Jacobian-Free Newton-Krylov
Method for GKM

Ravi Samtaney
samtaney@pppl.gov

http://www.pppl.gov/APDEC-CEMM/

Computational Plasma Physics Group
Princeton Plasma Physics Laboratory
Princeton University

CSEPP Meeting, Boulder CO,
March 29, 2008

PRINCETON PLASMA
PHYSILS LABORATORY

=PPPL



Outline

* Primer on Newton-Krylov Method

» Good preconditioning is the key

— Example: Wave-structure based preconditioner for
MHD

» JFNK for GKM
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Related Work

Chacon & co-workers (JCP 2002, 2003, 2006) developed JFNK methods
with “physics-based” preconditioners

— Parabolization trick for the equations
— Schur complement approach
M3d (Strauss, Park et al.) treats fast compressive wave implicitly
— Recently Fu & Breslau have extended to treating shear Alfvén wave implicitly

Glasser & co-workers use a static-condensation method in their fully implicit
SEL code

Rognlien et al. (J. Nuclear Matter 1992, JCP 2002) for edge plasmas
Mousseau & Knoll (JCP 2000) - 2d Fokker-Planck for edge plasmas

Reynolds, Samtaney & Woodward (JCP 2006) developed a fully implicit
parallel JENK method for 3D compressible MHD

— Recent work (2008) on development of a wave-structure based preconditioner
Excellent review paper by Knoll & Keyes (JCP 2004)
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Nonlinearly Implicit : Introduction to Newton-
Krylov

» Consider the equations of single-fluid resistive MHD
written below in conservation form

dep+V - (pv) =0,
@lb<v+4.ﬁb<<ﬂ — BBT +A%+ww.wvwv = N+,
B +V - ?wq - w<J =V ?ﬂw —n Aﬂwvev ,
e+ V-((e+p+3B-B)v—B(B:v)) =V (7v+kVT)

v ? @ﬂw . B) — wawvﬂvv

- Condensing notation U = (p, pv, B, e)!
U = -V -Fp(U) +V-F,(U) =V-F(U)
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Nonlinearly Implicit : Introduction to Newton-
Krylov

* The solution at the next time level to the entire system of equations is
expressed as the solution to the following nonlinear equation

FU™) =0

.ﬂ.AQ:.THv — Qf:..TH _yn + AH o %vaQ:.THv 4+ %mAQ;V — i}
R(U) is the entire right hand side (contains divergence of hyperbolic and

diffusive fluxes)
The number of unknowns is 8N2 for an NxN mesh

« This is solved using Newton’s method
—1

. \H\n
,,. Q.ﬂi,
oU
where J(UnTLF) = Am%v:i.» is the Jacobian: and dU* = yntlk+l _ pn+lk

The size of the Jacobian matrix is 64N4

* The linear system at each Newton iteration is solved with a Krylov method in which an
approximation to the linear system J dU = -¥ is obtained by iteratively building a Krylov
subspace of dimension m

K(ro,J) = span{rg, Jro, TPrg, = = ,.N_SL:L 5 i“‘—.
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Nonlinearly Implicit : Introduction to Newton-
Krylov

. Commonly used Krylov methods which can handle asymmetric matrices

—  GMRES (Generalized Minimum Residual)
. Long-recurrence Arnoldi orthogonalization method
. Robust, guaranteed convergence, but heavy on memory requirement

—  BiCGStab (Bi-conjugate Gradient Stabilized)
. Short-recurrence Lanzcos biorthogonalization procedure
. Residual not guaranteed to decrease monotonically, but less memory requirement

. Steps in a Newton-Krylov method
1. Guess the solution U0 (=U")

2. For each Newton iteration k

T Using a Krylov Method solve for & U¥
Solve J 6 Uk = - F(U™"K)until || J 6 Uk + F(U™ 1k || < Itol

3.  Update the Newton iterate: U™ k1= 1k + 3 § Uk
4.  Check for convergence ||F(U™"**7|| < ftol

. Newton method converges quadratically if the approximate solution Un+1.k*1 g close to the actual
solution U" (Constant C is not a fnc(Un*'.k+1,U")) |[UPHLEHL _ x| < O|| U™ — U2

. Jacobian-Free Newton-Krylov: Krylov methods require only matrix-vector products to build up the
Krylov subspace, i.e., only J dU is required. This can be approximated as follows. Typically o is
chosen as square-root of machine zero. Thus, the entire method can be built from evaluations of
the nonlinear function F(U)

.ﬂ.AQ:Jr:e. 5 Q%Q;J o .ﬂﬁ\i,;v

g

J(URU* ~
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Introduction to Newton-Krylov: Preconditoners

. Krylov methods can lead to slow convergence. This is especially true for MHD where
the Jacobian is ill-conditioned. Preconditioners help alleviate the problem of slow
convergence and are formulated as follows

(JURHPYHY(PsU* = —FU™L%  (Right),
(P~LIU*)eU* = —P'FU™Y)  (Left),
(P LI(UR) PR (PréU*) = —-PlrU™H*) (Both).

