three dimensions, this is equivalent to

zero torsion of the vector field.

• In four dimensions, non-zero curvature is

possible.

– Theories of quantum gravity attempt

to attach small scale, locally orthog-

onal quantum theory to large scale,

curved space-time



GC/GK Time Dependence

• The time-dependent magnetic vector potential term in the electric field in Ohm’s

law, E + v × B ≃ 0, also affects geometrical accuracy in 3D.

– Perpendicular: Ordering −(1/c)∂A⊥/∂t ≪ ∇⊥Φ (electrostatic potential) drops

the compressional Alfvén wave and makes the geometrical approximation

∇ ·
(

b̂b̂ · ∇Φ
)

= (b̂ · ∇)(b̂ · ∇Φ) − (1/B)(b̂ · ∇B)(b̂ · ∇Φ) ≃ 0.

– Parallel: Ordering −(1/c)∂A‖/∂t ≪ ∇‖Φ drops the shear Alfvén wave and

makes geometrical approximation b̂ · ∇Φ ≃ 0.

• Analytic GC/GK models drop the compressional wave, keep shear Alfvén. Velocity

moments yield reduced MHD.

• Numerical GK particle models usually drop or approximate the parallel ∂A‖/∂t for

numerical reasons. Part of the shear Alfvén wave appears through the nonlinear

polarization drift.

• Both approximations encourage an artificial enhancement of turbulent and zonal

poloidal ExB flows with ∇‖Φ ≃ 0, ie Φ ≃ Φ(r).

– GK simulations see robust zonal flows vE,θ ∼ ErBφ/B
2, while experiment is

more ambiguous.



Implications and Connections

• Nonexistence of the GC expansion at higher order implies that the magnetic moment

µ = (1/2)mv2
⊥/B cannot be shown to be an invariant at that order by the GC

analysis; µ is a first order invariant in general 3D fields.

• Since time-evolving fields will in general break any 2D symmetries, GK models that

keep the exact 3D geometry can be at most first order in gyroradius.

• Twisting of field-line-tied coordinate systems in 3D is a real physical effect. Velocity

space nonuniformities due to τ and τg appear in all GC and related models at first

order.

• FLR fluid models valid to all orders in ǫ (Ramos 2005) assume the gyroradius smaller

than all other scales, including the fluid element. Unlike GC/GK, yields full, not

reduced MHD. Still puzzling.

• Lagrangians are closely connected to vector potentials.

– Lagrangian formalism describes strictly local relations; existence of (effective)

vector potential is a separate, non-local condition.

– Higher order existence problem involves gradients, not basic variables.



Summary

• Guiding Center model: gyroangle around GC introduces field-line-tied coordinates.

• In 3D magnetic fields, nonzero field line torsion b̂ · ∇ × b̂ imposes strong nonlocal,

topological constraints on the validity of the GC expansion.

– First order in ǫ: velocity space nonuniformities

– Second order: existence!

• Second order GC equations exist in 3D only when the local orthogonal magnetic

coordinate systems defined at each point on a field line can be extended to a global

coordinate system in a volume.

– Requires good magnetic flux surfaces and either τ = τg = 0 or a 2D symmetry

• Nonexistence of GC expansion at higher order means that it cannot be used to prove

that magnetic moment µ is an invariant at that order; need different proof.

• In 3D, geometrically exact GC/GK equations require keeping electromagnetic vector

potential terms ∂A/∂t in the electric field at the same order as ∇Φ.



– Time-dependent, geometrically exact GK model can be at most first order for

3D fields.

– Assuming −(1/c)∂A/∂t ≪ −∇Φ, as in some numerical GK models, increases

poloidal ExB flows with E ≃ −∇Φ(r) and may encourage zonal flows.

• The GC coordinate existence problem has analogies to the problems encountered

by unified theories of physics, such as quantum gravity, relative to 4D space-time.


