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RECENT RESEARCH PROJECTS
Allen Boozer

1.  Plasma effects on location of outermost magnetic surface
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2.  Density limit in toroidal pure electron plasmas  PoP 12, 104502 (2005).
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4. Resistive wall modes with plasma rotation and multimodes
(with J. Bialek and D. Maslovsky) Maslovsky & Boozer, PoP 12, 042108 (2005).



2

MAGNETIC RECONNECTION
IN

NON-TOROIDAL PLASMAS
Allen H. Boozer

Columbia University

Reconnection is a breaking and connecting of magnetic field lines.
Requires a non-ideal magnetic evolution,   

† 

r 
E ⋅

r 
B  non-zero.

Evolution is ideal if   

† 

r 
E + r v ¥

r 
B = 0.

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Magnetic reconnection in nontoroidal plasmas, Boozer, Phys. Plasmas 12, 070706 (2005)
Physics of Magnetic Confinement, Boozer, Rev. Mod. Phys. 76, 1071 (2004).
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WHY RECONNECTION IS IMPORTANT

Charged particles can move rapidly along magnetic field lines but
slowly across,   

† 

mdr v /dt = qr v ¥
r 
B . Changing the way magnetic field

lines connect to objects (like the sun) can change the motion or the
energy of a plasma (an ideal gas of charged particles).

RECONNECTION BREAKS A CONSERVATION LAW

Conservation Laws of Ideal Behavior
1. Tying of a conducting fluid to a magnetic field. (weak)
2. Preservation of the magnetic field lines. (strong, topic of talk)

Reconnection associated with the rapid transfer of energy from the
magnetic field to the fluid. (easy, need not break a conservation law)
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PRIMARY RESULTS

1.  Maxwell equations imply any evolution   

† 

r 
B (r x ,t) is ideal locally.

2.  Local ideality broken in laboratory plasmas on toroidal surfaces on
which field lines close on themselves.  Textbook example of reconnection
but not relevant to space or astrophysics.

3. Separation between neighboring field lines normally increases
exponentially with distance along lines,   

† 

d µ exp(l / LL ).  Leads to
reconnection if   

† 

l > 20LL.

4.  A rapid transfer of energy from field to plasma need not imply non-
ideal field behavior, as reconnection.  For example, runaway electrons
reduce dissipation and will produce a corona around any star with a large
scale   

† 

r 
B  exiting a convective zone.
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I. GIVEN   

† 

r 
B (r x ,t) IS THE EVOLUTION IDEAL?  Yes locally!

Electric field   

† 

r 
E (r x ,t) gives   

† 

r 
B  evolution,   

† 

∂
r 
B /∂t = -

r 
— ¥

r 
E .

Where   

† 

r 
B  is non-zero, any electric field can be represented as

  

† 

r 
E + r u (r x ,t)¥

r 
B = -

r 
— Fu(r x ,t).

Parallel representation:   
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B ⋅
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B
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Perpendicular representation: 
  

† 

r u = (
r 
E +

r 
— Fu )¥

r 
B 

B2 .

Gives same   

† 

r 
B  evolution as   

† 

r 
E + r u ¥

r 
B = 0, which is ideal.
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II. MAGNETIC FIELD NULLS

Near a null can write     

† 

r 
B (r x ,t) =

t 
B ⋅ r x - r x 0 (t){ }.

An arbitrary electric field can be represented as   

† 

r 
E + r u ¥

r 
B = -

r 
— Fu

near a null if     

† 

t 
B  non-zero, called a point null.

Four equations, Bx= By= Bz=0  plus     

† 

t 
B = 0, for four unknowns

(x,y,z,t) can generally be solved only at isolated points.  These
points correspond to the collision or separation of two point nulls.

Note a line null is split into a set of discrete point nulls by an
arbitrarily small perturbation   

† 

d
r 
B .

Nulls of   

† 

r 
B  do not explain reconnection.
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III.  RECONNECTION IN TOROIDAL PLASMAS

In toroidal laboratory plasmas,   

† 

r 
B  lines close on themselves on

isolated surfaces, the rational surfaces.
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B
 has no global solution if 
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B
dlÚ  non-zero.

If V varies from field line to field line on a rational surface, the
surface splits into islands, and reconnection occurs.