-  The basic idea of preconditioners is that the matrix JP-' or P-1J is close to the identity
matrix, i.e., P is a good approximation of J. Furthermore, to make preconditioning
effective, P-1 should be computationally inexpensive to evaluate

. Two broad classes of preconditioners

1. Algebraic: These are of the “black-box” type. Obtained from relatively inexpensive techniques
such as incomplete LU, multi-grid etc. These require storage for the preconditioner.

2. Physics-based: These may be derived from semi-implicit methods, and pay close attention to
the underlying physics in the problem. Furthermore, these can still operate in the “Jacobian-
Free” mode.

1. Chacon, Knoll and co-workers (LANL) championed the ‘physics-based” preconditioners. Their work
involves using “parabolizing” the wave terms and using multi-grid to solve approximate systems.
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Wave-structure Based Preconditioner - Basic Idea

. The stiffness usually arises from the hyperbolic terms in the MHD equation
. Consider a system of hyperbolic conservation laws
Ju Of(u
n A
ot ox
L ou ou
. Linearizing about a background state — 4+ J A_:.ov — =0,
J(u®) has real eigenvalues A={\ , A,,---, A } ot ox |
with linearly independent left (L) and right (R) eigenvectors
. Characteristic equations (w=[L]u) ow ow
4 A—=0
ot ox
. Solve implicitly
. Using Crank-Nicholson and 4th order finite differences
ou
. = a(Uiy1 — Ui—1) + b(Uiy2 — ui_2), ) )
o I K M 0 0 0 .. —-M-K
a = (1.5Az)"1, b= (-12Az)! _K'I K M 0 0 0 M
«  Leads to a linear system of the form A U ™' = R(U") -M-K I K M 0 0 - 0
K=adtdJd, M=bAtJ - 0 -M-K 1 K M 0 - 0
0 0 0 -M-K I K M
M 0 0 0 -M-K I K
K M 0 0 0 —-M-K I

b . L
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Wave-structure Based Preconditioner - Basic Idea

~—

. Solve for all but the stiffness inducing waves A = diag{0,0,- - Xogs Mgy #55% A
. Preconditioner Matrix is then i 9 BB B BB e ol
NW‘ — aAtR M/N\ -K I KM 0 0 0 .- -M
~ Gy -M -K I K M 0 0 ... 0
M = bAtRAL 0 -M-KI K M 0 --- 0

0 - 0 0 -M-K I K M
M 0 .-« 0 0 -M-K I K
K M 0 ..« 0 0 =M-K I

. Example: Ideal MHD, linearizing
about a background state
(low  tokamak parameters)
U%={p=1, u=0, B,=0.1 cosc,
B,=0.1 cosa, B,=1.0, p=0.01}"

. Full matrix A has A\~ 342

max

Fast wave preconditioning A~ 22

Fast + Alfven wave A\~ 2
All waves: A\ =1

maxr

. Preconditioner is exact for a
system of linear hyperbolic
conservation laws in 1D

