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Abstract

The resonant interaction of four surface gravity waves is calculated as a
sum of seven “Feynman” diagrams. These diagrams are evaluated in a
symmetric way to obtain an effective Hamiltonian. Longuet-Higgins has
used a (non-canonical) Stokes expansion to calculate a special case of this
resonant interaction. We calculate the same using the canonical description
and obtain identical results. This illustrates a general principle, that the
lowest order resonant interaction in any wave system is independent of
representation, being the same for Eulerian, Lagrangian, canonical, non-

canonical, etc., descriptions.



Introduction

A Hamiltonian description of the dynamics of a wavefield - specifically
the gravity surface waves on a fluid for this paper -~ allows certain simpli-
fications to be made in performing calculations. A particular simplification
interests us in this paper, namely that perturbation theory can be organized
as a sum of expressions obtained from diagrams which, when used for rela-
tivistic wave theories, are known as Feynman diagrams.

Feynman diagrams were introduced into oceanography by Hasselmann (1966),
who emphasized their application to the statistical description of energy
transport in random wavefields. In this paper, we use Feynman diagrams in
the way they were originally intended, to solve strictly deterministic
equations of motion. For this purpose, Hasselmann's rules are not
sufficiently general; although a Hamiltonian was required to justify the
diagrams; equations of motion were used to evaluate coefficients. As a
result of not using canonical coordinates for the equations of motionm,
Hasselmann's diagrams do not exhibit the fu;l symmetry which is possible for
expansions which use these variables. In a non-dissipative system, the
effects of an interaction on the time evolution of the various involved
waves are related. The Feynman diagrams exploit this relation by having the
same value no matter which of the involved waves is considered.

In Section 2, we present the Feynmman rules in the general, symmetric
form. We do not prove the rules, but merely state them with a heuristic
indication of their origin. Their use is illustrated on a trivially soluble
problem.

In Section 3, we apply the diagrams to compute the lowest order resonant

interaction among surface gravity waves in terms of canonical field variables.



These variables are the surface displacement and velocity potential at the
free surface (Broer (1974), Watson, et. al. (1976), Miles (1977), Milder
(1977)).

Finally, in Sectiom 4, the interaction is shown to be identical with a
calculation of Longuet-~Higgins (1962) which uses a non-canonical Stokes
expansion. This application is of interest in itself: It demonstrates the
general principle that the lowest order resonant interaction of any calcula-
tion is independent of representation since it can be given a definition in
terms of experimental quantities. By contrast, non-resonant nonlinear
interactions are representation dependent since the representations differ
in nonlinear terms, even when they are made to agree in the linear

approximation.



2. Rules for Drawing and Evaluating Feynman Diagrams
A Hamiltonian system is described by pairs of canonical variables pj,

qj, a Hamiltonian function H(pj, qj)’ and equations of motion
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(For fluids, the index j represents spatial position as well as distinguishing
different types of variables). If perturbation theory is meaningful, H must
be an analytic function of its variables. It can, therefore, be expanded

in a power series. The constant term of the series can be removed be re-
defining the zero-point of energy. The linear terms can be removed by adding
constants to the p's and q's to make p = 0, q = 0 the minimum energy config-
uration (assuming the energy achieves its greatest lower bound).

The lowest order nonremovable terms are the quadratic terms. In the
usual case, the quadratic part of the Hamiltonian, HZ’ is the sum of a
positive quadratic form in the p's and a non-negative quadratic form in the
q's. Then, by a linear coordinate transformationm, H2 can be put in normal

form (Margenau and Murphy (1956), p. 326).
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(For the more general case, see, e.g., Arnold (1978), appendix 6).
We define a dissipation - free wave system by the following

requirements:



1) There exists a Hamiltonian H which is a non-negative
analytic function of the p's and q's satisfying Hamilton's
equations. The quadratic part, Hz,can be cast in the form
of Eq. 2 by a canonical transformation.

2) The only zero values of uﬁ occur as isolated points

in the spectrum.

