
 

 

CRITICAL ISSUES IN THE MODELING OF  

MAJOR DISRUPTIONS IN TOKAMAKS 

 

Report by the Study Group on “Plasma-wall boundary conditions for MHD 
simulations of disruption events”  

Study group members:  

A. Boozer (Chair), J. Breslau, E. Fredrickson, D. Stotler 

PPPL Department of Theory and Computation 

March 21, 2011 

 



TABLE OF CONTENTS 

 

Charge letter ........................................................................................................... 2 

Summary ................................................................................................................ 3 

Abstract .................................................................................................................. 6 

Introduction ............................................................................................................ 7 

Tokamak disruption reviews ................................................................................. 10 

Published disruption simulations .......................................................................... 11 

Electromagnetic boundary conditions in the halo ................................................. 15 

Boundary conditions on the halo plasma .............................................................. 17 

Disruption issues other than boundary conditions................................................ 19 

Conclusions ........................................................................................................... 23 

Appendix A: Magnetic islands in non-axisymmetric simulations... ........................ 24 

Appendix B: Sonic flow conditions ........................................................................ 29 

Appendix C: Plasma-wall sheath ........................................................................... 30 

Appendix D: Halo model ....................................................................................... 33 

References ............................................................................................................ 35 

 

 

 



 

The “BC” Study Group  

TITLE: Plasma-wall boundary conditions (BC) for MHD simulations of disruption events 

MEMBERS: A. Boozer (Chair), J. Breslau, D. Stotler, E. Fredrickson 

BACKGROUND: Prior to the thermal quench, the plasma column is hot enough that it can be 
approximated as an ideal plasma within closed magnetic field lines. The last closed plasma surface is 
surrounded by an open field line region filled with a low-density and relatively-cold plasma (the halo). 
The MHD codes that are currently used to simulate disruptions are based on a fluid description for both 
regions. The resistivity and density vary by several orders of magnitude between the quasi-ideal plasma 
and the surrounding halo. The reduction in the toroidal magnetic flux enclosed by the plasma boundary 
during a disruption can induce wall currents producing dangerously large forces in the surrounding 
structures.  Wall currents can also arise from sheath effects at the plasma-wall interface and from the 
currents associated with a non-axisymmetric kinking of the plasma. The issue to be addressed and 
resolved by the BC Study Group concerns the boundary conditions at the plasma-wall interface and 
how such boundary conditions affect the interaction of the main plasma with the wall and the 
resulting forces in the wall during a disruption. 

QUESTIONS TO BE ADDRESSED: 

[1] Are the boundary conditions used in the present MHD codes appropriate for calculating the 
dominant interactions of the main plasma with the wall and the resulting forces in the resistive wall 
during the current quench phase of a disrupting plasma? 
 
[2] Can these boundary conditions be improved to enhance the accuracy of the calculation of the 
forces?  If so, how? 
 
PROCESS, DELIVERABLES and SCHEDULE: The content and terms in this Charge Letter have been agreed upon by 
the Theory Department Head and the Study Group Chair. The Study Group will submit a report to the Science 
Committee (SC) by March 31st 2011. The Study Group will provide monthly briefings on the progress made at 
the meetings of the SC. The report will be edited by an editor appointed by the SC and published on the PPPL 
Theory Review. A section of the report will summarize the findings and recommendations. 

R. Betti                                                                                                                                                      Prof. Allen Boozer 

Head, Department of Theory and Computation                                                                             BC Study Group Chair     

Princeton Plasma Physics Laboratory                                                                                PPPL and Columbia University 

Additional input on the background and relevant questions has been provided by S. Jardin and L. Zakharov, and 
is included as an attachment to this charge letter 



SUMMARY

In September 2010, Riccardo Betti appointed this committee to answer two questions. The

questions and their answers are:

(1) Are the boundary conditions used in the present MHD codes appropriate for calculating

the dominant interactions of the main plasma with the wall and the resulting forces in the

resistive wall during the current quench phase of a disrupting plasma?

The published simulations of disruptions, TSC[1] [2], DINA [3], and M3D [4] [5], make

the vessel surrounding the plasma axisymmetric and prescribe a state for the halo plasma

rather than using boundary conditions to find that state. The halo plasma is the part of the

plasma that is in direct contact with the wall. In experiments, large forces on wall structures

arise from halo currents, which are currents that flow for part of their path through the halo

plasma and for part through the wall. The two most important parameters for determining

the total halo current are the resistance and the width of the halo.

The boundary conditions used in the TSC, DINA, and M3D simulations are appropriate

for obtaining an estimate of the maximum of the total force exerted on the wall by the halo

current under certain approximations, such as axisymmetry in the TSC and DINA codes,

by varying assumed values for the resistance and width of the halo.

The boundary conditions used in existing simulations are not appropriate for studying

a number of important properties of the forces during disruptions. The localization and

duration of the forces, which are critical for an assessment of the potential for damage, are

dependent on a number of factors beyond just the halo resistance and width. The use of

more physical boundary conditions would provide greater understanding and, consequently,

increased confidence in extrapolations of these simulation models from present devices to

ITER.

The total force that a disruption can exert on a wall has an obvious upper bound, F =

fdπavIpB, where the poloidal circumference of vessel is 2πav, the net plasma current is Ip,

the magnetic field strength is B, and fp is a coefficient, which empirically has a value of a

few tenths but is certainly not a universal constant. The resistance and the width of the

halo plasma can be varied in existing simulations to obtain information on fp beyond that

obtained from analytic estimates. Features not represented in existing simulations, such
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as the complicated non-axisymmetric geometry of the structures surrounding the plasma,

could change fp by a factor of two or more.

The assumption in existing simulations that the plasma cannot flow into the wall,

~v · n̂ = 0, is unphysical. Since existing codes assume, rather than calculate, the

properties of the halo, the impact of this boundary condition on current simulations is lim-

ited to essentially the inertia of the halo plasma, which is negligible in the overall simulation.

(2) Can these boundary conditions be improved to enhance the accuracy of the calculation

of the forces? If so, how?

Yes, appropriate plasma boundary conditions could be imposed, which would clarify the

physics issues that determine the forces, their concentration, and their duration. The elec-

trostatic sheath at the plasma-wall interface is a major determinant of the plasma boundary

conditions and could limit the current density to the ion saturation current enCs, where

Cs is the speed of sound. This would provide an important limit on the concentration of

forces. The complicated geometry of actual walls affects both the plasma and the magnetic

boundary conditions and should be represented to obtain an accurate simulation. A detailed

discussion of physical boundary conditions is contained in a longer report.

The disruption simulations that were considered in the answers to the two questions

are the TSC[1] [2], DINA [3], and M3D [4] [5] simulations. The NIMROD simulations of

disruptions [6] [7] [8] neither include the plasma boundary conditions imposed by the sheath,

nor do they have an appropriate boundary condition on the magnetic field. The NIMROD

simulations assume a perfectly conducting wall, which effectively rules out the halo currents

that are responsible for important forces.

Both the TSC and the DINA simulations assume axisymmetry, but non-axisymmetry is

an important element in the forces exerted by disrupting plasmas as emphasized by Zakharov

[9].

The empirical time scales for disruptions span the range form hundreds to hundreds-of-

thousands of shear Alfvén times, R/VA, so disrupting plasmas remain close to force balance,

~∇p = ~j × ~B, as is assumed in TSC and DINA. The published M3D simulations were fully

non-axisymmetric but were limited by their numerical procedure to a modest number of
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shear Alfvén times. Future simulations using M3D-C1 and the massively parallel version of

M3D are not expected to have this limitation.
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(Dated: March 21, 2011)

Abstract

Disruptions are considered a major obstacle to the use of tokamaks for fusion power; knowledge is

required to avoid disruptions and to mitigate their damage. Phenomena associated with disruptions

in large tokamaks take place on time scales between a hundreds and hundreds-of- thousands of shear

Alfvén times, R/VA. Inertial effects appear to play no large-scale role, and the plasma can be taken

to be in equilibrium force balance, ~j× ~B ' ~∇p, though much effort has been spent on the inclusion

of inertial effects in simulations. No codes exist that can accurately and efficiently solve force

balance while addressing the critical disruption issues, nor is there an ongoing program focused on

developing such a code. Critical simulation issues include: (1) appropriate boundary conditions

between the plasma on open field lines and the walls, (2) the capability of calculating force balance

when a non-axisymmetric current is flowing in the halo that contains tens of percent of the plasma

current, and (3) a realistic evolution of the breaking and the healing of magnetic surfaces.