"5 PPPL

PRINCETON PLASMA
PHYSILS LRABORRTORY



Wave-structure Based Preconditioner - Basic Idea

~—

. Solve dﬂow .m__ but the .m:.msmmm inducing waves A= &SQS, 0, s # ,\{, yat, . ,\/L
. Preconditioner Matrix is then T ITE R IrY:
Nw‘ —a Dﬂm M/N\ -K I KM o0 0 0 ----M
= i -M-K I KM 0 0 -.- 0
m:. - @Dﬂmkf.ﬁ o 0 -M-KI K M 0 --- 0
0O -« 0 0-M-K I K M
M 0 .-« 0 0 -M-K I K
| K M 0 .. 0 0 -M-K I
AOO ] 1 T 1 1 1 T 1 Z—
. Example: Ideal MHD, linearizing !
about a background state 300 | i .
(low  tokamak parameters) t
U%={p=1, u=0, B,=0.1 cosc, ’ a06 L ! .
B,=0.1 cosa, B,=1.0, p=0.01} ;
. 100 |- M 4
. Full matrix A has A~ 342 :
— 4
|
©
Fast wave preconditioning A\, ~2E °f i 1
Fast + Alfven wave A\~ 2 - !
All waves: A\ =1 -100 | ' -
. Preconditioner is exact for a 200 k i |
system of linear hyperbolic :
conservation laws in 1D 200 |- ¢ ]
.Aoo 1 1 ! 1 1 1 L 1 1 ;
0.995 0.996 0.997 0.998 0.999 1 1.001 1.002 1.003 1.004 1.005

lamda R )



Wave-structure Based Preconditioner - Basic Idea

~—

. Solve dﬂow .m__ but the .m:.msmmm inducing waves A= &SQS, 0, s # ,\{, yat, . ,\/L
. Preconditioner Matrix is then T ITE R IrY:
Nw‘ —a Dﬂm M/N\ -K I KM o0 0 0 ----M
- B -M-K I KM 0 0 -.- 0
m:. — @Dﬂmkf.ﬁ o 0 -M-KI K M 0 --- 0
0O -« 0 0-M-K I K M
M 0 .-« 0 0 -M-K I K
| K M 0 .. 0 0 -M-K I
400 T T T T T T T T Z_
. Example: Ideal MHD, linearizing : s
about a background state 300 | I .
(low  tokamak parameters) !
U%={p=1, u=0, B,=0.1 cosc, ’ 565 | * ]
B,=0.1 cosa, B,=1.0, p=0.01} ¢
. 100 F . !
. Full matrix A has A~ 342
= L
1]
g . — r O - =
Fast wave preconditioning A, .~ 2 E m
Fast + Alfven wave A\~ 2 :
All waves: A\ =1 -100 |- ¢ :
. Preconditioner is exact for a 200 |- ! !
system of linear hyperbolic :
conservation laws in 1D -l + 1
;
DAOO 1 L 1 L 1 1 L 1 1 _
0.995 0.996 0.997 0.998 0.999 1 1.001 1.002 1.003 1.004 1.005

lamda R )



Wave-structure Based Preconditioner - Basic Idea

~—

. Solve dﬂow .m__ but the .m:.msmmm inducing waves A= &SQS, 0, s # ,\{, yat, . ,\/L
. Preconditioner Matrix is then T ITE R IrY:
Nw‘ —a Dﬂm M/N\ -K I KM o0 0 0 ----M
- B -M-K I KM 0 0 -.- 0
m:. - @Dﬂmkf.ﬁ o 0 -M-KI K M 0 --- 0
0 --- 0 0-M-K I K M
M 0 .-« 0 0 -M-K I K
| K M 0 .. 0 0 -M-K I
400 T T T T T T T T Z_
. Example: Ideal MHD, linearizing ¢ <
-+ .
about a background state 300 | I .
(low  tokamak parameters) !
U%={p=1, u=0, B,=0.1 cosc, ’ 565 | * ]
B,=0.1 cosa, B,=1.0, p=0.01} ¢
. 100 F : '
. Full matrix A has A~ 342
o %_
g . — r O - =
Fast wave preconditioning A\~ 2 m @
Fast + Alfven wave A\~ 2 :
All waves: A\ =1 -100 : :
. Preconditioner is exact for a 200 |- ! !
system of linear hyperbolic f
conservation laws in 1D -l ¢ 1
;
DAOO 1 L 1 L 1 1 L 1 1 _
0.995 0.996 0.997 0.998 0.999 1 1.001 1.002 1.003 1.004 1.005
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Wave-structure Based Preconditioner - Basic Idea