3) The p's and q's are functions of position which evolve
in time, but there is no explicit space or time dependence
in the Hamiltonian. (This condition can be relaxed at the
expense of complicating the diagrams).

From Eq. 2, action amplitudes can be defined by
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H = E “ﬁ aj aj + higher order terms , (4)
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. %
. where * denotes complex conjugation. The variables aj and iaj are canonical-
ly conjugate.
Since H has no explicit space dependence, the Fourier modes provide

the a's which give the eigenfrequencies. The expansion for H is, therefore,
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In this expression, the delta function comes from the spatial integral of
eik'x factors. By construction, the coupling coefficients, V, have various
symmetries:

1) V is chosen to be completely symmetric under interchange

of its subscripts.

2) V is chosen to be completely symmetric under interchange

of its superscripts. -

3) Since H is real, if the set of superscripts is interchanged

with the set of subscripts, V becomes equal to its complex

conjugate. E.g.,
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In addition, for specific theories V has other symmetries. Thus, VE K k
A2 A3
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and V
X102
additional symmetries (known as crossing relations) follow from general

might be equal. . In relativistic quantum field theories, such

principles, but for nonrelativistic theories they are "accidental." an



example of such an accident would be the absence of any p's in the cubic
terms of H(p,q).

A convenient way of doing perturbation theory on the Hamiltonian Eq. 5
is to use Feymnman diagrams. To introduce this method, retain just one cubic

term in Zq. 5 so that the equation of motion for amplitude ay is
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First order perturbation theory proceeds as follows: Write a, as an unper-

(0) N
turbed part, s satisfying
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plus a perturbation, éak. Fourier transform Eq. 7 with respect to time, with
v
frequency w, obtaining (in lowest order)
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Now solve for 6ak(w):
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The first factor is called the "propagator" of ak the second factor is the
@ ,

"vertex" for k‘_ﬂgl + k the ak external lines"; and the delta func~

tions conserve wavenumber and frequency at the vertex. A diagram can be

drawn which represents all these factors, and is shown in Fig. 1. It is an
oriented figure made out of lines and vertices. External lines connect with
a vertex at only one end. Propagators connect with vertices at both ends.
If the f;ee end of an extermal line lies below (or above) its vertex, the

*
line represents action amplitude a, (or a respectively). Vertices repre-
") ")
sent the V coefficients. Each line entering a vertex from below corresponds

to one subscript of V, and each line leaving a vertex from above corresponds

to one superscript. Each vertex conserves vector wavenumber and frequency.
1

A propagator is associated with the inverse frequency mismatch P

b

k

where @ is the frequency flowing through the line and w, is the dispeision

k

N
relation frequency corresponding to the wavenumber flowing through the line.

It represents the frequency-space Green's function solution for free wave



propagation due to Hamiltonian Hz.

"Bare'" diagrams are the sole contribution to first order perturbation
theory. Such diagrams correspoud to individual terms of the Hamiltonian.
Each consists of a single vertex and as many exterunal lines below or above
the vertex as there are subscripts or superscripts on the coefficient V of
the term in the Hamiltonian from which the diagram is derived.

In higher order perturbation theory, additional diagrams appear as a
"dressing" of the bare terms. Nth order perturbation theory consists of the
set of bare diagrams, plus all possible connected diagrams with N or fewer
propagators. For example, Fig. 2 shows the bare diagram plus dressing for
the case of two external lines below and two external lines above the vertex.
This second order perturbation theory expression has applicatiom to a surface
gravity wave calculation described in Sec. 3.

The rules for evaluating Feynman diagrams are as follows:

1) Associate a factor (;—%—;;) with each pro;agator. w is the frequency
of the line while Wy is the unperturbed frequency, given the wavenumber of the

A
line. The same w and % are associated with both ends of the propagator.

2) Associate a factor (-iV) with each vertex. The sum of w&'s and k's
are conserved at each vertex.

