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ABSTRACT
A numerical method for estimating irregular volumes of phase space is
derived. The estimate weights the irregular area on a surface of section with
the average return time to the section. We 1illustrate ihe method by
application to the stadium and oval billiard systems and also apply the method

to the continuous Henon-Heiles system.
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I. INTRODUCTION

Here, we describe a simple numerical method for estimating the irregular
volumes of phase space of nonintegrable Hamiltonian systems. The method
requires calculating a surface of section and monitoring the time intervals
between returns to the section. The stochastic area of the section weighted
by the average return time gives the estimate for the irregular volume.

It is useful to motivate our results by considering the dynamics of
billiard systems. These are discontinuous Hamiltonian systems defined by a
particle moving freely inside an enclosure whose boundaries have some
specified shape. By choosing different shapes of boundary, it is possible to
exhibit the full range of behavior obtained by continuous Hamiltonian systems,
from integrable (ellipse) to nonintegrable (oval) behavior as well as to
ergodic (stadium) and more strongly chaotic beha\ric.ar'.1')4 In addition, the
infinite potentials at the boundaries of billiard enclosures can lead to so-
called almost-integrable (pseudointegrable) behavior not seen in continuous
systems.s'7

Consider the motion of a billiard ball in an ergodic enclosure, such as
the famous stadium.3 On the average, a nonperiodic orbit of the system spends
equal time in equal volumes of phase space. As the ball bounces around the
enclosure, it describes a sequence of connected chords of differing lengths.
We focus on the average chord length. In Sec. II we show that for motion
within a two-dimensional ergodic enclosure, the average bounce length between
collisions equals #A/P, where A is the area and P the perimeter of the
enclosure. This result is independent of details of shape, and is identical
to a well-known formula of geametric probability8'10: Crofton proved in 1885

that with an appropriate choice of measure, a random set of unconnected chords

of an arbitrary two-dimensional domain have an average length of sa/p V1 a



three-dimensional analogue of this result is familiar in architectural
acoustics where to a reasonable approximation the reverberation time of an
auditorium is proportional to the mean-free path of sound. For an ergodic
auditorium this is 4V/S where V is the volume and S is the surface area.?

In Sec. III we illustrate the convergence of <L> to its predicted value
for a stadium billiard. The result is generalized in Sec. IV to the case of
continuous Hamiltonian systems and é formula is developed for the average time
interval <(t> between crossings of a trajectory with a surface of section. The
formula for <t> 1s obtained by assuming ergodicity over the entire energy
shell. If we assume for an approximation that the irregular regions of phase
space of nonintegrable Hamiltonian systems are ergodic, we suggest a method of
using the basic formula for <t> to estimate the volume of the irregular
regions. This volume is given by weighting the area of the stochastic regions
of a surface of section with the average crossing time.

As a test case for the proposed method, we consider in Sec. V the
dynamics of an oval billiard. Our reason for choosing this nonintegrable
billiard system as a test case instead of a continuous system is that the
phase space structure of the oval billiard is sufficiently simple to allow an
accurate calculation of the true irregular volume, so that we have a value
with which to compare. The agreement is found to be good. Finally, in Sec.
VI, we apply the method to estimate the volume of the irregular region of

phase space of the continuous Hénon-Heiles system.13

IT. AVERAGE BOQUNCE LENGTH FOR CHAOTIC BILLIARDS
Consider the motion of a billiard ball moving with unit speed inside an
"ergodic enclosure" (see Fig. 1a). We ask for the probability that during a

small time interval At, the billiard ball will collide with the wall. Since



the ball travels unit distance in unit time, it will hit a wall during At if
it is within a distance A% of the wall, along the direction of motion.

Clearly, the probability of a collision is
P(hit) = aa/<L> (1)

where <L> is the average length traveled by the ball between bounces. No
reference has been made to dynamics. However, we can calculate the same
probability in a way that does refer to the dynamics. To do this, let us
specify the position of the ball relative to the wall by the perpendicular
separation distance x, and by the angle of incidence 8 (see Fig. 1b). The
time limit allowed for a collision, and the constancy of speed implies an
upper limit to a distance along the direction of motion if a "hit" is to

ocecur. In particular,

< AL ; (2)

0 < cos 8
Consistent with the assumption that the motion is ergodic, we assume that all
angles of incidence & are equally likely. Then the probability of a hit in
time At is

1 T A% cos @

P(hit) = 2—[ de [ p(x) dx (3)
T
-1 0

where p(x)dx is the probability density for x. Since x is small, p(x) is
independent of position along the boundary and is given by

p(x)dx = — dx [ d(length along boundary)

1
A



P
= 3 dx A (4)
Insertion in Eq. (3) yields

P(hit) = = ag . ‘ (5)
A :
Expressions (1) and (5) describe probabilities for the same event and may

therefore be equated. We are led to the result
<L> = mA/P (6)

for the average bounce length. The detailed shape of the enclosure is
irrelevant. The only requirement is that the motion is ergodic.
In the next section, we demonstrate the validity of Eq. (6) with a

numerical experiment.