~—

. Solve for all but the stiffness inducing waves \w — &SQS, 0, s # ,\{, yat, — \/L
b Preconditioner Matrix is then T ITE R IrY:
Nw‘ —a Dﬂm M/N\ -K I KM o0 0 0 ----M
- B -M-K I KM 0 0 -.- 0
m:. - @Dﬂmkf.ﬁ o 0 -M-KI K M 0 --- 0
0O -« 0 0-M-K I K M
M 0 .-« 0 0 -M-K I K
| K M 0 .. 0 0 -M-K I
MO 1) 1 1 1 I 1 1 T Z_
. Example: Ideal MHD, linearizing <k 8
about a background state 15 b F+A+S s
(low  tokamak parameters)
U%={p=1, u=0, B,=0.1 cosc, " !
B,=0.1 cosa, B,=1.0, p=0.01}"
. Full matrix A has A~ 342 o & ]

max

Fast wave preconditioning A~z of
Fast + Alfven wave A\~ 2

WEHEESHLS E 55 F 90 R &% F ¥ X 98 s mas
|

All waves: A\ =1 sl :
. Preconditioner is exact for a
system of linear hyperbolic el ) :
conservation laws in 1D
15 F i
20 Il 1 ! Il 1 ! 1 Il 1

0.995 0.996 0.997 0.998 0.999 1 1.001 1.002 1.003 1.004 1.005,



JFNK: Resistive MHD - Preconditioner

. Instead of solving J 8 U = -g solve (J P-') (P 6 U) = -g, i.e., right preconditioning is
employed
. The preconditioner is split into a hyperbolic and a diffusive component

P~l= PPl = JU) T+ O(AH)
. Denotina by (.) the location of the linear operator action. the ideal MHD Jacobian is
kidv =1 +>I\_,Nr~dwp~.A.v I k@@cﬁ.v 25 kumuﬁ.z
=TI +% [JoL7 L0y (-) + Jy Ly ' Ly0y(-) + J,L; 'L, 0,(-)]
= I+ 7 [Jo L7105 (L)) = JuL7 0:(La) ()
+ .\W\N\MHQ@ AP\A.VV - .NchmHm@Ah@X.v
t ol 28, (Lal(-)) — Ty 0T Y]

~ ~

where J, is the Jacboian of the hyperbolic flux in the x-direction. L, is the spatially local
left eigenvector matrix for J,. J,, L,, J,, and L, are similarly defined

° =PPPL
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JFNK: Resistive MHD - Preconditioner

- Directional splitting is employed to further approximate the
preconditioner

Py = [I+7JoL3 0u(La ()] [T +7JyLy 8y (Ly(-)] [ +7J.L7 8:(L:("))]
— 5 (Jo L7 'Oy (Ly) + Jy L, 0y (Ly) + J.L; 0. (L.))]

L _
- Nu.w Nu,c NUn NUno::

«  Decoupling into 1D wave equations along characteristics
N.\MA&.V.NMAHV = >~ A&vhNA%v, >~. = UMM&WA\/H, A \/mv

L; T ._.)I\SEMH@;?A.E §=LB & (+7MN9;C=x,
where ( = L;§ and x = L;3
* Thus along each direction, we get a system of linear wave equations.
For each wave family, we now get a sequence of tridiagonal linear
systems which can be efficiently solved. In parallel we use the
method proposed by Arbenz & Gander (1994)
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JFNK: Resistive MHD - Preconditioner

For spatially varying J(U) a correction solve is involved
Peor =1 =7 [JoL7'0x (L) + JyLy 0y (Ly) + J.L7'0. (L.)]
=1 — 7 [L;'As0; (Lg) + L, Aydy (Ly) + L7 A0, (L,)]

Since this has no spatial couplings, the resulting local block systems may be
solved easily by precomputing the 8x8 block matrices P__ . at each location
coupled with a LU factorization

Only the fastest stiffness inducing waves need to be solved. Furthermore,
accuracy may be sacrificed because this is done in the context of the
preconditioner.

It can be shown that the error bound (Reynolds, Samtaney, Woodward,
2008) qg-fastes waves are preconditioned is

corr

n __DHVNQHA.V__ﬁ 2 1/p

<71, WM%: - [ama. O, 20

Error from preconditioning g-fastest waves is dominantly  |At\7t!/Az|
1 — |AtAd+1/Az|

Omission of waves with small speeds compared to the dynamical time scale will
not significantly affect the precondtioner accuracy
12 i_._._._.

