Particle Simulation of Magnetically Confined Plasmas

W. W. Lee

Princeton Plasma Physics Laboratory Princeton University Princeton, NJ 08543

Present Co-workers: Gyrokinetics: Z. Lin, T. S. Hahm, J. Lewandowski Beams: H. Qin, R. C. Davidson

OUTLINE

PPPL

- Progress in Particle Simulation
- Gyrokinetic Particle Simulation of Microinstabilities
- Future of Gyrokinetic Particle Simulation
- Particle Simulation of Relativistic Beams
- Summary and Conclusions
- Particle Simulation + Massively Parallel Computers **–***^a dynamite combination: [Reynders, ..., Lin]* **–***local, explicit, scalar*
- Particle Simulation is a Powerful Tool:

–for Tokamaks and Stellarators *(microturbulence, neoclassical and MHD physics)* **–**for High Energy Particle Beams *(space charge effects)*

- Advantages of Particle Simulation
	- **–**Minimal deviation from the original kinetic equations *(linear and nonlinear kinetic effects)*
	- **–**Minimal numerical restrictions due to recent advances *(large time step, large grid spacing, low numerical noise)*

• The Vlasov equation, on, $\frac{\partial P}{\partial F}$

he Vlasov equation,
\n
$$
\frac{dF}{dt} \equiv \frac{\partial F}{\partial t} + \mathbf{v} \cdot \frac{\partial F}{\partial \mathbf{x}} + \frac{q}{m} \left(\mathbf{E} + \frac{1}{c} \mathbf{v} \times \mathbf{B} \right) \cdot \frac{\partial F}{\partial \mathbf{v}} = C(F).
$$

 dt dt
• Particle Pushing,

Pusing,
\n
$$
\frac{d\mathbf{x}_j}{dt} = \mathbf{v_j}, \qquad \frac{d\mathbf{v}_j}{dt} = \frac{q}{m} \left(\mathbf{E} + \frac{1}{c} \mathbf{v}_j \times \mathbf{B} \right)_{\mathbf{x}_j}.
$$

at at the value of the set of the set of the set of the Klimontovich-Dupree representations,

\n- Klimontovich-Dupree representations,
\n- $$
F = \sum_{j=1}^{N} \delta(\mathbf{x} - \mathbf{x}_j) \delta(\mathbf{v} - \mathbf{v}_j),
$$
\n- Poisson's equation:
$$
\mathbf{E} = -\nabla \phi
$$
\n

a
V

$$
\text{ation: } \mathbf{E} = -\nabla \phi
$$
\n
$$
\nabla^2 \phi = -4\pi \sum_{\alpha} q_{\alpha} \sum_{j=1}^N \delta(\mathbf{x} - \mathbf{x}_{\alpha j})
$$

Ampere's Law and Faraday's Law

- **Particle Simulation of the Vlasov-Maxwell System (contability)**
• Vlasov equation is solved in Lagrangian coordinates
-*Nonlinear PDE* \Rightarrow *Linear ODE : Particle Pushing* • Vlasov equation is solved in Lagrangian coordinates \rightarrow *Nonlinear* $PDE \Rightarrow$ *Linear* $ODE:$ *Particle Pushing*
- Maxwell equations are solved in Eulerian coordinates **–***Linear PDE*
- Collisions are treated as sub-grid phenomena **–***Monte-Carlo processes*
- -*Monte-Carto processes*
• Suitable for high frequency short wavelength physics, e.g., Example 1988

Equency short way
 $\omega \approx \omega_{ne} - k\lambda_D \approx$ $\frac{1}{2} \omega_{pe}$ $\frac{k}{\lambda_D}$ e
1
- $\omega \approx \omega_{pe} \kappa \lambda_D \approx 1$
• Disparate spatial and temporal scales for physics of d temporal scales
 $\omega \approx \omega_*$. $k \rho_s \approx$

oral sca $_{*}, \;\; k\rho_{s}$ 1

 $\omega \approx \omega_*, \kappa \rho_s \approx 1$
• Enhanced numerical noise (*N*: no. of particles) ω \approx ω \approx , $k\rho_s \approx$

noise (N: no. of
 $\delta n/n \gg 1/\sqrt{N}$.
1 $\frac{1}{2}$ $\begin{align} s^2 \ 0 \ \sqrt{2} \end{align}$

- Early attempts [*Buneman (1959); Dawson (1962)*]
- Finite-Size Particles and Particle-in-Cell Simulation [*Dawson et al. BAPS (1968) and Birdsall et al. BAPS (1968)*]
- **–**Coulomb potential is modified for ^a finite size particle due to Debye shielding $\mathcal{L}_{\mathcal{A}}$, and the set of $\mathcal{L}_{\mathcal{A}}$ no need to satisfy $\frac{1}{1}$ $\frac{1}{\sqrt{2}}$: a finite s
Debye sh
io need to
 $(n \lambda_D^3) \ll$)
) $1/(n\lambda_D^3) \ll 1.$
• Number of calculations for N particles