ITI. ILLUSTRATION: THE STADIUM

The dynamics of a stadium billiard is known to be ergodic (in fact, a K-
system).3’u This enclosure has boundaries defined by two opposing semi-
circles of radius r, joined with tangential straight lines of length 2d.
Symmetry implies the dynamical equivalence of the 1/4-stadium shown is Fig.
2. With the choice d = 1, r = 1 a trajectory can describe chord lengths of
between L . = 0, corresponding to grazing céllisions, and Ly, = /5 = 2.36
corresponding to a bounce between the top left and bottom right corners.
(This maximum length orbit of the 1/4-stadium is equivalent to the unstable
diamond orbit of the full stadium.) For the given dimensions, we have A = 1 +

n/4 and P = 4 + #/2, which obtain <L> = 1.0068... from Eq. (6).



Figure 3 shows the results of a numerical experiment where three
trajectories with different initial conditions are followed for 106 bounces.
Convergence toward zero is shown of the difference between the calculated
average bounce length and the predicted value wA/P. The error bar spans data
which lies within 1% of the true value <L> = 1.0068... A detailed discussion
of the convergence of <L> will not be given here. The longest time scale for
the convergence 1s determined by the Poincaré recurrence time. Ma jor
excursions from a monatonic convergence of <L> occur when trajectories linger
near an unstable or neutrally stable periodic orbit, such as the L = 2
unstable orbit labelled AB in Fig. 2, or the L = 1 neutrally stable orbit AD.

To see how a prediction of the value of <L> can be made useful, consider
first a trivial experiment: The expression for average bounce length for the

stadium can be written as

—=2—m=<L> , (7)
where a = d/r is the aspect ratio. By following the billiard dynamics we can
obtain an estimate for the right-hand side <L>. Then Eq. (7) éan be regarded
as an algebraic equation for the aspect ratio a. Thus, the trajectory data
can be inverted to obtain information about the geometry of the enclosure.
Clearly, the above example is of limited interest. However, it 1is
straightforward to generalize the results of Sec. II to continuous Hamiltonian
systems. The quanfity <L> generalizes to the average time between
intersections with a surface of section, and we will argue that the expression
for average time can be used as an inversion scheme to estimate irregular

volumes of phase space.



IV. GENERALIZATION TO CONTINUOUS SYSTEMS
Consider a continuous Hamiltonian system H(J,p) with N degrees of
freedom. Assume that the system is ergodic so that system trajectories spend
equal times in equal volumes of phase space. Figure M'displays a cartoon of a
trajectory pictured near a surface of section S(§,d) = 0. The section need
not be a Poincaré section. As in the billiard problem, we ask for the
probability that during some small time interval At the trajectory crosses the

chosen section. Two ways of writing this probability are:

P(cross) = %%; , (8)

where <t> is the average time interval between crossings, and

P(cross) - L-03dD S(E-H(3,P)](ds/db)s(s)at o

[ 43 dp &(E-H)

Equation (9) is entirely analogous to Egs. (3-5) but uses canonical
coordinates and an arbitrary section. It expresses the probability of
crossing S in a time At as the phase space integral over the energy shell
(region available to the trajectory) of the velocity through the chosen
section, integrated for the time interval At, normalized by the volume of the
energy shell. Equating the two probabilities yields an expression for the

average time interval between crossings of trajectory with the section

S(4,p) = O:

[ dqdp §(E-H)S &(s)

The section S can be made into a Poincare section by canonically transforming



the coordinates (§,p) into (3,F), with s, = S. The denominator of Eq. (10)

becomes
I By dsgry

the Poincaré invariant for the remaining variables. Thus, the average <t> is
simply the ratio of the volume of the energy shell to the area of the Poincaré
section. It is easy to show that Eq. (10) reduces to Eq. (6) for billiards
wﬁen the section S is chosen to be the boundary of the enclosure.

The result (10) was obtained by assuming the system is efgodic over the
entire energy shell. However, typical Hamiltonian systems are nonintegrable
and a region of chaos (irregular regions) fills restricted volumes of phase
space.1u To make progress, we invoke the ergodic theorem15 which ensures that
the motion of an irregular trajectory of a nonintegrable system is ergodic
over some restricted volume V; of phase space. Then Eq. (10) is written (for

a Poincare section) as
V. = <t> A (1

Thus, to estimate the volume of the irregular region, one chooses a Poincaré
section and integrates the equations of motion to obtain points on the section
and time intervals between arrivals. When the average return time has
converged satisfactorily, the integrations are halted and the area of the
stochastic sea on the section is estimated. Finally, the area and the average‘
time are multiplied to obtain the irregular volume.