A p
|x-x
p
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JFNK: Resistive MHD - Preconditioner

- Diffusion Preconditioner P,: This solves the subsystem 9, U -V .F, =

wk — N~Adv = 1 ||\.Qalﬂu Aq .H.Jdv

—

 § 0 0 0
B 0 I—7D, 0 0
0 0 I —~5Dg 0

| l)lxbb =7 pv llxbw I — )|\bm i

* TosolvePyy=bfory=[y, ¥,y Yg: Yl

1.
2.
3.
4.
9

Update y, = b,

Solve (I —FDyv)yov = bpy for y,y

Solve (I —3Dp)yp = bp for yp

Update b, = b +7 (L, vy + Loy Yoy + LB yB)
Solve (I —7D.)y. = b, for Yiss

Steps 2,3 and 5 are solved using a geometric multigrid approach. Step 4 may
be approximated with finite differences instead of constructing and
multiplying by individual submatrices

where W = T\b. Yovs YB; 2.& PRINCETON PLASMA

Loyp+ Lovyov + LBYB = w V-F,(U+cW)-V.F,(U)], + O(o), i“‘—.
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Verification Tests

Linear wave propagtion
test.

Explicit method: p wave (256000 time steps)

Computational time for an explicit
method scales as S3/2

Initial conditions: Perturbed Harris
sheet proposed by Birn et al. (J.
|- &@e0. Lett. 2007 ) s

t = 90.449

6.35

Pellet Model Problem
with a similar
separation of scale as
the tokamak case.

0.012

o0

0.006

1280128 256:25¢
Mesh Sze

Max Reconnection Rate

From Reynolds, Samtaney & Woodward, JCP 2006

> 0
l J
-6.35 0 635 0 635 0
-1275 0 12.75 1275 0 1275 1275 0 1275
t= 180.608 t = 300.439 t = 450.412
6.35 I
| 103
> 0 02
0.1
6.35
1275 0
X X
Sweet-Parker Scaling of Reconnection Rate With s\? 045
T T T T T Finite Vol Kinetic Energy History Companson
/ C1 Finile ment — =
04 / h ) __E..mv@mw __in_m. - i
Lc — - T,
’ ..
04 - \\ -
N\ 7
aE 4
035 \ \.
B ¥
= 0.3 \ 7
g i
2 / /
w52 // 14
§ \ /
s ¢
- 0.2 \ -.;
// -\
0.1 \ /
AN /
0.1 /
#
P S S S S P
P! 0.05 5 10 15 25 « a 0 45 50
0 L i " ' Tima
0.01 002 0.03 0.04 005 0.06 o LY o " " |
g 0 10 1 20 2 10 a5 10
s 1




Verification Test: Linear Wave Propagation

i Total Krylov lterationa (x-diractional propagation) - Scaled Runtmee (x-directional propagation)
—%— No Prec (C = 50) —%— No Prec (C = 50)
=%« FW Prec (C = 50) ] we- X FW Prec (C = 50)
—O—No Prec (C = 100) —E— No Prec (G = 100)
=@ FW Prec (C = 100) -+ FW P (C = 100)
10*} | —E—No Prec (C = 250) F —&— No Prec (C = 250)
-<E1 FW Prec (C = 250) ‘G- FW Prec (C = 250)
® = y
£ M 5 8 .
L E
210'le & o 510}
3 fw— b
- ’ 13 o
O S e
10°
ol @ Bl e e ————— e o=y
q. .................... T IO -
10’k : : L
8472 1282 2562 64%2 1282 2562
mesh sze mezh size
(a) Krylov iterations (z-dir.) (b) scaled CPU (z-dir.)
1o Total Krylov lterations (oblique propagation) - Scaled Runtimes (oblique propagation)
—3—No Prec (C = 50) —%— No Prec (C = 50)
w3« FW Prec (C = 50) <% FW Prec (C = 50)
—&—No Prec (C « 100) —6— No Prec (C » 100)
Q-+ FW Prec (C = 100) Q-+ FW Prec (C = 100)
10*} | —8—No Prec (C = 250) E —B8— No Prec (C = 250)
01 FW Prec (C = 250) - FW Prec (C = 250)

§ l—"" . ‘
& P ¥
510° ot 5107} :
po— u - T ]
m . w G Lv.\\\\\\\\\\\\\\\\o“
A= 4 4
10°}0 o
AP
= . & 8
A " " o
1052 1282 256"2 10" 622 1282 256°2

PRINCETON PLASMA
PHVYSILS LABEORRTORY

mesh sze : mezh size B
d
(c) Krylov iterations (oblique) (d) scaled CPU (oblique) i‘ ‘ ‘F



Verification Test: Kelvin-Helmholtz

Total Krylov terationz (2D Kelvin-Halmho#z)

10°~ .
—#— No Prec (C » 25)
<= ¥+ FW Prec (C = 25)
—8— No Prec (C « 50)
Q-+ FW Prec (C = 50)
—&— No Prec (C = 100)
[+ FW Prec (C = 100)

s.d/m’ 4
m ol
B ]
g [O0— © ol
g - .