- Vumber of calculations for N particles
 $-N^2$ for direct interactions and $N log N$ for PIC
- Collisionless Simulations [*Langdon et al. (1971)*]
- Collisions are re-introduced via Monte-Carlo methods [*Shanny, Dawson & Greene* (1976)]

Progress in Particle Simulation (cont.) *PPPL*

• Numerical Properties

–Grid spacing imposed by Debye shielding [Langdon (71)]:
 $\Delta x < \lambda_D$

–Time step imposed by high freq. oscillat'ns [Langdon (79)]: freq. ($\Delta t <$

 $\omega_{pe} \Delta t < 1$ ں
1

–Time step imposed by fast electrons [Langdon (79)]: $\frac{letrc}{dt}$

 $kv_{te}\Delta t < 1$ u
1

-Noise enhanced by Debye shielding [Okuda et al. (71)]:
 $\frac{\delta n}{\delta} \approx \frac{1}{\sqrt{1-\delta}}$

$$
\frac{\text{Debye shielding}}{n} \approx \frac{1}{\sqrt{N}(k\lambda_D)}
$$

• Implicit Schemes [Mason (1982); Denavit (1982); Langdon et. al (1982)] Implicit schemes [Maxtlength] ϵ . al (1982)]
 ϵ **—Instability**: $\omega_{pe} \Delta t >$

|
|
| **-**Instability: $\omega_{pe}\Delta t > 1$

-Inaccuracy: $kv_{te}\Delta t = (\omega_{pe}\Delta t)(k\lambda_D) >$ $\frac{1}{\Delta}$) |
|
| -Instability: $\omega_{pe}\Delta t > 1$
-Inaccuracy: $kv_{te}\Delta t = (\omega_p)$
-for $k\lambda_p \ll 1 \Rightarrow \omega_{pe}\Delta t > 1$ $\frac{1}{1}$ $t > 1$
 $\Delta t = (\omega_{pe} \Delta t)(k \lambda_D) > 1$
 $\omega_{pe} \Delta t > 1$ but keeping $kv_{te} \Delta t <$.
1

- Culprits: plasma waves originated from space charge effects
- Quasineutral waves are the waves of interest in tokamaks
- Reduced Vlasov-Maxwell equations:

–Gyrokinetic ordering:

okinetic ordering:
\n
$$
\frac{\omega}{\Omega_i} \sim \frac{k_{\parallel}}{k_{\perp}} \sim \frac{\rho}{L_{eq}} \sim \frac{\delta B}{B} \sim \frac{e\phi}{T} \sim O(\epsilon); k_{\perp}\rho \sim O(1)
$$

–Gyrophase average

- Linear theory : Rutherford and Frieman (1968); Taylor and Hastie (1968); Catto (1978)
- Nonlinear Theory:

–Frieman and Chen (1982) – in Fourier k-space **–**Lee (1983) - in real space

- Nonlinear Theory Lie perturbation methods:
	- **–**Dubin et al. (1983) electrostatic slab
	- **–**Hahm (1988) electrostatic toroidal
	- **–**Hahm et al. (1988) electromagnetic slab
	- **–**Brizard (1989) electromagnetic toroidal and reduced MHD
	- **–**Qin et al.(1999) compressional-Alfven and Bernstein waves
	- **–**Qin et al. (2000) pressure balance
	- **–**Qin et. ql. (Sherwood 2000) Gyro-gauge theory

9

Gyrokinetic Particle Simulation *PPPL*

[Lee, PF ('83); Lee, JCP ('87)]

- Gyrophase-averaged Vlasov-Maxwell equations for low frequency microinstabilities.
- The spiral motion of a charged particle is modified as a rotating charged ring subject to guiding center electric and magnetic drift motion as well as parallel acceleration.

Gyrokinetic Particle Simulation (cont.) *PPPL*

^A charged ring is further approximated by 4-point average,

valid for $k_{\perp} \rho_i \leq 2$. i

 \mathbb{L}^{n} = \mathbb{L}^{n} gyrokinetic model giving rise to quasineutral simulation, by
kii
V = re_]
vir
⇒ pola
quas:
 $\nabla^2_\perp \phi$ Tration shieldin

neutral simulation
 $= -4\pi e(\overline{n}_i - n_i)$

$$
\begin{aligned}\n\text{S} & \text{inetic model giving rise to quasineutral simulation,} \\
\nabla^2 \phi &= -4\pi \rho \quad \Rightarrow \quad (\frac{\rho_s}{\lambda_D})^2 \nabla^2 \phi = -4\pi e (\overline{n}_i - n_e), \\
\text{rations of Motion} & \text{or} \quad \cos \theta = \sqrt{\frac{\rho_s}{\lambda_D}} \quad \Rightarrow \quad \mu = v_\perp^2\n\end{aligned}
$$