3) Associate a factor i, by convention, with the whole diagram. This
factor causes the sum of diagrams to have the same symmetry properties as

the Hamiltonian. When all diagrams with the same number, m, of extermal

lines below the vertex, and the same number, n, of external lines above the

Ki,...k!
vertex are summed, the result will be denoted as C,.l ;n . There are two
N1 Rm

more rules needed. They are:

4) Include overall delta functioms for 5 and w conservation and integrate

over the k's.
V)



5) Associate a factor a (or a*), with the correct momentum (and some
specified frequency) for each external line below (or above, resp.) the

vertex.
%1""’%&

Tk

function (we will often call it simply the (m + a) - point function), and

The function is called the invariant m -to -n point

plays an important role in Feynman diagram perturbation theory. When rules
4 and 5 are then applied to this function and all such quantities are summed
(over m and n), the result is an "effective Hamiltonian," T. The effective
Hamiltonian takes the place of the interaction Hamiltonian when the time

ordering of the formal solution of the system is replaced by a normal

ordering:

7 exp[ LHdt = exp/ert ) . (11)

In these expression L refers to the Liouville operator associated with the
quantity given in the subscript. The normal ordering, specified by ¥,
means that the derivatives in the Liouville operators act only on the initial
state, while in the time ordering, specified by 7, they operate on the
state which has dymamically evolved up to the time at which the Liouville
operator acts. In this sense T solves the dynamics.

For the purposes of this paper, the full interpretation of T is not
important. What is important is that it is an effective Hamiltonian. One
uses it as if it were the true Hamiltonian, but only applies first order
perturbation theory. (That is the interpretation of the normal ordering).

We close this section with a very simple application of the diagréms.



Consider the quadratic Hamiltonian

*
H = w a ’
2 " Rk k (12)
and write W as w, = wéo) + 6wk . Then we have an arbitrary decomposition
. N v A Y (O) . . . :
of H2 into an unperturbed part, Wy a, af, and a perturbation, 6wk a ay
v A v “ Y] Y

Since the equations of motion are linear, they have an exact Green's function
solution. We will calculate this solution in frequency space, i.e., the
exact propagator.

The Feynman diagrams are shown in Fig. 3. The vertex (bare 1-to-l point
function) is denoted by X. Dots are placed at the free ends of the lines to
indicate they are propagators rather than external lines. The sum of

diagrams is

2 3 2
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This infinite sum of diagrams is a geometrical series, with the sum

( (0; ) , precisely the propagator we would have taken had we not
w - w -6
k

put pa?t of mkwin the perturbation. The frequency shift is the bare l-to-1

point function émk.

10



3. Application to Surface Gravity Waves
The Hamiltonian for surface gravity waves on an inviscid, irrotational

ocean depth D and area A is (Miles, 1977)
g
#os %fdz?e { f (V¢)2d2+8§2} :
A -D (14)
The surface displacement, §(¥,t), and velocity potential at the free surface,
¢s(§,t) = ¢Q§,z = {,t), are canonical variables for this system. Eq. l4
is more useful in a strictly two-dimensional form. To eliminate the z-
integral, integrate the kinetic energy term once by parts and use Laplace's

equation.V2¢ = 0. Then the equivalent Hamiltonian

J

H = %f dz:{. ‘¢S(w - vEve, + v + gt I
{ (15)

is obtained, where w = 8; ) 2=t .

To make use of Eq. 15, it 1is necessary to eliminate the variable w in
favor of ¢s. Watson and West (1975) accomplish this by Taylor expanding w
and ¢S in terms of { about z = 0. Then w is expressed in terms of ¢s by
successive substitﬁtion. The resulting expression for the Hamiltonian is a
power series expansion in the wave slope:

H = H, +H

) '+H + .. .. i (16)

3 4

Finally, the Hamiltonian is Fourier transformed to obtain the equivalent

of Eq. 5. West (1981) has carried out the necessary algebra in the deep

11



water limit and given explicit expressiomns for the first few terms in the
Fourier expansion of H. In particular, he has supplied V ,
k1okaok3

1‘
3 k203 kiokpoks X3 .
Vk K , A s v , and Vk K . The reader is re-
~nv17a2 El 1202
ferred to West's book for the evaluation of these couplings as well as for
references to the original literature on surface wave Hamiltonians.