PACS numbers:
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I. INTRODUCTION

The importance of avoiding disruptions in tokamaks and mitigating the damage of any

that occur is accepted in the fusion community [1–3]. When disrupting plasmas strike the

structures that surround the plasma, large forces are exerted by currents flowing along

the open field lines of the plasma halo, as well as large heat loads. The importance of

disruptions implies the need for simulations to develop the required base of knowledge, and

a number of disruption simulations have been carried out [4–12]. Section III discusses the

assumptions used in these simulations. The physical relevance of some of some of these

disruption simulations has been brought into question, most notably by Leonid Zakharov’s

concerns about the boundary conditions [13].

The head of the theory department at the Princeton Plasma Physics Laboratory, Riccardo

Betti, appointed a committee chaired by Prof. Allen Boozer to report on the appropriateness

of the boundary conditions used in disruptions simulations. That was the stimulus for the

description of existing simulations and the elements required in disruption simulations that

is given here.

In experiments, large forces on wall structures arise from halo currents, which are currents

that flow for part of their path through the halo plasma, the part of the plasma in direct

contact with the wall, and for part through the wall. The two most important parameters

for determining the total halo current are the resistance and the width of the halo. The total

force that a disruption can exert on a wall has an obvious upper bound, F = fdπavIpB,

where the poloidal circumference of vessel is 2πav, the net plasma current is Ip, the magnetic

field strength is B, and fp is a coefficient, which empirically has a value of a few tenths but

is certainly not a universal constant. See Figure (42) in [2].

The published simulations of disruptions, TSC [4, 5], DINA [6], and M3D [7, 8], make

the vessel surrounding the plasma axisymmetric and prescribe a state for the halo plasma

rather than using boundary conditions to find that state. The plasma boundary conditions

imposed in the codes are not physical. Though not explicit in the published work, the

resistance and the width of the halo plasma could be varied in TSC and DINA simulations

to obtain information on fp beyond that obtained from analytic estimates. Features not

represented in existing simulations, such as the complicated non-axisymmetric geometry of

the structures surrounding the plasma, could change fp by a factor of two or more.
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The boundary conditions used in existing simulations are not appropriate for studying

a number of important properties of the forces during disruptions. The localization and

duration of the forces, which are critical for an assessment of the potential for damage, are

dependent on a number of factors beyond the halo resistance and width.

Physical boundary conditions could be imposed on the plasma, which would clarify the

physics issues that determine the thermal loads and mechanical forces associated with disrup-

tions. These boundary conditions are in large part determined by the electrostatic sheath

that lies at the interface of the halo plasma with the surrounding structures. Section V

discusses the physical boundary conditions that determine the halo density, temperature,

current density and effective electrical resistivity.

The magnetic field boundary condition in existing simulations is that of a thin axisym-

metric wall. A resistive wall is required to represent a plasma driven into a wall in a vertical

displacement event, but in some disruption studies [9–11] the wall is taken to have zero re-

sistivity. Actual walls have a complicated geometry, which should be represented to obtain

accurate results. Section IV considers the boundary conditions on the magnetic field lines

at conducting structures.

Major non-axisymmetric disruption simulations [7–11] have used codes designed to re-

solve effects on the shear Alfvén time scale, R/VA. However, phenomena associated with

disruptions in large tokamaks take place on time scales between hundreds and hundreds-

of-thousands of shear Alfvén times, R/VA, and inertial effects appear to play no large-scale

role, cf. Section II.

An explanation for the slow evolution compared to the shear Alfvén time has been given

by Zakharov [12]. Consider a path that is formed by a magnetic field line just outside the

main plasma that is closed through the wall structure that the field line contacts. The

evolution of the magnetic flux, ∼ 1Tesla · meters2, enclosed by the path implies a loop

voltage, which is typically of order 106V in a large tokamak if the time scale for the evolution

is of order the shear Alfvén time scale, R/VA ∼ 1µs as it would be, for example, in a strongly

unstable kink. A far smaller loop voltage would cause a current to flow in the plasma and in

the wall structures along that path. In analogy to a resistive wall mode, this current slows

the evolution to a rate determined by the the resistance along the current path.

When the plasma evolution is slow compared to inertial times scales, as appears to be the

case in disruptions, equilibrium force balance, ~j × ~B ' ~∇p, holds. Stellarator equilibrium
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codes, modified to include a halo current, cf. Appendix D, could be used in disruption

simulations. Stated differently, any code that is able to accurately simulate strongly non-

axisymmetric disruptions in tokamaks could accurately calculate stellarator equilibria. The

theoretical and empirical knowledge of stellarator equilibria provide an important basis

for verifying and validating codes for non-axisymmetric disruption simulations. Section

VI discusses non-boundary conditions issues, such as the plasma force balance, that are

important to disruption simulations.

An important issue in non-axisymmetric simulations, either for tokamaks or stellarators,

is the breaking and healing of magnetic surfaces, which involves the shielding by internal

plasma currents of the magnetic fields associated with surface breaking. The physics is

discussed in Appendix A. The breaking of magnetic surfaces on a very short time scale

compared to the global skin time of the plasma, τskin ≡ a2µ0/η, involves current sheets that

have a complicated spatial structure and a width that is probably set by kinetic effects as

shown in codes written for reconnection in space plasmas. The opening of islands is part

of the plasma evolution and is difficult to follow in a realistic manner as an integral part

of the force-balance calculation. Much more efficient and accurate disruption simulations

should be possible if islands that contain a specified toroidal magnetic flux were included in

the calculation of force balance, which would allow a separation of the equilibrium and the

evolution.

The restoration of magnetic surfaces is a critical element in the formation of a dangerous

number of runaway electrons [2]. The restoration of magnetic surfaces is also a transport

problem, which can have a very different time scale from their destruction.

Disruptions frequently follow if the plasma rotation stops. The time interval between the

stopping of the plasma rotation and the thermal collapse of the plasma may be due to the

growth of islands by the Rutherford mechanism, which means without thin current sheets

and with no effects from the plasma inertia. An estimate of this time is given in Equation

(A8).

The body of the paper starts with Section II, which gives basic information about dis-

ruptions from well known reviews and ends with Section ??, which is a summary and a

discussion of possible simulations that would enhance the knowledge of tokamak disrup-

tions. The appendices at the end of the paper derive basic physics results that are needed

to understand the paper.
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II. TOKAMAK DISRUPTION REVIEWS

The best known reviews of the physics of tokamak disruptions are two articles in Nuclear

Fusion that are parts of publications on the physics basis of ITER: Section 4 of [1] and

Section 3 of [2]. Another well know discussion of disruptions is in Sections 7.7 to 7.9 as well

as Section 7.12 of the 2004 edition of Tokamaks by Wesson [3].

Four features of disrupting plasmas in these reviews are of particular importance for

defining the requirements of disruption simulations:

1. The time scales for disruption effects are long compared to the inertial time, the shear

Alfvén time τA ≡ R/VA ∼ 1µsec, so force balance, ~∇p = ~j× ~B, should be an accurate

approximation. The fastest time scale in ITER is expected to be the thermal quench

of ∼ 700µsec. The overall disruption time scale is expected to be 100′s of ms.

2. The forces on wall structures are dominated by currents in a halo plasma, which is the

plasma on magnetic field lines that intercept wall structures. The current in the halo

plasma can reach several tenths of the original plasma current and is not axisymmetric.

3. Disruptions in diverted tokamaks generally involve both a thermal quench and a ver-

tical movement of the plasma into the wall. The thermal quench and the vertical

displacement event (VDE) can occur in either order.

4. When the bulk plasma temperature is at least a few tens of electron volts, the charac-

teristic time scale for magnetic field decay in the bulk plasma is long compared to the

time for the magnetic field to penetrate the surrounding conducting structures, which

sets a time scale for the overall disruption.

The characteristic time scale for magnetic field decay in the bulk plasma is τskin ≡

a2µ0/η ≈ 45sec a2T 3/2/Zeff , where T is the temperature in keV, a the radius in meters, and

Zeff the effective charge state of the plasma. J. Bialek in an unpublished calculation has

found that the time for a horizontal field to penetrate the ITER wall is τw = 0.344s. The

plasma radius a = 2m, so τskin > τw if T & Z
2/3
eff15eV. It should be noted that the time scale

for the rearrangement of the q profile is proportional to τskin but somewhat shorter [15].