 \bullet Equations of Motion

$$
\begin{aligned}\n\text{equations of Motion} \\
\frac{d\mathbf{R}}{dt} &= U\hat{\mathbf{b}} + \mathbf{v}_d - \frac{c}{B}\frac{\partial \overline{\phi}}{\partial \mathbf{R}} \times \hat{\mathbf{b}}, \quad \frac{\mu}{B} \equiv \frac{v_\perp^2}{2B} = const., \\
\frac{dU}{dt} &= -[\hat{\mathbf{b}} + \frac{U}{\Omega}\hat{\mathbf{b}} \times (\hat{\mathbf{b}} \cdot \frac{\partial}{\partial \mathbf{R}})\hat{\mathbf{b}}] \cdot (\mu \frac{\partial}{\partial \mathbf{R}} lnB + \frac{q}{m} \frac{\partial \overline{\phi}}{\partial \mathbf{R}}),\n\end{aligned}
$$

• Numerical Properties of a Gyrokinetic Plasma **–**Grid spacing imposed by cold electron response posed by cold electron resp $\Delta x < \rho_s$; $(\rho_s/\lambda_D \approx 100)$ $\Delta x < \rho_s$; $(\rho_s/\lambda_D \approx 100)$
 –Time step imposed by cold electron response $(\omega_H \equiv$ $\overline{\left(\right. }$ k $\overline{\mathbb{R}}$ $\frac{k_{\parallel}}{k_{\perp}}$ λ_D $\frac{\lambda_D}{\rho_s} \omega_{pe}$) $\Delta x < p_s,~~$ $(p_s / \Delta D \approx 100)$
bosed by cold electron response (
 $\omega_H \Delta t \ll 1;~~$ $(\omega_{pe}/\omega_H \approx 1000)$ $\omega_H \Delta t \ll 1$; $(\omega_{pe}/\omega_H \approx 1000)$ $\overline{\left(\right. }$ **–**Time step restricted by streaming of thermal electrons: strear $k_{\parallel}v_{te}$ k $\frac{1}{\text{ming}}$ ں
1 $\overline{\text{-Noise enhanced by }\omega_H}$ ω_H :
 $\delta n/n \approx 1/\sqrt{N} (k \rho_s)$. $\begin{array}{c} \n\searrow \n\end{array}$

|
|
| |

We need to get rid of cold electron response to lift these restrictions.

Methods to further improve the numerical properties

- Methods to further improve the numerical properties

 Adiabatic electron response $(\delta n_e/n_0 \approx e\phi/T_e)$ can achieve all of the above, but by completely forfeiting non-adiabatic electron dynamics from simulation, e.g., wave-particle interactions.
- actions.
• Split weight δf simulation scheme can relax all the numerical restrictions: Split weight *o J* simulations:
al restrictions:
-Grid Spacing: $\Delta x \gg \rho_s$ ula
>>
	-
	- al restrictions:
 –Grid Spacing: $\Delta x \gg \rho_s$
 –Time Step: $\omega_* \Delta t < 1$ (or $\omega_A \Delta t < 1$), $k_{\parallel} v_{te} \Delta t \gg 1$;
 –Noise: $\delta n/n \approx 0 \rightarrow 1/\sqrt{N}$. k α \sim 1 (01 ω _A)
0 \rightarrow 1/ \sqrt{N} . ر
1 $\frac{1}{\sqrt{2}}$ $\frac{s}{\sqrt{2}}$
- With this scheme, accuracy now dictates the number of particle used in the simulation.

The Perturbative (δf) **Particle Simulation Scheme** *PPPL*

[Dimits and Lee, JCP (1993); Parker and Lee, FPB (1993)]

• The Vlasov equation, $\frac{d}{dF}$ $\frac{d\mathbf{t}}{dt}$ uation,
 $\equiv \frac{\partial F}{\partial t} + \mathbf{v} \cdot \frac{\partial F}{\partial \mathbf{x}} + \frac{q}{m} \mathbf{E} \cdot \frac{\partial F}{\partial \mathbf{v}} = 0.$ • For $F = F_o + \delta f$, $d\delta f$ $\frac{d}{dt}$ $\frac{1}{2}$ = $$ dF_o $\frac{d}{dt}$ • Let $W = \delta f / F$ to obtain

$$
dW = \delta f / F \text{ to obtain}
$$

\n
$$
\frac{d\mathbf{x}}{dt} = \mathbf{v}, \quad \frac{d\mathbf{v}}{dt} = \frac{q}{m} \mathbf{E}, \quad \frac{dW}{dt} = -(1 - W)\mathbf{v} \cdot \frac{\partial}{\partial \mathbf{x}} \left(\frac{q\phi}{T_e}\right),
$$

\n
$$
\delta f = \sum_{j=1}^{N} W_j \delta(\mathbf{x} - \mathbf{x}_j) \delta(\mathbf{v} - \mathbf{v}_j).
$$

- Easy access to both linear and nonlinear regimes
- Gyrokinetic Poisson's equation remains unchanged.