Although we have formulated (and applied, see Sec. VI) the technique for

continuous Hamiltonian systems, it is appropriate to test the procedure on the



nonintegrable problem of billiards in an oval enclosure. Since the dynamics
follows from the application of the laws of reflection, much of the phase
space can be understood using simple trigonometry. This makes possible a good
estimate of the "exact" irregular volume which can be compared with the

numerical results from Egs. (10) and (11). We do this in the next section.

V. A TEST CASE: THE OVAL BILLIARD

The construction of an oval enclosure is shown in Fig. 5. 4 point 0, on
the vertical bisector of a unit square is the center of a circle which touches
the square at two corners P and P'. The radius 0,P intersects the horizontal
bisector of the square at 02, which is the center of a second circle wiph
ra&ius 02P. By construction, the two circles have a common tangent at P so a
smooth curve can be drawn from y through P to X. Reflection of the curve
through the x and y axes obtains the oval boundary. The ratio of the radii of
the two circles is an important parameter for the dynamics of the oval
billiard. By varying a = O1P/02P from 1 to =, the oval can be continuously
deformed from the integrable circle to the ergodic stadium. The dynamics of
an oval billiard was first studied by Benettin and Strelcyn.3

Consider the motion of a billiard ball which moves with unit speed inside
the 1/4-oval OYPX with a = 10. Figure 6 shows the Poincaré surface of section
v, versus x for y = 0: For each collision of the ball with the straight
bottom edge we plot the position along the edge (x) and the tangential
velocity (Vx)' On this section we see a set of nested level curves centered
on an elliptie fixed point at x = 0, Ve = 0. The fixed point corresponds to a
stable two-bounce periodic orbit generated by an initial velocity vector lying

along the vertical radius of the large circle. The family of tori which

surrounds the fixed point is generated by trajectories which also lie along
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radius vectors; however, these radius vectors have a finite slope of vy/vx.
If we follow cone of these trajectories, we find that it explores the region of
the 1/4 oval to the left of the initial radius vector; it never explores the
region to the right. An initial condition corresponding to a velocity which
lies along the common radius vector of the two circles 02P, leads to a
"limiting" trajectory which explores all of the left circle but none of the
right.

Suppose we perturb the limiting torus by further decreasing the velocity
gradient, keeping the initial x at point 02. The billiard ball now
experiences collisions with the small circle. However, there are many more
collisions with the large circle, whose stabilizing influence wins and the
tori are preserved. Eventually, however, when vy/vX is sufficiently small
there are enough destabilizing bounces off the small circle to result in torus
destruction and the stochastic sea of Fig. 6. The last surviving torus was

found numerically to correspond to v /vX = 7.9.

y
Having found a good approximation to the last big torus of the oval, its
volume can be determined. For this, we numerically integrate the phase space

volume element over the torus, using trajectory data to calculate the regular

volume

- 2 2
Vo, = | dx dy dv, dv, §(1 - v - vy] . (12)

R
t8Rlis

The irregular volume V; is the complement of Vg with the energy shell volume

Ve Thus
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%4 - 0.506

4.917 . (13)

It is with this number we wish to compare the estimate Egq. (11) of volume
based on return time to a surface of section.

The choice of section is unimportant, but the given interpretation for
torus breakdown suggests a better section than that used in Fig. 6, namely vy
versus y for x = 1. This section is shown in Fig. 7a and it is apparent why
this.- was a good choice; to a good approximation the section is entirely
stochastic. The only evidence of islands is at the top right-hand corner. A
magnification of this region is shown in Fig. 7b, where islands are labelled

with the initial value of v /v,. If the island region is ignored (it counts

y
for less than 0.5% of the area of the section), we obtain for the denominator

of Eq. (10)

p =
"

[ dxdy dv_ dvy §(1 - vi - vf{)vX §(x - 1)
I

=1 . (14)

To estimate the irregular volume from Eq. (11) we now need <t>. Figure 8
shows the convergence of <t> for the oval billiard with a = 10. Data from
five initial conditions, show that the convergence of <t> is not without
problems. Each of the runs shows a number of "évents" where <t> significantly
increases. These occur when a trajectory approaches close to a torus. In the

configuration space of the oval this corresponds to the orbit executing many
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consecutive bounces on the large cirecle. We havg made no attempt to
understand the distribution of the frequency and duration of these events.
Without this knowledge we can do no better than to calculate <t> as the
average over all five runs after 106 bounces. This gives <t> = 4.922. Hence,

our estimate given by Egs. (10) or (11) of the irregular volume is

VI = 1.0 x 4.922 ’ (15)
which agrees well with the wvalue U4.917 obtained by the independent
calculation. Furthermore, the estimate was easy to calculate, whereas the
independent calculation was only straightforward for this billiard problem

where obtaining a good guess of the last torus was simple.