The destructive properties of the forces produced by the halo currents are determined by

their strength, their spatial concentration, which is in part determined by the width of the
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halo plasma, and their temporal duration. The impulse, which is the integral of the force

over time, can be more important than the force itself if the inertia of the wall structures is

large.

III. PUBLISHED DISRUPTION SIMULATIONS

Three types disruption simulations have been carried out: axisymmetric, non-

axisymmetric, and Zakharov’s calculations, which are dominated by plasma kinking.

A. Axisymmetric simulations

Axisymmetric simulations of disruptions have been carried out using the Tokamak Sim-

ulation Code (TSC) [4], [5] and the DINA code [6]. These simulations are carried out

assuming force balance, ~∇p = ~j × ~B, which appears valid.

The need for boundary conditions on the halo plasma is largely circumvented in these

simulations by assuming a priori values for the halo properties that dominate the simulation

results. These properties are the halo resistance and the halo width. The halo width is

set by assuming it contains a fixed fraction of the initial poloidal magnetic flux. The halo

resistance and width are adjusted until the simulation results appear similar to experiments,

but it is unclear how many features of disruptions can be consistently represented.

The boundary conditions on the magnetic field normal to conducting structures, Sec.

IV B, are correctly calculated in the TSC and DINA simulations for a thin, smooth, axisym-

metric wall. The plasma facing structures in actual tokamaks are neither axisymmetric, nor

smooth, with many protrusions. The complexities of the wall structures is expected to have

a strong effect on where the plasma strikes the wall.

B. Non-axisymmetric simulations

Actual disruptions have important effects that can only be represented in non-

axisymmetric simulations. A simple example is that when both the wall and the plasma are

axisymmetric, the part of the halo closest to the main plasma strikes the wall along a circle

of fixed major radius. If the symmetry of either is broken, the closest part of the halo to
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the main plasma strikes at a point, and the width of the halo is critical in determining the

closed current paths that encompass both the wall and the halo plasma.

1. M3D simulations

Published M3D simulations consider the wall forces produced by toroidal mode number

n = 1 kinking during a disruption [7], and the evolution of halo currents during a vertical

displacement event [8].

These studies assume a fixed low plasma temperature near the wall for magnetic field

lines started inside the original plasma separartix and assume the plasma flow to the wall is

zero. The resistivity on magnetic field lines that were outside the original separatrix is made

sufficiently high that they carry negligible current. The effective resistivity of the halo is set

by the low plasma temperature near the walls. The width of the halo is set by the region

over which magnetic field lines started inside the original separatrix strike the wall due to

the break up of the magnetic surfaces, which early in the simulations becomes essentially

complete.

The surrounding conducting structures in the M3D simulations are assumed to form a

thin axisymmetric wall.

The time step in M3D simulations is set by the shear Alfvén time, τA ≡ R/VA. For ITER,

the time τw for the magnetic field to penetrate the surrounding conducting structures satisfies

τw ∼ 105τA. As noted in Ref. [8], realistic values of τw/τA using the existing M3D code

are “completely out of the discussion, due to the prohibitive memory and computer time

resources needed.” The M3D simulations of the wall forces associated with n = 1 kinking

[7], assume τw = 10τA, and the simulations of the vertical displacement events [8] assume

τw = 100τA.

The boundary condition ~v · n̂ = 0 that was used in the M3D simulations is unphysical

[13]. In these simulations, not allowing an outflow of plasma to the wall, ~v · n̂ = 0, primarily

affects the inertia of the halo plasma, which is a subdominant issue and probably has little

effect on the results. However, the rate of plasma outflow would be very important if realistic

plasma-wall boundary conditions were used to calculate quantities such as the temperature

or the resistance of the halo plasma.

A major issue in the relevance of the published M3D simulations to the interpretation of
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experiments is having a time scale for wall penetration by the magnetic fields that is only

an order of magnitude or two longer than the shear Alvén time. In addition the extremely

rapid break up of magnetic surfaces, which is central to the calculation of the width of the

halo region, is unlikely to be representative of an ITER-like plasma, Appendix A.

2. Proposed M3D-C1 simulations

A new version of the M3D code called M3D-C1 should be able to take arbitrarily long

time steps compared to the shear Alfvén time [14]. Steven Jardin plans to use the M3D-C1

code to study disruptions by imposing a fixed halo resistivity and width as in the TSC

simulations. The imposition of a fixed halo width means a specification of the width of the

wall region struck by magnetic field lines that pass through the halo. The exact meaning of

the plasma halo is subtle when the magnetic field is stochastic at the plasma boundary; the

lengths of the field lines that strike the walls has a complicated dependence on the field line

considered as does the depth of penetration of the line into the plasma.

3. NIMROD simulations

Disruption simulations using NIMROD assume a perfectly conducting wall [9–11], which

is an inappropriate boundary condition for a plasma being driven into a wall. The NIMROD

disruption simulations focus on effects that arise from the breakup of the internal magnetic

surfaces, though it appears unlikely these effects are realistically simulated, cf. Appendix A.

C. Zakharov’s calculations of disruption forces

Leonid Zakharov has stressed the importance that plasma kinking can have to disruption

simulations [12]. In the calculations reported in [12], the forces on conducting structures

are dominated by currents flowing between the plasma and the structures due to plasma

kinking. He calls these currents Hiro currents, though here all currents flowing between

plasma and conducting structures are called halo currents.

His primary assumption involves the way kinks become unstable. This can be reduced to

an assumption about the form of the function ∆w(qa), where qa is the edge value of the safety

13



factor and ∆w is a measure of the maximum spatial separation between an axisymmetric

plasma and a conducting wall for ideal MHD stability. For disruption simulations in a hot

plasma, the function ∆w(qa) should be determined assuming that q(r) is fixed for r < a, that

the plasma radius a is a decreasing function of time, and that there is no plasma outside

the magnetic surface at r = a. The assumption that Zakharov makes is that as qa decreases

the function ∆w(qa) goes from infinity to zero as qa crosses a rational value, qa = m/n.

For qa values just below m/n, the critical wall separation ∆w is small, but non-zero. This

assumption is correct for a circular cylindrical model of an infinite aspect ratio tokamak.

The assumption can be checked for tokamak equilibria of practical interest using a standard

ideal MHD stability code. Janardhan Manickam has recently undertaken such a study using

PEST.

Taking Zakharov’s assumption about the form ∆w(qa) as correct, only currents in the

halo plasma can slow the growth of the kink below a rate determined by the Alvén time

once a critical value of the edge safety factor is reached—induced currents in the actual wall

would be too far away. Because the ideal growth rate is so rapid compared to the time scale

for the vertical displacement, the voltage in the halo plasma can be be far larger due to

kinking than due to the vertical displacement—by the ratio of the vertical displacement to

the kink time scale, ∼ 105. The current in the halo plasma due to the kinking must have a

magnitude comparable to the plasma current I times the helical displacement ξ divided by

the minor radius of the plasma to stabilize the ideal evolution. Consequently, the evolution

is determined by the current-source case, cf. Section IV A 2, of the evolution of halo currents

once kinking has begun.

If the reduction in the critical wall distance, ∆w(qa), is gradual rather than sudden as qa

becomes smaller then the development of non-axisymmtery could be qualitatively different

with a closer resemblance to the growth of the vertical instability. The preliminary result

of Manickam’s study is that the kink switches over a very small range of q(a) near q(a) = 2

from being stable with a wall at infinity to requiring an extremely closely fitting wall for

stability.

Zakharov correctly notes that, when qa ≈ m/n, that the parallel current in a cylindrical

model of a tokamak flows in the opposite direction to the equilibrium current in the spatial

region in which the plasma moves towards the wall—where the radial displacement ξ is

positive. This means the halo currents due to non-axisymmetric plasma displacements have
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a sign that is opposite to that of axisymmetric displacements.

IV. ELECTROMAGNETIC BOUNDARY CONDITIONS IN THE HALO

A. Drive for halo currents

Two types of currents flow in the conducting structures that surround a plasma: (1)

direct-induction currents, sometimes called image currents, which do not have a current

flowing between the plasma and the conducting structures, and (2) halo currents that flow

between the halo plasma and the conducting structures. The drive for the halo currents has

two limiting cases: (1) a voltage source and (2) a current source.

1. Voltage Source

A voltage-source drive for the halo current arises if the currents in the halo plasma are so

small that they do not affect the overall plasma equilibrium. Voltage-source-like behavior

was observed [16] on MAST.