Split Weight Perturbative (δf) **Particle Simulation Scheme**

[Manuilskiy and Lee, PoP(2000)]

Let $\delta f_e = (e\phi/T_e)F_{0e} + \delta h_e$ to obtain)
) $\frac{(e\phi/T_e)F_{0e} + \delta h_e \text{ to o}}{d\delta h_e}$ e $\frac{dt}{dt}$ T_e) I
= - $\frac{\partial}{\partial t}$ $\frac{1}{e\phi}$ $\frac{\text{d} \varphi}{T_e}$ $\frac{\delta h_e}{F_{0e}}$ + obtain
 $\frac{\mathbf{v}}{2} \cdot \left[\frac{\partial}{\partial \mathbf{x}} \right]$ $\ddot{}$ a
| $\overline{}$ $\overline{}$ $\overline{}$ $\left(\frac{e\phi}{\pi}\right)$ $\frac{\text{d} \varphi}{T_e}$) $\frac{1}{2}$ |
|
| |
|
| **1** 7
7
1
7
2
7
2
2
2
2
2
2
2
 $\Bigl] \, F_{0e}$ w^{NA} $\frac{dE}{dt} = -$
= $\delta h_e/F$,

• For
$$
w^{NA} = \delta h_e/F
$$
,
\n
$$
\frac{dw^{NA}}{dt} = \frac{1 - w^{NA}}{1 + e\phi/T_e} \left[-\frac{\partial e\phi}{\partial t} + \frac{v}{2} \cdot \frac{\partial}{\partial x} \left(\frac{e\phi}{T_e} \right)^2 \right].
$$

 $dt = 1 + e\phi/T_e$ $dt/dtT_e = 2 \partial \mathbf{x} (T_e)$
• Modified Poisson's equation and Charge Conservation

disson's equation and Charge Conse

\n
$$
\left(\lambda_D^2 \nabla^2 - 1\right) \frac{e\phi}{T_e} = \int \delta h_e d\mathbf{v} - \delta n_i,
$$
\n
$$
\lambda_D^2 \nabla^2 \left(\frac{\partial e\phi}{\partial t}\right) = -\frac{\partial}{\partial \mathbf{x}} \cdot \int \mathbf{v} \delta h_e d\mathbf{v},
$$
\n
$$
\delta h_e = \sum_{j=1}^N w_j^{NA} \delta(\mathbf{x} - \mathbf{x}_j) \delta(\mathbf{v} - \mathbf{v}),
$$

Split-weight scheme for finite- ^plasmas *PPPL*

[W. W. Lee, J. L. V. Lewandowski and T. S. Hahm, Sherwood(2000)]

IW. W. Lee, J. L. V. Lewandowski and T. S. Hahm, Sherwood(2000)
• The governing gyrokinetic Vlasov equation, E
E $\frac{L}{L}$

The governing gyrokinetic Vlasov equation,
\n
$$
\frac{dF_{\alpha}}{dt} \equiv \frac{\partial F_{\alpha}}{\partial t} + v_{\parallel} \hat{\mathbf{b}} \cdot \frac{\partial F_{\alpha}}{\partial \mathbf{x}} + c \frac{\mathbf{E}^{L} \times \hat{\mathbf{b}}_{0}}{B_{0}} \cdot \frac{\partial F_{\alpha}}{\partial \mathbf{x}} + \frac{q}{m} \mathbf{E} \cdot \hat{\mathbf{b}} \frac{\partial F_{\alpha}}{\partial v_{\parallel}} = 0,
$$
\n
$$
\hat{\mathbf{b}} = \hat{\mathbf{b}}_{0} + \frac{\delta \mathbf{B}}{B_{0}}, \quad \hat{\mathbf{b}}_{0} = \frac{\mathbf{B}_{0}}{B_{0}}
$$
\n
$$
\delta \mathbf{B} = \nabla A_{\parallel} \times \hat{\mathbf{b}}_{0},
$$
\n
$$
\mathbf{E} = E_{\parallel}^{T} \hat{\mathbf{b}}_{0} + \mathbf{E}^{L},
$$
\n
$$
\mathbf{E}^{L} = -\nabla \phi, \quad E_{\parallel}^{T} = -\frac{1}{c} \frac{\partial A_{\parallel}}{\partial t}.
$$

Gyrokinetic Poisson's equation & Ampere's law,

$$
(\frac{\rho_s}{\lambda_D})^2 \nabla_{\perp}^2 \phi = -4\pi e (n_i - n_e),
$$

$$
\nabla_{\perp}^2 A_{\parallel} = -\frac{4\pi}{c} J_{\parallel},
$$

$$
n_{\alpha} = \int F_{\alpha} dv_{\parallel}, \quad J_{\parallel} = \sum_{\alpha} q_{\alpha} \int v_{\parallel} F_{\alpha} dv_{\parallel}.
$$