VI. APPLICATION TO THE HENON-HEILES SYSTEM

The Hénon-Heiles Hamiltonian is defined as

=~
'

= T(x,y) + V(x,y)

where

-2

T = 1/2(x° + °)

and

1/2(X2 + y2) + x2y - 1/3_‘{3 : (16)

<3
1]

are the kinetic and potential energies of the system.13 If H < Ec = 1/6, the
phase space of the system is bounded. Henon and Heiles found that system

trajectories with H < 3/14E:c are mainly confined to invariant tori, but as H is
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increased toward the escape value, E the phase space becomes predominantly

0!
irregular.

Figure 9 shows 2000 points on a surface of section for the Hamiltonian
(16) at the energy H = 0.9999E,. The secﬁion is % versus x at y=0 with the
restriction y > 0. Points were generated by a single trajectory using the
initial conditions x=0, y=0.3, y=0.3, with X determined by the value of H.
Apart from two crescent regions extending to the circular boundary of the
classically allowed region (whose radius is 1//3), and a small circular region
near ¥ = x = 0, the section is covered by a stochastic sea. A simple estimate
of the stochastic area on the section is obtained by "counting squares" and
gives Aj = Q.92.

Using the same trajectory data that gave Fig. 9, the average time between
successive intersections with the surface of section was calculated, and is
shown in Fig. 10. The results have been smoothed by averaging over intervals
containing 25 intersections; therefore, the figure appears as a histogram.
The average time betwéen crossings with the section is seen to converge tﬁ <t>
= 7.80. Thus, from equation (11), we obtain an estimate for the volume of the
energy shell explored by the irregular trajectory which gave rise to the

surface of section shown in Fig. 9:

vI = <c>A1 = 7.80 x 0.92 = 7.18 . (17)

The total volume of the energy shell of the Henon-Heiles system is

v, = 2n [ dxdy
172(x% + y2) + x°y - 1/3y° < H
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r 172

2 (y-r ) (y-r, ) (y-r,)
= 4n/v3 [ dy | 1y 3

T

where ry, r,, ry are the roots of y3 - % y2 + 3H = 0 . Therefore,

e, = % + cos & 3 2
£, = 1, cos® ; in
and
ry = % + cos% ,
where
o = 2sin” VH/E_ . (18)

Clearly, the volume of the energy shell at H = 0.99939 E, is accurately
estimated from the formulae (18) by writing H/E, = 1. This obtains Vy =
3v3n/2 = 8.16. Thus, the estimate for the irregular volume given by equation

(17) is that 88% of the available phase space is stochastic.

CONCLUSIONS
A straightforward numerical method has been presented for estimating the
size of irregular volumes of phase space. The estimate weights the irregular
area on a surface of section with the average return time to the section. The
method, therefore, uses information that is readily available if a surface of

section has been calculated.
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FIGURE CAPTIONS

Fig. 1(a)Fictitious ergodic enclosure of area A and perimeter P. A segment

Fig.

Fig.

Fig.

Fig.

Fig.

of a trajectory is shown and (b) A snapshot of the motion. The ball
is a distance A% from the wall along the direction of motion. (x,8)
labels the ball's location at the time of the snapshot. Since AL is

assumed to be small, the wall appears to be flat.

The ‘'"stadium," showing orbits of minimum (---) and maximum

(— — —) length. Computations are done in the 1/4-stadium ABCD.

Convergence of <L> to the predicted value »A/P for three trajectories
( . and x) of the stadium billiard. The error bar shows

’ ’

convergence to 1% accuracy.

A trajectory of H(J,P) = E as it approaches and crosses the section
S{4,p) = 0. Poincaré recurrence and ergodicity guarantee such a

crossing.

Construction of Benettin and Strelcyn's oval enclosure. 0y and 02

are centers of curvature for circle arcs which join smoothly at P.

Surface of section y = 0 for oval with a = 10. Initial conditions A-

D lie along radius vectors of the large circle and have v /vx = 1000,

Y
100, 50, 10 resp. Trajectory E has initial x at point 0, with

Vy/vx = 7-8.



Fig.

Fig.

Fig.

Fig.

10
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Magnification of island region of Fig. 7a. Trajectories are labeled
with initial Vy/vx'
Average return time to section x = O for oval with « = 10. Initial

conditions for trajectory data are v /v, = 7.8, 7.5, 7.0, 6.0, 3.0.

y

Surface of section x vs x; y = 0, y > 0 for Hénon-Heiles system. H =

0.16665, 2000 points are shown.

Average time between successive returns to the surface of section.

The trajectory and section are the same as in Fig. 9.
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