The path taken by the halo currents is in part through plasma and in part through wall

structures. The voltage that drives these currents is determined by the evolution of magnetic

flux enclosed by this path. The halo current is determined by that voltage and the electrical

resistance along the path. See page 396 of Tokamaks [3]. The resistance is given by the

resistivity of the plasma and the structures as well as the sheath resistance at the interface

between the plasma and the structures. Unless the mean free path of electrons in the halo is

short, < qhR/
√
mi/me, where 2πqhR is the typical length of a field line in the halo plasma,

or there is strong electron emission by the conducting structures, cf. Appendix C 2, the

sheath resistance determines the resistance along the path, cf. Appendix C 1 b.

For the voltage-source case, the evolution is determined by the currents directly induced

in the conducting structures. These structures can be well separated from the objects that

the halo plasma strikes.

An important question is whether a sensitive structure, such as an antenna, could be

protected from the effects of halo currents by electrically insulating the structure from the

wall. When the current drive in the halo is a voltage source, then the halo current could be

blocked as long as the insulator can stand off the driving voltage.
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In principle when the drive is a voltage source, the entire halo current can be eliminated.

This occurs when the plasma facing structures are far more resistive than those somewhat

deeper in the wall. The effect could be simulated by considering a wall made of two concentric

shells with the shell closer to the plasma having a far higher resistivity.

2. Current Source

A current-source drive for the halo current arises if the halo currents are so large that

they determine the overall plasma evolution. Many tokamaks have seen halo currents with

a magnitude of a few tenths of the plasma current. See Figure (42) in [2].

Zakharov’s theory of kinks, which was discussed in the Introduction and in Section III C,

is an example of a current-source drive for the halo current. Zakharov’s theory provides a

natural explanation for the magnitude of the halo current reaching a certain fraction of the

total plasma current. This fraction is given by the degree of helical distortion of the plasma.

For the current-source case, the halo currents are essentially determined by force balance

The rate of evolution of the equilibrium is determined by the resistance felt by these cur-

rents, which flow both through the plasma halo and the surrounding structures, cf. Section

V D. The resistance is determined by the resistivity and width of the halo plasma and

the surrounding structures as well as by sheath resistance at the wall-plasma interface, cf.

Appendix C 1 b.

If the resistance to the halo currents were variable, then the voltage- source case would

be the high-resistance limit and the current-source case would be the low-resistance limit.

When the drive is a current source, the entire halo current cannot be eliminated by a

resistive layer on the wall. However, it may still be possible to insulate a sensitive structure,

so the halo current flows elsewhere.

B. Normal magnetic field evolution

The combination of Faraday’s and Ohm’s laws implies the normal magnetic field on a

conducting surface evolves as ∂ ~B · n̂/∂t = ~∇ · (ηn̂ × ~j), where η is the resistance of the

conductor, n̂ is the normal to the conductor, and ~j is the current density in the conductor.

The simplest model of the surrounding structure is a resistive shell, located on a surface
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~xs(θ, ϕ), in which ~j = ~∇κ × n̂/∆, where κ(θ, ϕ) is the current potential in the shell and

∆(θ, ϕ) is its thickness. The field evolution is determined by η/∆. By making the surface

shape ~xs(θ, ϕ) sufficiently convoluted, complicated wall structures can be represented. In

principle the only assumption of a shell model is that the thickness of the shell ∆ be small

compared to the wavenumber along the surface of the penetrating magnetic field. However

for the published simulations discussed in Sections III A and III B, the ratio η/∆ was assumed

constant and the shell axisymmetric.

For a realistic assessment of the forces to be expected from halo currents the complexities

in shape of the structure contacted by the halo plasma should be represented. This is

particularly true when the halo plasma is narrow, so a large current can flow through a

small protrusion.

V. BOUNDARY CONDITIONS ON THE HALO PLASMA

The boundary conditions between the halo plasma and the conducting structures that

surround a plasma have a central role in determining the halo density, temperature, current

density, and resistance. These boundary conditions are discussed in this section.

The plasma boundary conditions are in large part determined by the sheath that forms

at the interface between the plasma and the wall. Basic sheath physics, which is required to

understand the plasma boundary conditions, is given in Appendix C. A far more extensive

discussion of related issues can be found in [17].

A. Halo plasma density

The plasma density in the halo region is determined by transport from the main body of

the plasma, ionization of neutral gas from the walls, as well as the outflow.

The outflow velocity is expected to be along the magnetic field with a speed comparable

to

Cs ≡
√

(Te + Ti)/mi (1)

unless a cold dense plasma with a pressure equal to that of the halo plasma forms near the

strike points of open magnetic field lines, cf. Appendix B. The formation of a such cold,

dense plasma is called detachment in the divertor context.
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B. Halo Plasma Temperature

The ion and electron temperatures in the halo region are determined by the radial heat

transport from the bulk plasma and radiation—in particular impurity radiation—in addition

to the parallel heat flux to the wall structures through the plasma-wall sheath, Appendix C.

The energy flux through the plasma-wall sheath is generally written in the form qε =

γsTen0Cs, where γs ' 8 is called the sheath transmission factor, Appendix C 1 a, n0 and Te

are the density and the electron temperature on the plasma side of sheath. However, the

energy flux can be much larger, qε ∼ Ten0

√
Te/me if the wall emits electrons, cf. Appendix

C 2.

C. Halo current density

The current density in the halo can be determined by two effects: (1) the voltage along

each field line of the halo in the evolving equilibrium, or (2) the maximum allowable current

density, cf. Appendix C 1 b, which is the ion saturation current js ≡ en0Cs, when there is

no electron emission from the walls.

The current density in the halo is an important determinant of the forces that can be

exerted on components. The maximum force on a component is the current density times

the presented area of the component times the strength of the magnetic field.

The current flowing in the halo Ih can be a few tenths of the total plasma current I,

which gives a relation between the width of the halo ∆h and the spatially averaged current

density in the halo 〈j〉 = Ih/(2πa∆h). Using identities, the ratio of the spatially averaged

current density in the halo to the ion saturation current can be written as

〈j〉
en0Cs

=
1

βp

ρp
∆h

Ih
I
, (2)

where βp is the ratio of the halo plasma pressure to the local pressure of the poloidal magnetic

field, and ρp = (qhR/a)ρs is the poloidal gyroradius in the halo. As will be discussed in

Section VI A, the width of the halo is expected to lie in the range ρp . ∆h .
√
Rρp. Since

βp can be small in the halo, the ratio of the average current density to the ion saturation

current is not immediately obvious.
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D. Halo resistance

In the absence of electron emission by the walls, the resistance of the halo plasma tends

to be dominated by the sheath resistance, cf. Appendix C 1 b, when the temperature in

the halo is greater than roughly 50eV . When the sheath resistance dominates, the relation

between the current density and the voltage V across the plasma is j = en0Cs(eV/Te).

The sheath resistance is equivalent to an effective resistivity, ηsh, along magnetic field

lines of length qhR,

ηsh ≡
T

e2nCsqhR
≈ 0.9× 10−5

qhR

1020/m2

n

√
T

eV
. (3)

The ratio of the sheath resistivity to the Spitzer resistivity, ηsp ≈ ne2τe/me, where τe is

the electron collision time, is
ηsh
ηsp
≈
√
mi

me

λe
qR

. (4)

Unless the electron mean free path, λe ≡ veτe is shorter than qhR/
√
mi/me the sheath

resistance dominates. The electron mean free path is λe ≈ 1m(T/100eV )2{(1020/m2)/n}.

The effective resistivity of the halo plasma tends to be large, either due to the sheath for

T > 50eV or due to the Spitzer resistivity for T < 50eV , when compared to the resistivity

of metals; for copper η = 1.7× 10−8.

The thickness of the halo plasma assumed in the simulations discussed in Section III A

was broad compared to the thickness of the conducting walls. A thick halo compared in the

wall thickness makes the wall contribution to the halo resistivity relatively larger and makes

the resistance of the halo relatively smaller in comparison to the resistance for currents that

are directly induced in the walls.

VI. DISRUPTION ISSUES OTHER THAN BOUNDARY CONDITIONS

A. Axisymmetry of halo plasma

The symmetry of the halo plasma is an important element in determining the forces and

the heat loads on the wall. The axisymmetry of the halo plasma can be broken by two effects:

(1) the breaking of axisymmetry in the magnetic field, and (2) the breaking of axisymmetry

in the electric potential. In particular a strong electron emission in a narrow flux tube, cf.