• The generalized Ohm's law

lized Ohm's law
\n
$$
[\frac{n_e}{n_i}\omega_{pe}^2 + \frac{n_i}{n_0}\omega_{pi}^2 - c^2 \nabla_{\perp}^2]E_{\parallel}/4\pi e
$$

$$
\left|\frac{1}{n_i}\omega_{pe} - \frac{1}{n_0}\omega_{pi} - c\right| \leq \left|\frac{1}{n_0}\right|^{4\pi e}
$$
\n
$$
= \hat{\mathbf{b}} \cdot \nabla \int v_{\parallel}^{2} (F_i - F_e) dv_{\parallel} - v_A^2 \hat{\mathbf{b}} \cdot \nabla \int (F_i - F_e) dv_{\parallel}
$$

$\textbf{Finite-}\beta$ **Simulation, (cont.)** *PPPL*

• $F_{\alpha} = F_{0\alpha} + \delta f_{\alpha}$, $\delta f_{e} = \psi F_{0e} + \delta h_{e}$.

- $F_{\alpha} = F_{0\alpha} + \delta f_{\alpha}, \delta f_e = \psi F_{0e} + \delta h_e.$
• $E_{\parallel} = -\hat{\mathbf{b}} \cdot \nabla \psi = -\hat{\mathbf{b}} \cdot \nabla \phi (1/c)\partial A_{\parallel}/\partial t$ • $E_{\parallel} = -b \cdot \nabla \psi = -b \cdot$
• Generalized Ohm's law
-

Generalized Ohm's law
 $[1 - \nabla_{\perp}^2] \psi = -\beta \int v_{\parallel}^2 (\delta f_i - \delta h_e) dv_{\parallel} + \int (\delta f_i - \delta h_e) dv_{\parallel}.$

 $\begin{aligned} \mathbf{L} - \mathbf{v} \mathbf{v} &= -\rho \mathbf{v} \end{aligned}$
• Equations for $\partial \psi / \partial t$

ons for
$$
\partial \psi / \partial t
$$

\n
$$
(\beta \frac{m_i}{m_e} - \nabla_{\perp}^2) \frac{\partial \psi}{\partial t} = \beta \frac{\partial}{\partial x_{\parallel}} f v_{\parallel}^3 (\delta f_i - \delta h_e) dv_{\parallel}
$$
\n
$$
- \frac{\partial}{\partial x_{\parallel}} f v_{\parallel} (\delta f_i - \delta h_e) dv_{\parallel}
$$

 $-\frac{\partial}{\partial x_{\parallel}}$ / $v_{\parallel}(0)$
• Split Weight: $w^{NA} = \delta h_e/F_e$ ht: w^{Λ}
d w^{NA} = $\delta h_e/F_e$
1 — w^{NA}

$$
\mathcal{L}^{\mathbf{h}} = \frac{\delta h_e}{F_e} = \frac{1 - w^{NA}}{1 + \psi} \left[-\frac{\partial \psi}{\partial t} + \frac{v_{\parallel} \partial \psi^2}{2 \partial x_{\parallel}} \right].
$$

Shear-Alfven Waves

One-Dimensional Simulation:

 $k_{\perp} \rho_s = 0.8, \beta = 10\%, k_{\parallel}/k_{\perp} = 0.01, T_e/T_i = 1$

• Split weight scheme: $\omega \Delta t \approx 0.033$, $k_{\parallel} v_{te} \Delta t \approx 0.344$

Original δf scheme:

Gyrokinetic Particle Simulation Codes *PPPL*

 \Rightarrow 1,2&3D electrostatic and electromagnetic (Darwin) slab codes \Rightarrow 3D electrostatic global toroidal code in magnetic coordinates

GTC [Lin et al. *Science* (1998)]

Basic formalism for GTC

asic formatism for GTC
 $-$ magnetic coordinates (ψ, θ, ζ) [Boozer, 1981]

- **–**guiding center Hamiltonian [White and Chance, 1984]
- **–**non-spectral Poisson solver [Lin and Lee, 1995]

Advanced features for GTC

- **–**general geometry (e.g., stellarator)
- **–**profile effects (e.g., low-aspect ratio, steep gradient)
- **–**capable of simulating full poloidal cross section (*global*) or thin annulus box (*local*)

Global Field-line Coordinates

[Z. Lin, in preparation]

[Z. Lin, in preparation]
• Microinstability wavelength: $\lambda_{\perp} \propto \rho_i$, $\lambda_{\parallel} \propto qR$ Lin, in preparation]
**Microinstability
–grid # N** $\propto a^2$, $a:$ minor radius