For the calculation presented in the next section, our interest is in
lowest order resonant wave growth. The dispersion relation for deep water
surface gravity waves, w= (gk)l/z, does not allow resonant interaction
between wave triads. The lowest possible resonant diagram is, therefore,

K30k,
given by the 4 - point function C}‘s3 5 . There are seven diagrams that sum
1’42
to give this coefficient, and these are shown in Fig. 2. They are the bare
diagram (which contains no propagator), and six dressing diagrams each of

which contain one propagator connecting two 3-point vertices. The expres-

sions for these diagrams are obtained using the rules given in Sec. 2.

They are:

k.,k

D1. v;3 ;4
182

b2, 12 1 3K
kioky \w(ky) +wi(ky) - wlky + k) ko

D3. V _ 1 = +% ),&"k
K1okoo = (thy) <-cu(]§1) —wl) - Wl + *ﬁ2>> v k1t) kg oKy

D4. g3k < 1 > k,

K - v
X1 w(ky) = wiky) = wlky = ky) [ TkyKaoky

~I.'137.'1er:e is an error in Eq. (4.21) of West (1981); The numerical prefactor in
the expression for k32 Ka should be 1/16, not 1/8.

k1:K2

12



D5. Same as D4 with kl~—-k2 and Ic3-'—-1<.4

D6. Same as D4 with k3~—-k4

D7. Same as D5 with k3~—-k4. (17)

For the deep water limit, we take the explicit forms of the V coefficients

from West (1981), and use w(k) = (gk)lfz.

13



4, Stokes Versus Canonical Calculation of Resonant Growth Rates
Longuet-Higgins (1962) calculated the resonant interaction of two traims
of surface gravity waves using a traditional Stokes expansion. In this non-
canonical approach, field variables are expanded about the undisturbed
surface z = 0 and substituted into the fluid equations. Terms of a given
order in the expansion variable (wave slope) are collected together, and the
resulting equations are solved. Resonant interactionm can occur at third
order, leading to a transfer of energy from three primary waves (of wave-
numbers %1’52’%3’ say) to a fourth wave (of wavenumber 5A)' Longuet~Higgins
calculated the tertiary wave growth rate for the specal case El = EZ’

k, = 2k, -k,. In terms of the variable _ w(kl) " w(k4) , (f&! € EJ the
4 vl A3 = 2
wlk,;)

-f.
growth rate of the wave action amplitude was found to be

. 3 2,2 2
da4=-1k1 (2 +£9° (1 - 48 . 482 L2
de a1 - £H1/2 2 _ el (6 +£H/2 |71 73
(18)

We wish to compare this result with .the Feymman diagram (canonical) calcula-

tion of the growth rate.

For surface gravity waves, the quantity

T, = E Cﬂ,l& a3 a; a, 6 (19
4 kpoko TRy TRy kg Tk, Tkt ketky )

1-Eq. (18) corresponds to Eq.'s (6.4) and (6.5) of Longuet-Higgins (1962) after
reexpressing his amplitudes in terms of action amplitudes.

14



is the lowest order resonant contribution to the effective Hamiltonian. The

corresponding contribution to the equation of motion of wave amplitude a,

A
is
d
K ot
-7 *
dt aak
o
E: Kysk, %
= =21 cC. .~ a a 5
S ek Ko ks kit ks, - 20)
~v1°~42°43
For the restriction El = 52, 54 = 251 - 53 used by Longuet-Higgins, we
therefore have
day
K L L, STk o s
at k. ,k i ' .
Awl’41 %] (2D)
k3 2%1‘53
The coefficient Ck ,k is obtained by summing the seven Feynman diagrams
L1/l

of Eq. 17. Quantities relevant to the evaluation of these diagrams are

wik,) = wk) = w
Wiky) = (1 +6€)wy
wik,) = (1 =&,
k, =k

ky = (1 +§)2k1
k, = (1 -8)%%,

iy - kgl = Qkp, o= ] £] (6 + 5H/?