Appendix C 2, could give concentrated forces and heat loads.
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Kinking of the overall plasma, such as that discussed by Zakaharov, Cf. Section III C,

breaks the magnetic symmetry of the halo plasma and changes the force and heat patterns

on the chamber walls.

Even if the magnetic field is perfectly axisymmetric, the electric potential in the halo

need not be. An axisymmetric magnetic field can be represented as 2π ~B = µ0G(ψp)~∇ϕ +

~∇ϕ× ~∇ψp, where ψp is the poloidal flux.

The effect of even the axisymmetric electric potential, Φ(ψp, θ), is non-trivail. A symmet-

ric electric potential must vary along the magnetic field lines to preserve quasi-neutrality in

the region in which the plasma accelerates to the speed of sound, ~B · ~∇(Φ− (Te/e) lnn) = 0,

cf. Appendix B. The implied E × B drift moves the plasma radially a distance ∆h '

(Eθ/B)(qhR/Cs) as the plasma flows along the magnetic field lines, where 2πqhR is the

length of the field lines in the halo. The poloidal electric field Eθ ' (Te/e)/a, where a is the

plasma radius, so ∆h ' (qhR/a)ρs, were ρs would be the gyroradius of ions moving with a

velocity Cs. In other words, the halo plasma must have a radial width ∆h at least as great

as the poloidal gyroradius [19].

An asymmetric potential can produce stronger effects. The most important is the possi-

bility that the heat flux can concentrate in a small tube of magnetic flux, which can heat

the footpoints of the flux tube on the walls to such a high temperature that strong thermal

emission can occur, cf. Appendix C 2. The poloidal width ∆p of such a magnetic flux tube

within the constant ψp surfaces cannot be arbitrarily narrow. The radial ambipolar electric

field Er across the halo plasma is roughly Te/e∆h, where ∆h is the radial scale of the halo

plasma. The width of the flux tube that is required in order to be consistent with the radial

electric field is ∆p ' (Er/B)(qhR/Cs) ' qhRρs/∆h. If ∆h is narrow, ∆h ' (qhR/a)ρs, as

is possible in an axisymmetric halo, then the flux tube tends to be broad, ∆p ' a, which

means little concentration of the heat flux. However, as will be seen in the next paragraph

the halo can be much broader ∆h '
√
qhRρs, which would give a similar width ∆p for the

flux tube in the constant ψp surface and a small hot spot on the wall. The existence of

narrow flux tubes that carry a disproportionate fraction of the heat could be determined by

infrared cameras, which could also estimate the area of the tubes, which is ∆p∆h.

The variations in the sheath potential due to variations, cf. Appendix C 2, in the electron

emission coefficient δe are an obvious cause of asymmetry. A variation in the potential δΦ

within a constant ψp surface on a spatial scale ∆p gives an E × B radial velocity δΦ/B∆p.
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During the time it takes the plasma to flow along the magnetic field lines to the divertor

qhR/Cs, it can be transported radially a distance ∆h ' (δΦ/B∆p)(qR/Cs). If the spatial

scales for the variation in the potential radially and within the flux surfaces are comparable

and if δΦ ' T/e, then the natural width scale for the halo is then ∆h '
√
qhRρs.

B. Evolution of the central plasma

Physics assumptions about the evolution of the central plasma affect the reliability of

disruption simulations. The evolution of the central plasma is due to two effects: (1) the

changing magnetic field produced by currents outside of the central plasma and (2) the

evolution of the plasma profiles particularly the temperature and the current profiles.

The evolution of the central plasma appears sufficiently slow that inertia is negligible in

the overall dynamics. What is required is a fast and accurate method of calculating force

balance, ~∇p = ~j× ~B that can include (1) a large force-free current flowing on the open field

lines of the plasma halo, (2) a large departure from axisymmetry, and (3) magnetic islands

enclosing a specified toroidal magnetic flux. No codes exist that can address these three

requirements, nor is there an ongoing program to develop such a code.

1. Evolution due to changes in the externally produced magnetic field

The externally produced magnetic field is due to currents in the coils and in the sur-

rounding conducting structures. Parts of the currents in the conducting structures are due

to induction and parts are due to currents flowing into the structures from the halo plasma.

The halo plasma is observed to carry a current as large as a few tenths of the original

plasma current. To represent this, the effect of the currents in the halo plasma on the overall

equilibrium must be calculated. The halo presumably has a low pressure, so the currents in

the halo are generally taken to be force free, ~j × ~B = 0, which simplifies the calculation of

their effects. Appendix D gives a method of augmenting a stellarator equilibrium code, such

as the Variational Moments Equilibrium Code (VMEC) [18], with a thin halo that carries a

force-free current.
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2. Evolution due to changes in plasma and current profiles in the central plasma

The evolution of the overall plasma current profile is slow on the time scale expected for

ITER disruptions when the plasma temperature is greater than a few tens of electron volts.

The relaxation of current sheets that prevent the opening of magnetic islands is also very

slow in a hot plasma if that relaxation is by a Rutherford relaxation. However, a rapid

opening of magnetic islands is possible, cf. Appendix A. For accuracy and for insight into

the physics, the growth of magnetic islands in a non-axisymmetric simulation code should be

treated as part of the plasma evolution and not as part of the equilibrium, which means the

force-balance calculation has to be consistent with islands that enclose a specified toroidal

magnetic flux. When a plasma resistance is included in the code used to find the equilibrium,

island widths evolve at a rate that need have no relationship with the physically correct rate.

The time scale over which magnetic surfaces are lost and over which they can be regained

may be very different. The speed with which they can be regained is a central element in

calculating the runaway electron distribution.

The temperature of the central plasma is observed to undergo a very fast thermal collapse

either near the beginning or the end of a disruption. The time scale for this thermal collapse

in ITER is expected to be approximately 700µsec, which is a few hundred times shorter

than the overall disruption time.

An explanation of the thermal collapse is a central element in the simulation of disrup-

tions. The usual explanation is the loss of magnetic surfaces—and the shortness of the

thermal quench ranks along with the voltage spike as the primary evidence for the loss of

surfaces. The time required for magnetic islands to grow sufficiently to destroy the magnetic

surfaces may be very long compared to the thermal quench time. When the loss of plasma

rotation is a precursor to a disruption, the time between the stopping of rotation and the

thermal quench may be the time required for islands to grow. A simple estimate of the re-

quired time for the growth of islands to destroy the magnetic surfaces is given in Appendix

A 5.

The primary effect of the break up of magnetic surfaces is a greatly enhanced heat trans-

port and a radial flattening of the net parallel current j||/B. The j||/B flattening must

conserve magnetic helicity when it is fast compared to the global resistive decay time,

which gives a characteristic voltage spike. When unresolved islands dominate a helicity-
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conserving evolution of the current profile [20], the parallel electric field has the form

~E · ~B = −~∇ · (λh~∇(j||/B)), where the coefficient λh is called the hyper-resistivity.

A presumably important but unstudied transport mechanism for heat, particles, and

impurities in a stochastic magnetic field is the strong but complicated E×B flow that results

from the slow spatial variation of the electric potential along the magnetic field to enforce

quasi-neutrality. In a stochastic magnetic field, neighboring magnetic field lines separate

exponentially, so the electric potential on neighboring magnetic field lines is determined by

ambipolarity requirements in widely separated spatial regions.

If the current is flattened in a region of space, then it is not necessary for an equilibrium

code to resolve the details of the trajectories of the magnetic field lines in that region because

the actual direction of the magnetic field lines, and hence the current, is changed only slightly

between stochastic and non-stochastic magnetic fields.

VII. CONCLUSIONS

Although existing simulations of disruptions do not impose physical boundary conditions

between the plasma and walls, there is no fundamental reason such boundary conditions

could not be imposed. The largest practical impediment is probably the existence of an

appropriate code for calculating plasma force balance, ~∇p = ~j × ~B.

What is needed is a fast and accurate force-balance code that can include (1) a large

force-free current flowing on the open field lines of the plasma halo, (2) a large departure

from axisymmetry, and (3) magnetic islands that enclose a specified toroidal magnetic flux.

The lack of an appropriate force-balance code is not due to a lack of physics understanding

but the absence of a program focused on this programmatic need.

Much effort has been expended on the inclusion of Alfvénic time scales in the non-

axisymmetric codes that are used for disruption studies. However, there is no evidence that

such times scales are directly relevant to the simulation of disruptions, and their inclusion

may greatly slow and complicate simulation efforts.