: o
10 E
(o] O
x - o
2
10°Ls L .
642 1282 256"2
mesh aze
(a) Krylov iterations (2D)
& Total Krylov Iterations (3D Kelvin-Heimholtz)
10 T
—— No Prec (C = 10)
we3-- FW Prec (C=10)
—O— No Prec (C = 25)
-~ FW Prec (C = 25)
—&— No Prec (C = 50)
=} FW Prec (C = 50)
10" No Prec (C = 100}
m -=-()-- FW Prec (C = 100)
&
3 —0" —4-
W o = —a
100 o -
68— e 8
o
a}
(] ® i
E x x
._O» N N M
163 32”3 8443

(c) Krylov iterations (3D)

mesh sze

Scaled Runtimes (s)
x> Q m&

Scaled Runtimes (s)

Scaled Runtimez (2D Kslvin-Helmhoitz)

T
—¥— No Prec (C = 25)
-+ %+ FW Prec (C = 26)

1| | —6—No Prec (C = 50)

D+« FW Prec (C = 50)
—8— No Prec (C = 100)

<03 FW Prec (C = 100)

1282

mesah size

(b) scaled CPU (2D)

Scalad Runtimea (3D Kslvin-Halmholtz)

—¥%—No Prec (C = 10)
e FWPree (C = 10)
—©—No Prec (C = 25)
@ FWPrec (C = 25)
—8—No Prec {C = 50)
<[ FWPrec (C = 50)

| | —©—No Prec (C = 100)

.- FWPreo (C = 100)

mesh size

(d) scaled CPU (3D)
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CSEPP Equations (from GY-Fu)

The main equation (equivalent to the perpendicular momentum equation
derived from gyrokinetics)

i 9 Shear ??m: wave term w/o ballooning term

% -5 TVEXB"V N\
\ )

Iﬁ,ﬂ A C/..F&v I B -V :w .:4\»__ x b).V A|__ov
‘A

1 [ 3vf\ oy dD env; 9 oy ol
T ASV o &\+@/x MU4 Tm%wv ..ﬂf\e ﬂMU.\Am~__g 4.:1u
Y ~N Y
lon FLR term Diamagnetic drift All other kinetic
terms from both
thermal and fast
lons

17

PL
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Model Equations

Model assumes isothermal
electrons

If first and third terms in V_ can
be neglected, we don’t have to
solve an equation for v, ;

The equations can then be
rewritten as:

OL(®)

5t Ry (A, @)+ S(f)

A _ve_F
_— I ) — :
ot 1 1
wam =V - Ad\m:.mv
1 i i §A i
| 4__©~um = — 4_.__©:m
en, en.
|M‘uxm Q..N__IT. 5 mweN__
- B  en, U0 en.,
J~V3A| L

7/
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Implicit Solve for Model

* Define ¥ =L(®)
* |f we use backward Euler
— Unknowns are ¥, &, b__“ Jan,

Ut AtRE 41— L(®") — AtS™(f) =0

AR AtR) +1- A" =0

on ;+H —AtR_ 4+ 1—-6dn. =0

ne

AHVQTTH - .N.\.IHCH\:.TH,V =)

* This can be cast into the JFNK framework

* |t will require an elliptic solve for ¥

— Has been done in the context of reduced MHD where a Poisson
operator was inverted during each Newton step (Chacon, Knoll & Finn,
JCP 2002)
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Implicit Solve for Model - Issues

* The operator L includes a fourth order operator

— Wil require an additional auxiliary variable if CO continuous finite or
spectral elements are employed

— A solver to invert L will have to be developed
« As mentioned earlier Krylov methods can have convergence
problems
— Especially true if the linear system is ill-conditioned

— Physics-based preconditioners will have to be developed for the linear
Krylov phase of the solver

— Such preconditioners are a subject of ongoing research
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Summary & Future Work

Presented a primer on Jacobian-Free Newton-Krylov methods for
nonlinearly implicit solution of PDEs

Preconditioning is the key to have an effective JEFNK method
— Presented an example of wave-structure based preconditioner for MHD
Discussed a set of model equations relevant to CSEPP

Future Directions
— Recommend developing a code to test the JFNK ideas in a simple geometry
— Develop physics-based preconditioners for the model system
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