"
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3., 2
51-53 = (1 + 285 + 2§ )kl
3,, 2
51'54 = (l - 25 - ZE >k1
2 4. 2
,53',\154 = (l - 65 - E )kl . (22)

When these are substituted into the expression for the V's given in West

(1981), and also into Eq. (17), we easily obtain

DL = - % k13 a - 52)1/2 [—2 + Q2 - ng]
1/2 3 _
- D kl 1/2,.2 2 2
P2 = 2.1/2 277" (1 +2e%) + 48" -1
8(1 ~ &%)
1/2 30 -
@ oD Ky 22 , )
P = 2,172 27T L+ 287) - 487+ 1
8(1L -¢9)
2, 3
-7k ; . ,
P4 = 2,1/2 1/2 .2 - g(65° + 1l + 14° - 16)
32(1 - £9) Q (€° - Q)

+ QM 222e% 4 776 + 3462 - 16)

Q€ (10e* + 316 + 16) - Q°'% (6&* + 112 - 8)]

D5 = D4 with §—-£.
D6 = DS
D7 = D& . (23)

One notices that the sums of D2 and D3, of D4 and D5, and of Dé and D7 are
simpler than either one separately. Feynman noticed that such simplifica-
tions always occur in relativistic theories, but for us they are a consequence

of the accidental crossing relation. The sum of expressions D1 - D7 gives

16
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We now see that our Feynman diagram expression for It is identical

to that of Longuet-Higgins. There is a difference between the two calcula-
tions however: we worked in the canonical framework whereas Longuet-Higgins
worked with the Stokes expansion. These two Eulerian representations, as
well as representations in the Lagrangian framework, always agree in lowest
order but will usually disagree in higher order. Since we have calculated

an effect which is two orders beyond the lowest, it may seem surprising to
find agreement. In fact, the "bare" contribution to the tertiary wave growth
rate does not agree in the different representations. The bare term in
Longuet-Higgins calculation can be identified+ as

da, -ik13 (2+E2) (L+28) (2-38%5 2 «
a
. 3 o (25)

_—_ = 1

dt | BARE w1 e H/2

whereas the canonical description gives

d
&, -y AR a?a’
dt BARE /51,%1 Xy %B
-1k,
*
e SR % 2-Q2+Q52Ja2a
K1 &5 (26)

(Expressions (25) and (26) are compared in Fig. 4 for the range 0 < £ <1/2).
There has to be agreement in the total rate, however, since this total is an
experimentally accessible quantity. In lowest order, the values of the

amplitudes agree, so one can ask without ambiguity what the lowest order

+
The bare terms of Longuet-Higgins (1962) arise from those terms in his
Eq. (3.11) which do not involve the subscript 11.

17



growth of the tertiary wave is. Any representation must give the same answer
for this question. Non-resonant and higher order resonant terms, however, do
differ between representations whether or not these representations are canon-

ical. It is only when physical questions are asked that the answer is

unambiguous.
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Figure Captions

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Feynman diagram expressing the solution, Eq. 10. The dot has been
placed at the free end of the line representing the propagator to
distinguish it from an extermal line.

The seven Feynman diagrams which govern the lowest-order resonant
interaction between surface gravity waves. Their sum yields the
o . £3:K4
invariant 4-point function Ck K.

v1A2
the other six "dressing" diagrams simplify when grouped as D2 + D3,

Dl is the "bare'" diagram, and

D4 + D5, D6 + D7.
Feynman diagrams showing a calculation of the frequency-space
Green's function solution for the quadratic Hamiltonian, Eq. 12.
- (0)

We have chosen w = + 8w

k k &

N
Comparison between expressions 25 (---) and 26 (——). Expression
25 is the Stokes expansion bare contribution to the resonant
growth rate of a tertiary wave, as calculated by Longuet-Higginms.
It is different from expression 26 which was calculated using

canonical variables. The total (bare + dressing) growth rates

are the same, however.
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