Any code that could reliably calculate non-axisymmetric disruption physics could reliably

calculate stellarator equilibria. The extensive data base of stellarator experiments and of

computations of stellarator equilibria provide an obvious basis for validation and verifica-

tion of non-axisymmetric codes for disruption studies. The major missing element in the
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stellarator equilibrium codes for direct relevance to disruption studies is the omission of the

halo current. This omission can be addressed in a simple way under the approximation of a

thin halo compared to the plasma radius.

The major physics uncertainties in the halo plasma involve the plasma-wall interaction

and the effects of toroidal asymmetries in the electric potential. A particular area of un-

certainty is secondary electron emission from the walls. Even axisymmetric simulations of

disruptions could be useful as a platform for building understanding of plasma-wall interac-

tions.

The major physics uncertainties in the core plasma during a disruption involve the ther-

mal quench and the destruction of magnetic surfaces. An important issue is how rapidly

can strongly-driven islands open. In the language of the reconnection community, this is

rapid reconnection in the presence of a strong guide field with periodicity in two direc-

tions. The rapid opening of an island involves thin boundary layers and kinetic effects and

probably should be studied as a stand-alone problem rather than as an element in a calcu-

lation of plasma force balance. When the magnetic field lines near the plasma edge become

stochastic, the distinction between the stochastic region and the halo plasma is subtle. For

runaway electrons to reach dangerous relativistic energies about 105 toroidal circuits are

required, which implies a certain quality of magnetic surfaces. The time scale required for

magnetic surfaces to reform after the thermal quench is distinct from the time scale for their

destruction an may be the greatest uncertainty in runaway-electron calculations.
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APPENDIX A: MAGNETIC ISLANDS IN NON-AXISYMMETRIC SIMULA-

TIONS

Disruptions studies can neither assume with assurance that magnetic islands do not have

time to open nor that the shielding currents for magnetic islands will be fully relaxed.

Let δI be the instantaneous half width of the most important island chain and δd be the
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island half width if the shielding current near the resonant rational surface of radius rr is

eliminated keeping all other currents fixed. Then island opening occurs at a relatively slow

Rutherford rate, Eq. (A6) when δI & 2kδ2
d, where k = m/rr is the wavenumber of the island.

When δI & kδ2
d/4, the island X- point can stretch into a current sheet and secondary islands

can open, which can greatly enhance the rate of island opening, cf. Section A 3. The island

growth rate can also be greatly enhanced when δI . ρs [21].

Work remains to be done to determine the rate at which islands open when the conditions

δI & 2kδ2
d and δI > ρs are not satisfied. For δI . kδ2

d/4 the rate will be determined by a thin

boundary layer with complicated spatial structure, which makes the break up of magnetic

surfaces in fusion grade plasmas too subtle to be convincingly calculated using large scale

non-axisymmetric codes such as M3D, M3D-C1, and NIMROD. Specialized studies of island

opening should be carried out instead, as in the space science community [22], [23].

1. Slab model

Central features of magnetic islands can be understood using a slab model of the magnetic

field, ~B = B0ẑ − ẑ × ~∇A(x, y), where B0 is a constant. Since ~B · ~∇A = 0, the field lines lie

in constant A surfaces.

The ẑ component of the vector potential has the form A(x, y) = A0(x) + A(x) cos(ky).

Ampere’s law in the slab is ∇2A = −µ0j, where j is the ẑ component of the current. When

the slab model is valid, the x variation of A is rapid compared to the y variation, so Ampere’s

law can be approximated as ∂2A/∂x2 = −µ0j(x, y). Near a resonance A0 = −µ0J0x
2/2,

where j(x, y) = J0(x)+δj cos(ky). If the perturbed vector potential has the form A = BI/k

at x = 0, then the constant A-surfaces split to form an island around the x = 0 surface.

The half width of this island is δI =
√

4BI/kµ0J0, and the constant BI is the x̂ component

of the magnetic field at x = 0.

2. Slab approximation to torus

The slab model is closely related to the general representation of a magnetic field with

surfaces in a torus. When the magnetic surfaces are nested, the magnetic field has the

representation 2π ~B = ~∇ψt× ~∇θ+ι(ψt)~∇ϕ× ~∇ψt. Even when a rational surface ι(ψr) = n/m
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is split by a magnetic island, non-nested magnetic surfaces can remain. That is a function

A(~x) exists such that ~B · ~∇A = 0, but A = A0(ψt) + δA(ψt, θ − nϕ/m), where the δA gives

the splitting of the magnetic surfaces,

2π ~B = ~∇ψt × ~∇(θ − nϕ/m) + ~∇× (A~∇ϕ). (A1)

The function A0(ψt) = − (dι/dψt)r (ψt−ψr)2/2, gives the shear in the rotational transform,

ι(ψt) = n/m + (dι/dψt)r(ψt − ψr), near the rational surface ι(ψr) = n/m in the absence of

splitting, δA = 0.

Equation (A1) can be placed in the form of the slab model by letting z = Rϕ, where R

is the major radius. The coordinate x is the distance from the rational surface, dψt/dx =

2πB0rr, where rr is the minor radius of the resonant surface, and the coordinate y is defined

by ky = mθ − nϕ, where k = m/rr is a wavenumber, so kŷ = (m/rr)θ̂ + (n/R)ϕ̂, which

implies ŷ ≈ θ̂+ ειϕ̂, where ε = rr/R is the inverse aspect ratio of the resonant surface. Since

~B · ~∇A = 0, the magnetic field lines lie in surfaces of constant A(x, y) = A0(x) + δA(x, y),

where A0 = −ει′B0x
2/2 and ι′ ≡ dι/dx. The quantity J0 = ει′B0/µ0.

3. Critical island width for fast reconnection

The rate an island opens was found by Rutherford [24] assuming the perturbed vector

potential A, or equivalently the normal magnetic field δBx = kA sin ky changes little across

the island. When A(x) changes little across the island of half width δI , the current that is

induced by the opening of the island [24], [25] flows in a channel of width ∼ δI , and the

vector potential can be determined using the equations for a surface current,

A(x) =
Bd

k

(
ekx − e−kx

)
+
BI

k
e−kx for x > δI

=
BI

k
ekx for x < −δI . (A2)

In the absence of the surface current, the normal magnetic field on the rational surface

would be Bd, which is called the driving field for the island, and in the presence of the

surface current, the normal field on the rational surface is BI .

The condition that the vector potential, Eq. (A2), change little across the island is that

2BdδI . BI/k, when kδI is assumed small. The ratio Bd/BI = δ2
d/δ

2
I , where δd is the width
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the island would have in the absence of the surface current. The condition for the validity

of the Rutherford rate of island opening is then

δI & 2kδ2
d. (A3)

The criterion for the validity of the Rutherford theory, Eq. (A3) is often given in the lit-

erature using the jump in the derivative of the perturbed vector potential, ∆′ ≡ [dA/dx]/A,

evaluated at x = 0, so

∆′ = 2k
δ2
d − δ2

I

δ2
I

. (A4)

Island formation can be seen from two perspectives: (1) as a tearing mode with ∆′

slowly varying [26], or (2) as a perturbed equilibrium with the driven-island width 2δd slowly

varying. Although the physics in the vicinity of the island can be same, the two perspectives

can give apparent contradictions. For example, assume δI << δd, so ∆′δI = 2kδ2
d/δI . When

∆′ is fixed, the island X-point is known to stretch into a current sheet in resistive MHD

calculations [27, 28] when island grows sufficiently that ∆′δI & 8. The reconnection rate

of magnetic field lines is enhanced by the current sheet and can be enhanced further by

the break up of the sheet by secondary islands. If driven island width is assumed constant,

then the same effect occurs when the island is sufficiently narrow that δI . kδ2
d/4. In other

words, in the tearing mode perspective, rapid reconnection occurs when the island is too

wide, δI & 8/∆′. In the driven-island perspective, rapid reconnection occurs when the island

is too narrow

δI . kδ2
d/4. (A5)

The criterion of δI . kδ2
d/4 is a necessary condition for rapid growth of an island, at least

when δI & ρs so the fluid picture of reconnection is valid.

Linear resistive MHD, which gives a time scale τ
2/5
A τ

3/5
skin, has a current channel far thinner

than the ion gyroradius in large tokamaks, cf. p. 323 of [3]. Non-linear ideal MHD implies

the width of the overall current layer near the rational surface cannot become narrower [29]

than kδ2
d although part of that current flows in a delta function distribution.