                 
Field lines don’t close on themselves in space, so island
reconnection is not applicable there.
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IV. EVOLUTION of   

† 

r 
B  in NON-TOROIDAL SYSTEMS

A.  Definition of Clebsch coordinates   

† 

y,a,l( ):    

† 

r 
B =

r 
— y ¥ —a .

=============================================================================================================

Define    

† 

r,a,l( ) coordinates so   

† 

r 
B ⋅

r 
— r = 0 and   

† 

r 
B ⋅

r 
— a = 0.
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r 
B = F(r,a,l)
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— r ¥ —a , but   

† 

r 
— ⋅

r 
B = 0, so   
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∂F /∂l = 0.

Let 
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∂y /∂r = F(r,a), then   
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r 
B =

r 
— y ¥ —a .
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B. Magnetic evolution when Clebsch coordinates exist:
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A /∂t( ) r x 

-
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B = -
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V. REQUIREMENT FOR RECONNECTION

Need   

† 

r u  or 

† 

Fu in   

† 

r 
E + r u ¥

r 
B = -

r 
— Fu to be ill defined.

========================================

1. In a torus 

† 

Fu non-single-valued where field lines are closed.

2. Sometimes boundary conditions prevent a smooth 

† 

Fu.

3 .  Exponentially separating field lines make 

† 

Fu and   

† 

r u  ill
behaved with enough exponentiations (about 20).
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VI.  EXPONENTIAL SEPARATION OF FIELD LINES

Generically neighboring field lines separate exponentially
  

† 

d(l) = d0 exp(l / LL ); Lyapunov length is LL.
==========================================================================================

Field lines equations    

† 

dr x /dl =
r 
B (r x ) / B = ˆ b (r x ).

Trajectories given by   

† 

r x (y,a,l) with y=const. and a=const.,
where   

† 

r 
B =

r 
— y ¥

r 
— a .

Trajectory separation   

† 

r 
d (l) = ∂

r x /∂y( )dy + ∂
r x /∂a( )da with two

independent separations, dy and da.

  

† 

r 
B ⋅ (

r 
d 1 ¥

r 
d 2 ) = const. Because,   

† 

dr a l = (∂r x /∂y)¥ (∂r x /∂a)dyda .
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† 

d
r 
d 

dl
=

r 
d ⋅

t 
K   where   

† 

t 
K ≡ (

t 
1 - ˆ b ̂  b ) ⋅

r 
— ̂  b ⋅ (

t 
1 - ˆ b ̂  b ).

If   

† 

t 
K  were constant,   

† 

r 
d (l) =

r 
d 0 ⋅ exp(

t 
K l).

  

† 

t 
K  has two non-zero eigenvalues.  If one has a positive real part,
two orthogonal separation directions exist:

  

† 

r 
d d (l) with exponentially diverging trajectories,   

† 

µ exp(l / LL ).
  

† 

r 
d c(l) with exponentially converging trajectories,   

† 

µ exp(-l / LL ).

  

† 

r 
d c(l)¥

r 
d d (l) µ1/ B(l).

Field lines separate exponentially unless   

† 

t 
K  happens to be a

perfectly antisymmetric tensor—requires careful design.
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VII.  RECONNECTION & EXPONENTIAL SEPARATION

With exponential separation,   

† 

r u  and 

† 

Fu of   

† 

r 
E + r u ¥

r 
B = -

r 
— Fu are ill

behaved.

  

† 

r 
B ⋅

r 
— Fu =

r 
E ⋅

r 
B  implies 

  

† 

r 
d cr 
d c

⋅
r 
— Fu µ el / LL ;

Field line velocity   

† 

r u µ exp(l / LL ).
=========================================================================================

To illustrate reconnection, assume:
1. Small perturbation   

† 

d
r 
B  is added to a system,   

† 

r 
B (r x ,t) =

r 
B 0 +d

r 
B ,

which twists field lines in a small region transverse to   

† 

r 
B 0.

2.   

† 

r 
B 0 is static and curl free.

3. Field lines of   

† 

r 
B 0 e-fold apart many times within the system.
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Assume transverse variations large and linearize equations:
1.  Ohm’s law   

† 

d
r 
E +d

r v ¥
r 
B 0 = h||d

r 
j ||.

2. Twist perturbation to vector potential   

† 

d
r 
A = (dA|| / B0 )

r 
B 0.