- Most global codes: w/o field-line coordinates Most global cod
 $-\text{grid}$ # $N \propto a^3$
- $-\text{grid} \# N \propto a^{\circ}$
• GTC global code: use field-line coordinates bal code: use field-line coors
 $(\psi, \alpha, \zeta), \quad \alpha = \theta - \zeta/q$ $\frac{1}{2}$

 (ψ, α, ϕ)

–grid # $N \propto a^2$

 $-\text{grid} \# N \propto a^2$
—larger time step: no high *k* \parallel modes

- **–**order of magnitude saving of computing time for reactor size simulations
- Field-line coordinates in flux-tube codes [Dimits and Beer]

PPPL

Gyrokinetic Particle Simulation of Microinstabilities*PPPL*

Codes:

–1&2D slab codes

–3D global toroidal code in general geometry

Physics:

–wave-particle interactions: nonlinear saturation

–zonal flows: reduction of fluctuation and transport

–collisional effects: enhancement of transport due to weak ν_{ei}, ν_{ii}

• Scaling trends:

caling trends:
–Mixing Length Rule: $\gamma_L/k_\perp^2,$ $\frac{1}{\Delta}$

 $-$ Mixing Length Rule: γ_L/k_{\perp}^2 ,
--Resonance Broadening: $\Delta \omega_{NL}/k_{\perp}^2$,

Gyrokinetic Particle Simulation of Microinstabilities (cont.)

Nonlinear Saturation: Three Mode Coupling in Slab Geometry
• 1D drift instability: (linear: $\omega \Delta t \approx 0.72$. $k_{\parallel}v_{te}\Delta t \approx 2.7$)

Nonlinear Saturation: Three Mode Coupling in Slab Geom
• 1D drift instability: (linear: $\omega \Delta t \approx 0.72$, $k_{\parallel} v_{te} \Delta t \approx 2.7$) $\overline{\mathbf{r}}$

[Parker and Lee ('93); Manuilskiy and Lee ('00)]

- The space $P_{\text{a}_{i}}$

[Parker and Lee ('93); Manuilskiy and Lee ('00)]

 2D drift instability: $E \times B$ trapping of resonant particles
- 2D drift instability: $E \times B$ trapping of resonant particles
• 2D drift instability with collisions: saturation level caused
by $E \times B$ trapping is greatly enhanced by weak collisions. by E \times by $E \times B$ trapping is greatly enhanced by weak collisions.

• 2D ITG drift instability: $E \times B$ trapping of resonant particles $\frac{1}{16}$
- *[Lee et al., ('84), Federici et al. ('87), Lee and Tang ('88)]*

Gyrokinetic Particle Simulation of Microinstabilities (cont.)

Global Toroidal Simulation

Without zonal flow *[Lee and Santoro, PoP (1997)]* $\frac{dS}{E}$

Vithout zonal flow *[Lee and Santoro, PoP (1997)]*

-Nonlinear saturation : $E \times B$ trapping of resonant particles **–**Energy cascade to low (m,n) modes

–Consistent with Resonance Broadening Scaling (Dupree):

It with Reso $\chi_i \propto (k_\perp \rho_s)$ i $\overline{\left(\right. }$) ance Broadening Scaling
 $\frac{2}{e\phi/T_e}$ $\frac{2}{(1/k_{\parallel}\rho_s)(cT/eB)}$ k)

With zonal flow: Reduction of Turbulent Transport *[Z. Lin et al.,*

Gyrokinetic Particle Simulation of Microinstabilities (cont.)

Collisional Effects on Toroidal ITG modes

Weak collisions have negligible effects on linear growth, but can enhance transport due to collisional damping of the zonal
flow, i.e.,
 $\chi_i \propto \nu^*$ flow, i.e., $\frac{1}{\chi}$ $\overline{\nu}$ \ast

$$
\chi_i \propto \nu^*
$$

Bursting Behavior

large bursts of fluctuation in TFTR RS plasmas observed period ~ collisional flow damping time **collisional damping of zonal flows causes bursts of turbulent transport in gyrokinetic simulations**

Gyrokinetic Particle Simulation of Neoclassical Transport

• Neoclassical δf scheme: $f = f_0 + \delta f$

**Gyrokinetic Particle Simulation of No.
• Neoclassical** δf **scheme:** $f = f_0 + \delta f$ f_0 : local Maxwellian; δf : deviations due to magnetic drift

[Lin, Tang, and Lee, 1995; Sasinowski and Boozer, 1995]

- Advantages: reduced noise; steady state; Forker-Planck collision operators conserving momentum and energy
- Formal derivation and validation of collisional δf method: source and sink; nonlinear collision operators

[Chen and White, 1997]

[Chen and White, 1997]
• Neoclassical χ_i near magnetic Axis

[Lin, Tang, and Lee, 1997]

Widely used in stellarator neoclassical transport calculation

Neoclassical χ_i **Near Magnetic Axis** *PPPL*

- Ion thermal transport levels in ERS plasmas observed to fall below the neoclassical theory "irreducible minimum level"
- Simulations lead to improved calculation of neoclassical χ_i