A signature of rapid reconnection is the generation of resonant harmonics, which might be

detected in an experiment by external magnetic measurements. In Rutherford reconnection,

the current at the rational surface ι = n0/m0 produces an almost pure Fourier (m0, n0)

magnetic field in response [25]. However, the elongation of the X-point into a singular surface
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when δI & kδ2
d/4 implies the shielding current produces resonant harmonics (2m0, 2n0),

(3m0, 3n0), etc.

4. Rutherford growth rate

The rate at which an island grows when δI << 2kδ2
d was found approximately by Ruther-

ford [24]. An exact treatment [25] yields

dδ3
I

dt
= cRk

η

µ0

(
δ2
d − δ2

I

)
, where cR = 1.22 · · · (A6)

The form of Rutherford’s equation is easily found under the assumption the current near

the resonant surface flows in a channel of width 2δI . Ampere’s law, d2A/dx2 = −µ0δj(x),

so µ0〈δj〉 ' −(BI/k)∆′/2δI = −BI(δ
2
d − δ2

I )/δ
2
I . Ohm’s law is −∂A/∂t = ηδj, so dδ2

I/dt =

(η/µ0)k(δ2
d − δ2

I )/δI , which yields Equation (A6) but with a coefficient cR = 3/2 instead of

1.22 · · · .

5. Transition to a stochastic magnetic field

Magnetic field lines become stochastic roughly when islands from neighboring rational

surfaces overlap, which is called the Chirikov criterion [30]. The critical island half width δc

for stochasticity is then n/m+ 2ι′δc = n/(m− 1), which implies 2sιδc = rr/(m− 1), where

the shear sι ≡ |d ln ι/d ln r|. The Chirikov overlap parameter is

SI ≡ 2ksιδI ; (A7)

the field lines are stochastic if SI & 1.

If the islands grow at the Rutherford rate, Eq. (A6), then dS3
I /dt = (S2

d −S2
I )/τR , where

Sd is the Chirikov overlap parameter calculated with the driven island half-width δd rather

than the actual half-width δI . The characteristic time required for the islands to grow at

the Rutherford rate is

τ
R

=
τskin

2m2sιcR
, (A8)

the resistive skin time is τskin ≡ r2
rµ0/η, and the Chirikov criterion for the driven islands

of half width δd is Sd. The time required to reach field line stochasticity is approximately
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τ
R
/S2

d for Sd significantly larger than unity. More precisely the time t(SI) required to reach

a specific Chirikov criterion with fixed Sd is

t(SI) = 3τ
R
Sd

{
ln

(√
1 + SI/Sd
1− SI/Sd

)
− SI
Sd

}
. (A9)

The condition that island growth be consistent with the Rutherford rate, δI ' 2kδ2
d, is

equivalent to SI ' S2
d/sι. When the islands are driven to opening all the way to stochasticity,

the validity of the Rutherford theory is only marginally satisfied.

The condition for rapid reconnection Equation (A5) all the way to a stochastic field

SI ' 1 is Sd & 2
√
sι. This condition is of interest in the theory of the control of edge

localized modes (ELM’s) by non-axisymmetric magnetic fields. The condition says the drive

for islands, as calculated by a code such as the Ideal Perturbed Equilibrium Code (IPEC)

[31], should satisfy Sd & 2
√
sι and not just Sd & 1 for a rapid reconnection, reconnection

that is too rapid to be easily impeded by effects such as plasma rotation.

APPENDIX B: SONIC FLOW CONDITION

The characteristic speed for a plasma to flow into a wall is the sound speed, which is

Cs =
√

(Ti + Te)/mi for isothermal ions and electrons. The derivation of this speed is

simple for a narrow halo plasma.

Force balance in the halo is ρ~v · ~∇~v+ ~∇p = ~j× ~B with ~∇· (ρ~v) = 0 and ρ = mn the mass

density of the plasma. The plasma flow is rapid along the magnetic field. Let ρ~v = Γb̂+ρ~v⊥,

then ~∇ · (ρ~v) = 0 implies

~B · ~∇
(

Γ

B

)
= S, (B1)

where the source S ≡ −~∇·(ρ~v⊥). Equation (B1) gives the flux of plasma Γ along a magnetic

field line.

Since the flow is essentially parallel to the magnetic field, the parallel component of force

balance is Γb̂ · ~∇(Γ/ρ) + b̂ · ~∇p = 0, which can be written as

Γ(`)
d(Γ/ρ)

d`
+
dp

d`
= 0, (B2)

where d/d` ≡ b̂ · ~∇ and ` is the distance along a magnetic field line.
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If the density ρ(`) is used as the independent variable,

dΓ2

dρ
= −2ρ

(
C2
s −

Γ2

ρ2

)
, (B3)

where C2
s ≡ dp/dρ. That is, the effective sound speed is C2

s ≡ (dp/d`)/(dρ/d`). Equation

(B3) is well known from the theory of nozzles in fluid mechanics and says the density drops

as the flux Γ increases when the flow starts with zero speed, Γ/ρ = 0.

The maximum flux Γ that can be obtained is Γ = ρCs, which implies a flow at the speed of

sound Cs. If the wall exerts a sufficiently small back pressure, then the plasma flow will reach

the sonic rate as it flows down the field lines. In the other limit in which the back pressure

pb keeps the flow slow compared to the sound speed, the flux reaches Γ2 = 2ρ0(p0− pb) with

p0 the pressure where Γ = 0.

APPENDIX C: PLASMA-WALL SHEATH

To preserve the quasineutrality of the overall plasma an electrostatic structure, called a

sheath, must form at the interface between a plasma and a wall in which there is a jump

Φs in the electrostatic potential. If the magnetic field lines have a normal incidence to the

wall, the spatial scale of the sheath is the Debye length, but the sheath is thicker when the

field lines have a grazing incidence [32].

1. Classical sheath theory

The classical theory of the interface between a plasma and a wall assumes no emission of

electrons by the wall. The effects of electron emission are considered in Appendix C 2.

The jump in the electric potential across the sheath, Φs, retards the flow of the electrons

by preventing electrons from leaving the plasma that enter the sheath with a velocity along

the magnetic field that satisfies 1
2
mev

2
|| < eΦs. Assuming the electron distribution function

is Maxwellian and eΦs/Te is significantly greater than unity, the electron flux to the wall is

given by

Γe =

∫∞
0
v||e
−mev2||/2Tedv||∫∞

−∞ e
−mev2||/2Tedv||

n0e
−eΦs/Te

=

√
Te

2πme

n0e
−eΦs/Te , (C1)
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where n0 is the density on the plasma side of the sheath. The ion flux is Γi = n0Cs, where

Cs =
√

(Te + Ti)/mi for isothermal ions and electrons, so ambipolarity, Γe = Γi, implies

Φs =
Te
e

ln

(√
mi

2πme

Te
Te + Ti

)
' 3

Te
e
. (C2)

a. Sheath energy transmission

The energy flux parallel to the magnetic field through the plasma- wall sheath has the

form qε = γsTen0Cs where the sheath transmission factor γs ≈ 8. The energy flux to the

wall can be much larger if there is a strong emission of electrons from the wall structures,

cf. Appendix C 2.

The energy flux across the sheath from the electrons is given by

qεe =

∫∞
0

mev2||
2
v||e
−mev2||/2Tedv||∫∞

−∞ e
−mev2||/2Tedv||

n0e
−eΦs/Te +

+(Te + eΦs)Γe

= (2Te + eΦs)Γe. (C3)

Each electron that leaves must have at least a parallel energy of eΦs as well as its transverse

energy, which is Te. The integral in the first line of Equation (C3) is the parallel energy flux

carried out by electrons with a parallel energy above eΦs. The energy flux coming from the

ions is qεi = (5
2
Ti +miC

2
s/2)Γi, which gives qεi = (3Ti + 1

2
Te)Γi.

Although the energy eΦs comes out of the electrons, the ions passing through the sheath

are accelerated by this potential and strike the wall with an enhanced energy, which affects

their interaction with the wall, in particular the sputtering.

b. Sheath resistance and limit on the current density

The current density in the halo region is limited by the ion saturation current,

enCs ≈
0.2MA

m2

n

1020/m3

√
T

eV
, (C4)

unless there is a strong emission of electrons from the wall structures, cf. Appendix C 2.
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The current density between the plasma and the wall, j = e(Γi − Γe), is

j = en0

(
Cs −

√
Te

2πme

e−eΦs/Te

)
, (C5)

when there is no emission of electrons by the wall. The ions flow to the wall at the mass

flow speed, Cs, and the electrons flow to the wall at the speed of a half-Maxwellian but

with their density at the wall reduced by the electric potential Φs in the plasma relative to

the wall. The maximum density for a current flowing into the wall is en0Cs, for that is the

current density when eΦs/Te →∞. If the potential Φs deviates by a small amount V from

its ambipolar, j = 0, value then

j = en0Cs
eV

Te
, (C6)

so the total current between the plasma and the wall has the form V = IRs where the sheath

resistance

Rs =
Te

Ahn0e2Cs
(C7)

and Ah is the presented area of the halo plasma on the walls.