3. Force balance   

† 

r∂d
r v /∂t = d

r 
j ¥

r 
B 0 + rn—2d

r v .
4. Ampere’s law   

† 

r 
— ¥d

r 
B = m0d

r 
j .

Obtain 
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ˆ 
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Alfvén speed 
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vA = B0
2 /m0r
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nh||
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—^
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If 

† 

¬ = 0, field line twist relaxes at vA along the field lines.

With dissipation, assume vA=const. and a very slow time variation
compared to the time an Alfvén wave takes to propagate.

Then solution is also a solution to 
  

† 

∂
∂l

dj||

B0

= ±
h||n

m0vA
2 —^

2 dj||

B0

.

Without dissipation 

† 

dj|| / B0 must be constant along each field line,

so if field lines exponentially separate 
  

† 

r 
d cr 
d c

⋅
r 
— 

dj||

B0

µ el / LL .

=================================================================================

With dissipation, 

† 

dj|| / B0 constant along   

† 

r 
B  for   

† 

l << LD and constant
across   

† 

r 
B  for   

† 

l >> LD, where 

† 

LD / LL ª ln(m0vALL /h||n)1/4 ª 20.
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Discussion of Reconnection through Exponentiation

An arbitrary evolution of   

† 

r 
B (r x ,t) tends to increase the number of

Lyapunov lengths along some field lines.

Once a field line has a length of more than 20LL, a further tendency
to increase would cause reconnection (diffusion of magnetic field
lines) rather give more Lyapunov lengths.

Note Ampere’s law implies a magnetic field must have a
significant curl within a Lyapunov length, LL.
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VIII.  RAPID ENERGY TRANSFER FROM   

† 

r 
B  TO PLASMA

Reconnection need not be implied by a rapid transfer of energy.

1.  Ideal   

† 

r 
B  evolution can give kinks and loss of equilibrium,

which transfer energy to the plasma.

2 .  If 

† 

j|| / en Te / me( ) increases along   

† 

r 
B ,  electron distribution

suddenly switches from a near Maxwellian to a very high
energy, or runaway, distribution for 

† 

j|| / en Te / me( ) ª 1.

=============================================================================================
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Physics of Runaway Electrons (Dreicer 1960)

For a near Maxwellian, f=fM+df, kinetic eq. 

† 

∂df
∂t

-
eE
me

∂fM

∂v
= -nedf .

† 

df = -
evE
Tne

fM , so  

† 

j = e vdfd 3v =
ne2E
men e

Ú ,  and  

† 

df
fM

ª
j

en Te / me

.

For super thermal electrons 

† 

medv/dt = -eE - menev, but 

† 

ne µ1/v3.

Runaway electons reach whatever energy is needed to carry
current.

Runaway phenomenon reduces E|| and hence dissipation.
Without runaway E|| =hj|| with 

† 

h µ n0 /Te
3/2.
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Runaway Electron Effect in Solar Atmosphere

Scale of magnetic fields on sun is of order 104km.

Density scale height (due to gravity) above photosphere and below
corona is n/(dn/dr)=100km with Te almost constant.

Magnetic field lines above sun form 104km loops exiting from
convective zone.  j|| must be large with short correlation across   

† 

r 
B .

j||/B must be essentially constant along a magnetic field line since
  

† 

r 
— ⋅

r 
j = 0 and plasma pressure is too small to support   

† 

r 
j ¥

r 
B  force.

If electrons remained Maxwellian, 

† 

j|| /en Te / me  would increase
by exp(104km/100km)= 3x1043 from bottom to top of loops.
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PRIMARY RESULTS

1.  Maxwell equations imply any evolution   

† 

r 
B (r x ,t) is ideal locally.

2.  Local ideality broken in laboratory plasmas on toroidal surfaces on
which field lines close on themselves.  Textbook example of reconnection
but not relevant to space or astrophysics.

3. Separation between neighboring field lines normally increases
exponentially with distance along lines,   

† 

d µ exp(l / LL ).  Leads to
reconnection if   

† 

l > 20LL.

4.  A rapid transfer of energy from field to plasma need not imply non-
ideal field behavior, as reconnection.  For example, runaway electrons
reduce dissipation and will produce a corona around any star with a large
scale   

† 

r 
B  exiting a convective zone.


