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Motivation PPPL

• Neoclassical radial electric field is important for stellarator transport (e.g.
collisionless particle dynamics; zonal flow physics; transport barriers)

• Departure of axi-symmetry can be weak (i.e. QA concept): standard cal-
culation ofEr can be difficult

• Well-established gyro-kinetic particle simulation techniques offer alterna-
tive possibility to determineEr

• Method can be generalized to viscous flow damping in fully three-dimensional,
non-axisymmetric geometries
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The Method PPPL

Write confiningB field in Boozer coordinates(ψ, θ, ζ) as

B = ι (ψ)∇ζ×∇ψ + ∇ψ×∇θ

B = g (ψ) ∇ζ + I (ψ) ∇θ + β?∇ψ (1)

with g(ψ) ∝ poloidal current;I(ψ) ∝ toroidal current.
Jacobian of transformationJ ≡ [∇ψ· (∇θ×∇ζ)]−1 satisfies

JB2 = g (ψ) + ι (ψ) I (ψ) ≡ f (ψ) (flux surface quantity) (2)

Ion Momentum Balance

ρ
dV

dt
= −∇·P + en

E +
V×B

c

 + F + R (3)

whereV : fluid velocity; ρ : mass density,R : collisional drag;F : (exter-
nal) applied force andP = P||b̂b̂ +

(
I − b̂b̂

)
P⊥ : the pressure tensor; also

P|| (P⊥) : parallel (perpendicular) pressure.

Take scalar product of Eq.(2) witheζ ≡ ∂r/∂ζ (with r is the position vec-
tor) and operate with〈...〉 =

∫ ∫
...J (ψ, θ, ζ) dθdζ one obtains

ι (ψ)

c

dQ

dt
−

〈dLζ
dt

〉
=

〈∂P̂
∂ζ

〉
− Tζ (4)
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whereP̂ ≡ (
P|| + P⊥

)
/2, Tζ = 〈(R + F) ·eζ〉 is the torque due to applied

forces and collisional drag;Lζ is the toroidal component of the canonical mo-
mentumL = ρV + eA/c whereA = ψ∇θ−χ∇ζ is the vector potential and
2πχ is the poloidal flux.

To derive Eq.(4), note that
〈
eneζ·

V×B

c

〉
=
e

c

∫ ∫
nV· (B×eζ)J dθdζ =

e

c
ι (ψ)

∫
Γ·dσn =

ι (ψ)

c

dQ

dt
HereQ is the total charge,Γ = nV is the particle flux, anddσn ≡ J∇ψdθdζ
is an area element normal to the magnetic surfaceψ = const and pointing out-
wards.

For zero applied force and after a few ion-ion collision times, toroidal bal-
ance equation reads

ι (ψ)

c

dQ

dt
= S ≡

〈∂P̂
∂ζ

〉
(5)

Knowing the parallel and perpendicular pressures on the magnetic surface
(velocity moments ofδf ), one obtains a measure of the radial particle flux on
that surface through Eq.(5)

4



Calculation of Parallel & Perpendicular Pressures PPPL

Write perpendicular pressure as

P⊥ =
∑
m,n

(P⊥)m,n exp [i (mθ + nNpζ)] (6)

whereNp is the number of field periods of the configuration and the Fourier
coefficients are calculated according to

(P⊥)m,n =
∫2π
0 dθ

∫ 2π
0 dζ

(
mv2

⊥/2
)
δf exp [−i (mθ + nNpζ)] d

3v∫ 2π
0 dθ

∫ 2π
0 dζ

(7)

Guiding center motion and collisions will spread the particles toward equal
density in pitch and over the magnetic surface
Then, in a small layerδψ � ψb (boundary), one notes that

∫ ∫
dθdζ =⇒ ∫ J−1 (δψ)−1 d3x =⇒ [F (ψ) δψ]

−1 ∫
B2d3x

and the(P⊥)m,n Fourier components become

(P⊥)m,n =
∫ ∫
d3x

(
mv2

⊥/2
)
δfB2 exp [−i (mθ + nNpζ)]∫

d3xB2
d3v (8)

Same method applies forP||.
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Numerical Method PPPL

θ

ψ+∆ψ/2

ψ

ψ−∆ψ/2

ζ

Particles are initially randomized inθ andζ, and
betweenψ − ∆ψ/2 andψ + ∆ψ/2.