[Lin, Tang, and Lee, Phys. Rev. Lett. , 1997]

- Physical picture:
	- α -orbit size reduced due to $\rho_p \sim r$
	- **–**higher energy particle: larger reduction
	- **–**outward energy flux reduced
	- $-\chi_i$ decreases for smaller minor radius

Plans for Gyrokinetic Particle Simulation *PPPL*

- Trapped electron physics:
- Field-line coord. ⁺ Split-weight ⁺ Adiabatic field pusher d. + Split-weight + Adiaba
 $k_{\parallel}v_{te}\Delta t >> 1, \quad \omega \ll \omega_{be}$ cs:

Split-weight + Ac
 $\Delta t >> 1$, $\omega \ll$

k

- $\|v_{te}\|$ \geq 1, a
	- Shear-Alfven waves: split-weight for passing electrons
- Gyrokinetic MHD: neoclassical drive and turbulence drive
	- Compressional Alfven Waves *[Qin et al., 1999]*
	- **–** Pressure Balance *[Qin et al. to appear]*
- Wave Heating high frequency gyrokinetics *[Qin et al. 1999]* **–**IBW physics

Perturbative Particle Simulation of Space Charge Dominated Relativistic Beams *PPPL*

- f simulation model *[Lee, Qian, and Davidson, 1997] s* sinuration moder *[Lee, Qian, and Dav* $-$ based on KV equilbrium: $F_0 \propto \delta$ **vistic E**
a Davidson
 $\propto \delta$ (W $\overline{\left(\right. }$)
- Non KV equilibrium:
	- **–**simulation: *[Stoltz, Davidson, Lee, 1999]*
	- **–**theory: *[Davidson, Qin, Channell, 1999]*
- \bullet 3D multi-species NL δf code: *[Qin, Davidson, Lee, 1999]* Beam Equlibrium, Stability, Transport (BEST) Code
- e-p instability (two-stream)
	- **–**theory: *[Davidson et al, 1999]*
	- **–**simulation: *[Qin, Davidson and Lee, ¹⁹⁹⁹ and 2000]*
- Darwin model: nonradiative simulation for chamber transport
	- *[Lee, Qin, and Davidson, 2000]*

 $\left\{ \right.$

Darwin Model for Bean Physics
\n
$$
\mathbf{F}_{j}^{foc} = -\gamma_{j} m_{j} \omega_{\beta j}^{2} \mathbf{x}_{\perp},
$$
\n
$$
\{\frac{\partial}{\partial t} + \mathbf{v} \cdot \frac{\partial}{\partial \mathbf{x}} - [\gamma_{j} m_{j} \omega_{\beta j}^{2} \mathbf{x}_{\perp} + e_{j} \nabla_{\perp} (\phi - \frac{v_{z}}{c} A_{z})] \cdot \frac{\partial}{\partial \mathbf{p}_{\perp}}
$$
\n
$$
-e_{j} \frac{\partial}{\partial z} (\phi - \frac{v_{z}}{c} A_{z}) \frac{\partial}{\partial P_{z}} \} f_{j}(\mathbf{x}, \mathbf{p}_{\perp}, P_{z}, t) = 0,
$$
\n
$$
\nabla^{2} \phi = -4\pi \sum_{j} e_{j} \int d^{2} p_{\perp} dP_{z} f_{j}(\mathbf{x}, \mathbf{p}_{\perp}, P_{z}, t),
$$
\n
$$
\nabla^{2} A_{z} = -\frac{4\pi}{c} \sum_{j} e_{j} \int d^{2} p_{\perp} dP_{z} v_{z} f_{j}(\mathbf{x}, \mathbf{p}_{\perp}, P_{z}, t).
$$
\n
$$
\mathbf{v}_{\perp} = \mathbf{p}_{\perp} / \gamma_{j} m_{j}
$$
\n
$$
v_{z} = (P_{z} - \frac{e_{j}}{c} \delta A_{z}) / \gamma_{j} m_{j}
$$

Darwin Model for Beam Physics (cont.) *PPPL*

$$
\frac{d\mathbf{x}_{ji}}{dt} = \mathbf{v}_{ji},
$$

$$
\frac{d\mathbf{p}_{\perp ji}}{dt} = \mathbf{v}_{ji},
$$

$$
\frac{d\mathbf{p}_{\perp ji}}{dt} = -\gamma_j m_j \omega_{\beta j}^2 \mathbf{x}_{\perp ji} - e_j \nabla_\perp (\phi - \frac{v_{zji}}{c} A_z).
$$

$$
i j^{\mu} j^{\mu} \beta j^{\lambda} \perp j i \qquad c_j \vee \perp (\varphi)
$$

$$
\frac{dP_{zji}}{dt} = -e_j \frac{\partial}{\partial z} (\phi - \frac{v_{zji}}{c} A_z).
$$