A halo current can also be driven without a voltage across the plasma if the sheath

potential differs at the two ends of the field line. Though of possible importance, this is not

discussed further in this paper.

2. Electron emission by walls

When wall structures can emit electrons, the effective electron flux is enhanced by a

factor 1/(1− δe), where δe is the electron emission coefficient, the ratio of the emitted to the

incoming electrons. When this emission is weak, δe << 1, the sheath potential is changed

by δΦs = −δeΦs. Strong electron emission, δe ≥ 1, can produce extremely large localized

heating and forces on wall structures.

Two potentially important causes of electron emission are secondary emission and thermal

emission. In secondary emission an incoming electron knocks an electron out of the structure.

Secondary emission coefficients, cf. Section 3.2 of Reference [17], are usually less than unity

if the energy of the exiting electrons is significantly lower than 500ev. Thermal emission of

electrons by an object at a temperature T is given by the Richardson equation

j =
em

2π2~3
T 2e−w/T , (C8)
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where w is the work function of the wall material, which is typically about 3eV . At 1500K,

this formula gives j = 2.7 × 1012 exp(−w/T ) in Amperes per meter squared. Thermal

emission is enormous unless exp(w/T ) & 106, or w & 14T , which is satisfied for a work

function of 3eV if T . 2.5K.

With strong emission, δe > 1, the current density is limited by space charge. Emitted

electrons move from the wall only if ~E · n̂ ≤ 0 and leave the wall as fast as they are emitted if

~E · n̂ > 0. Consequently, the strong emission limit is characterized by ~E · n̂ = 0 on the wall.

The Child- Langmuir theory assumes the emitted electrons are collisionless, so they conserve

their flux nv and their energy mev
2/2− eΦ. The boundary conditions at the wall are v → 0

and dΦ/dx = 0. With these assumptions plus Poisson’s equation d2Φ/dx2 = en/ε0, the

Child-Langmuir law can be derived as jCL = 4ε0
√

2e/meV
3/2/9L2, where L is the distance

over which the electrons are accelerated by the voltage V . The electron density drops with

increasing L as n = (4/9L2)(ε0V/e), so at the distance L at which the electron density equals

the plasma density n0, the current density predicted by the Child-Langmuir law is

jCL =

√
eV

T
en0ve. (C9)

When strong electron emission from the wall structures occurs, the heat flux can be

limited by the electron thermal speed rather than Cs, which means it is a factor of
√
mi/me

larger. The current density can be as large as en0ve/
√

2π, which is about 24 times larger

than the ion saturation current.

APPENDIX D: HALO MODEL

A halo can be fitted to a non-axisymmetric, fixed-boundary equilibrium code, such as

VMEC [18], if the halo region is assumed to be far thinner than the plasma radius.

The boundary of the plasma in the fixed boundary equilibrium code, ~xp(θ, ϕ), is also

the inner boundary of the halo. The coordinate system that will be used is ~x(r, θ, ϕ) =

~xp(θ, ϕ) + (r − a)n̂ where the unit vector n̂ ∝ (∂~xp/∂θ)× (∂~xp/∂ϕ). The Jacobian of these

coordinates satisfies J = |(∂~xp/∂θ)× (∂~xp/∂ϕ)|.

The magnetic field lies in constant r surfaces, so

~B = ~∇× (A~∇r) = − 1

J
∂A

∂θ

∂~x

∂ϕ
+

1

J
∂A

∂ϕ

∂~x

∂θ
. (D1)
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On the boundary of halo with the main plasma, the vector potential has the form

Ap(θ, ϕ) =

(
dψp
dr

)
a

θ

2π
−
(
dψt
dr

)
a

(
ϕ

2π
+

λ

2π

)
, (D2)

where λ is a single valued function of θ and ϕ, (dψp/dr)a is the radial derivative of the

poloidal flux, and (dψt/dr)a is the radial derivative of the toroidal magnetic flux at the

plasma boundary. Using this expression for the vector potential, the magnetic field of

Equation (D1) can be written as 2π ~B = ~∇ψt × ~∇(θ + λ) + ~∇ϕ× ~∇ψp on the surface of the

main plasma.

To calculate the curl of the magnetic field, the covariant representation of ~B is required.

Since ~B · (∂~xs/∂r) = 0, ~B = Bθ
~∇θ +Bϕ

~∇ϕ, where

Bθ ≡ ~B · ∂~xs
∂θ

=
gϕϕ
J

∂A

∂ϕ
− gθϕ
J

∂A

∂θ

Bϕ ≡ ~B · ∂~xs
∂θ

=
gθϕ
J

∂A

∂ϕ
− gθθ
J
∂A

∂θ
(D3)

The metric tensor gθϕ ≡ (∂~x/∂θ) · (∂~x/∂θ) etc. obeys the identity gθθgϕϕ − g2
θϕ = J 2.

The radial, or ~j · ~∇r = 0, component of Ampere’s law implies ∂Bθ/∂ϕ = ∂Bϕ/∂θ.

Therefore, the vector potential must satisfy a Laplacian-like equation, L[A] = 0, within the

surface

L[A] ≡ ∂

∂θ

(
gθθ
J
∂A

∂θ
− gθϕ
J

∂A

∂ϕ

)
+

∂

∂ϕ

(
gϕϕ
J

∂A

∂ϕ
− gϕθ
J

∂A

∂θ

)
= 0. (D4)

The current is force free, so ~∇ × ~B = k ~B, where k ≡ µ0j||/B. Dotting both sides with

~∇θ, and using k ~B · ~∇θ = k(∂A/∂ϕ)/J and (~∇× ~B) · ~∇θ = −(∂Bϕ/∂r)/J , one obtains the

first equation of the set

∂Bϕ

∂r
= −k∂A

∂ϕ
;

∂Bθ

∂r
= −k∂A

∂θ
. (D5)

The second equation is obtained by dotting ~∇ × ~B = k ~B with ~∇ϕ. Assuming the metric

tensor is independent of radius and using Equation (D3),

gθϕ
J

∂A′

∂ϕ
− gθθ
J
∂A′

∂θ
= −k∂A

∂ϕ

gϕϕ
J

∂A′

∂ϕ
− gθϕ
J

∂A′

∂θ
= −k∂A

∂θ
, (D6)
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where the prime is a radial derivative. These two equations can be rewritten as

∂A′

∂θ
= k

(
gϕϕ
J

∂A

∂ϕ
− gϕθ
J

∂A

∂θ

)
∂A′

∂ϕ
= −k

(
gθθ
J
∂A

∂θ
− gθϕ
J

∂A

∂ϕ

)
(D7)

and have a consistency constraint: the θ derivative of the second must equal the ϕ derivative

of the first. This constraint is equivalent to Equation (D4).

Assuming k is independent of radius, an algebraic elimination of the ∂A/∂θ terms in

Equation (D6) implies ∂A′′/∂ϕ = −k2∂A/∂ϕ using the identity (gθθgϕϕ − g2
θϕ)/J 2 = 1.

Therefore Ampere’s law is
∂2A

∂r2
= −k2A. (D8)

Letting x = r − a, the general solution is

A = Ap cos(kx) + Ad sin(kx)

A′ = −kAp sin(kx) + kAd cos(kx), (D9)

where Ap(θ, ϕ) is the vector potential on the plasma surface and kAd(θ, ϕ) is the radial

derivative of the vector potential as the main plasma is approached within the halo. Equation

(D7) implies

∂Ad
∂θ

=
gϕϕ
J

∂Ap
∂ϕ
− gϕθ
J

∂Ap
∂θ

∂Ad
∂ϕ

= −gθθ
J
∂Ap
∂θ

+
gθϕ
J

∂Ap
∂ϕ

. (D10)
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