Introduce radial coordinater =
√
ψ/B0 so that

δr ≈ ∆ψ/
(
2
√
B0ψ

)
; typical drift time isτd ≈ ∆r/Vd

whereVd ≈ Vth (ρth/Rc) is the typical radial curvature
drift velocity.

We must haveτd � τr, whereτr is the relaxation time (typically a few ion-ion collision
times).

Calculation ofP|| andP⊥ are carried out within an annulusδψ � ∆ψ � ψb centered around
ψ.

ψ

δψ

∆ψ

ψParallel and perpendicular pressures calculated on

different processor element (PE) are collected on a

single PE (PE=0), on which the Fourier components

(P⊥)m,n and
(
P||

)
m,n

are evaluated.
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Divergence of Pressure Tensor PPPL

Write Pressure TensorP as

P = P̃BB + P⊥I + P⊥I (9)

whereP̃ ≡ (
P|| − P⊥

)
/B2. Noting that

∇B2/2 = B× (∇×B) + (B·∇)B (10)

and

∇·P = B
(
B·∇P̃

)
+ P̃∇· (BB) + ∇P⊥ (11)

and using Ampere’s law and the radial force balance equation, we obtain

∇·P = B
(
B·∇P̃

)
+ P̃

1

2
∇B2 + 4π∇P0

 + ∇P⊥ (12)

whereP0 = P0 (ψ) is the equilibrium pressure. Taking the scalar product of
Eq.(12) witheϕ ≡ ∂r/∂ϕ wherer is the position vector andϕ = {θ, ζ} one
gets

eϕ· (∇·P) = Bϕ

(
B·∇P̃

)
+
P̃

2

∂

∂ϕ
B2 +

∂P⊥
∂ϕ

(13)
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Taking the flux-surface average〈•〉 ≡ ∫ ∫ J (•) dθdζ of Eq.(13) yields

〈eϕ· (∇·P)〉 =
1

2

〈 ∂
∂ϕ

(
P|| + P⊥

)〉
, (14)

since〈B·∇F 〉 = 0 for any functionF = F (ψ, θ, ζ) and

〈
P̃
∂B2

∂ϕ

〉
=

〈P|| − P⊥
B2

∂B2

∂ϕ

〉

=
〈
B2

(
P⊥ − P||

) ∂

∂ϕ

 1

B2

〉

=
〈f (ψ)

J
(
P⊥ − P||

) ∂

∂ϕ

 1

B2

〉

= f (ψ)
∫ ∫ (

P⊥ − P||
) ∂

∂ϕ

 1

B2

 dθdζ

= f (ψ)
∫ ∫ 1

B2

∂

∂ϕ

(
P|| − P⊥

)
dθdζ

=
∫ ∫ J ∂

∂ϕ

(
P|| − P⊥

)
dθdζ

=
〈 ∂
∂ϕ

(
P|| − P⊥

)〉
.
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Results & Conclusions PPPL

•Run for NCSX plasma (C82 configuration); with central ion temperature
Ti(0) = 2.76 KeV; central electron temperatureTe(0) = 2.14 KeV; central
plasma densityn0 = 6.73 × 1013 cm−3. Magnetic surface of reference
ψ/ψb = 0.7.

•EquilibriumB field is specified using 30 Fourier harmonics

•Trajectories of2×105 Lagragian markers are integrated; time step∆t/τii =
4 × 10−4; collisional effects are calculated every 10 time steps.

•Background distribution functionf0 loaded as a Maxwellian with
〈
V||

〉
=

0.

Direct measurement (broken line) and gyro-kinetic calculation (smooth curve) of Γr (a.u.)
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Electron & Ion Radial Fluxes PPPL

Electron Current Density as a function of NormalizedEr = −ad/dr (eΦ/Ti(0))

Ion Current Density as a function of NormalizedEr = −ad/dr (eΦ/Ti(0))

Stable root found atEr ' −26.2 kV/m
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