$$
dt = c_j \frac{\partial z}{\partial z} + c \frac{\partial z}{\partial z}.
$$

$$
\frac{dw_{ji}}{dt} = -(1 - w_{ji}) \frac{1}{f_{j0}} \left[\frac{\partial f_{j0}}{\partial \mathbf{p}_{\perp}} \cdot \delta \left(\frac{d\mathbf{p}_{\perp ji}}{dt} \right) + \frac{\partial f_{j0}}{\partial P_z} \delta \left(\frac{dP_{zji}}{dt} \right) \right],
$$

$$
\delta \left(\frac{d\mathbf{p}_{\perp ji}}{dt} \right) = -\frac{\partial}{\partial \mathbf{p}_{\perp}} \left(\delta \mathbf{p}_{\perp} \right) \frac{\partial z_{ji}}{\partial \mathbf{p}_{\perp}} \frac{\partial z_{ji}}{\partial \mathbf{p}_{\per
$$

$$
\begin{aligned}\n\zeta \frac{d\mathbf{p}_{\perp ji}}{dt} f_{j0} \, \mathbf{p}_{\perp} &\quad \zeta \frac{d\mathbf{p}_{\perp ji}}{dt} \\
\delta \left(\frac{d\mathbf{p}_{\perp ji}}{dt} \right) &= -e_j \nabla_{\perp} (\delta \phi - \frac{v_{zji}}{c} \delta A_z), \\
\delta \left(\frac{dP_{zji}}{dt} \right) &= -e_j \frac{\partial}{\partial \phi} (\delta \phi - \frac{v_{zji}}{c} \delta A_z).\n\end{aligned}
$$

$$
\delta(\frac{dP_{zji}}{dt}) = -e_j \frac{\partial}{\partial z} (\delta \phi - \frac{v_{zji}}{c} \delta A_z),
$$

$$
\pmb{PPPL}
$$

$$
\delta f_j = \sum_{i=1}^{N_{sj}} w_{ji} \delta(\mathbf{x} - \mathbf{x}_{ji}) \delta(\mathbf{p}_{\perp} - \mathbf{p}_{\perp ji}) \delta(P_z - P_{zji}),
$$

$$
\nabla^2 \delta \phi = -4\pi \sum_j e_j \delta n_j,
$$

$$
\nabla^2 \delta A_z = -\frac{4\pi}{c} \sum_j \delta j_{zj},
$$

$$
\delta n_j = \int d^2 p_{\perp} dP_z \delta f_j(\mathbf{x}, \mathbf{p}_{\perp}, P_z, t) = \sum_{i=1}^{N_{sj}} w_{ji} S(\mathbf{x} - \mathbf{x}_{ji}),
$$

$$
\delta j_{zj} = e_j \int d^2 p_\perp dP_z v_{zj} \delta f_j(\mathbf{x}, \mathbf{p}_\perp, P_z, t) = e_j \sum_{i=1}^{N_{sj}} v_{zji} w_{ji} S(\mathbf{x} - \mathbf{x}_{ji}).
$$

Equilibrium Distribution
\n
$$
f_{b0}(r, \mathbf{p}_{\perp}, P_z) = \frac{\hat{n}_b}{\gamma_b (2\pi \gamma_b m_b T_b)^{3/2}}
$$
\n
$$
\times \exp\{-\frac{p_{\perp}^2 / 2\gamma_b m_b + \gamma_b m_b \omega_{\beta b}^2 r^2 / 2 + e_b(\phi_0 - \beta_b A_{z0})}{T_b}\}\times \exp\{-\frac{(P_z - \gamma_b m_b \beta_b c)^2}{2\gamma_b^3 m_b T_b}\},
$$

Adiabatic Pusher
in $x - y$ plane lin

- Adiabatic Pusner
Fast electron motion in $x y$ plane limits the time step.
- Treat electrons as charged strings.
- Push ions and solve field equations in the time scale of the frequency of interest, i.e., less often.

When ^a background electron componen^t is introduced in ^a proton storage ring, the dipole surface mode can be destabilized.

Electrostatic/Magnetostatic Model [H. Qin, R. C. Davidson and W. W. Lee, Phys. Lett. A (in press)].

- Particle simulation finally emerges as one of the most promising tools for plasma physics research
- With thousand-processor parallel computers at NERSC and ACL/LANL, we can investigate:
- With thousand-processor parallel computers at NER
ACL/LANL, we can investigate:
MFE: $(0.1 1) \times 10^9$ particles with 10,000 time steps
 $\sim (30 300)$ hours on 256PE / T3E-900
	- **–**Transport scaling for large tokamaks
	- **–**NSTX simulation
	- **–**NCSX design
- $-$ NCSX design
IFE: $(1 10) \times 10^6$ particles with 1,000,000 time steps
	- **–**two stream instability
	- **–**filamentation instability