Third Year Status

on

SciDAC Center for Gyrokinetic Particle Simulation of Turbulence Transport in Burning Plasmas

> W. W. Lee Princeton Plasma Physics Laboratory Princeton, NJ 08543

> > Presented at PSACI PAC Meeting June 2007

Outline

- Center Activities
 - -- Fall Meeting
 - -- Invited talks and Publications
- Code Development
- Code Validation
- Physics Investigations

UCDAVIS

- The noise and growing weight issues
- Conclusions

Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas

UCLA Colorado

FALL MEETING

SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas

Room 407-408 Philadelphia Marriot Hotel, Philadelphia, PA

November 2, 2006

7:00P Lee - Opening remarks

7:10P Wang - Shaped plasma simulations and future plans

7:25P Ethier - GTC performance and optimization issues

7:40P Lin - Status and plan in global GTC turbulence simulation

7:55P Nishimura - Shear Alfven wave studies in electromagnetic global gyrokinetic simulation of tokamak plasmas

8:10P Parker - ETG Convergence Studies, GEM Team status

8:25P Y. Chen - The growing weight problem

8:40P Rewoldt -- Application of GEM code for experimentally-realistic tokamak cases

8:55P Hahm - Theory team status and plan

9:10P Coffee break

- 9:25P Holod Particle noise-driven flux in GTC simulations
- 9:35P Xiao Theory of zonal flow residual level with arbitrary wavelength and collisionality
- 9:45P Jenkins Particle noise issues
- 9:55P Diamond Concluding remarks
- 10:05P Klasky Data Management, Visualization and MPP issues

10:15P Plans for re-competition

11:15P Recess

Irvine UCLA Colorado

Invited Talks and Review Papers

• Wang, W.X., T.S. Hahm, G. Rewoldt, J. Manickam and W.M. Tang, "Gyrokinetic studies of Nonlocal Properties of Turbulence-driven and Neoclassical Transport", 21th IAEA Conference on Plasma Physics and Controlled Nuclear Fusion Research, (Chengdu, China, 2006)

• Lee, W.W., S. Ethier, T. G. Jenkins, W. X. Wang, J. L. V. Lewandowski, G. Rewoldt, W. M. Tang, S. E. Parker, Y. Chen, and Z.Lin, 21th IAEA Conference on Plasma Physics and Controlled Nuclear Fusion Research, (Chengdu, China, 2006)

• Lee, W.W., S. Ethier, W. X. Wang, W. M. Tang and S. Klasky, "Gyrokinetic particle simulation of fusion plasmas: path to petascale computing", Presented at SciDAC 2006, Denver CO., J. of Phys.: Conference Series **46**, 73 (2006).

• Brizard, A.J., and T.S. Hahm, "Foundations of Nonlinear Gyrokinetic Theory", Rev. Mod. Phys. **79**, 421 (2007).

Publications

Review of Modern Physics: 1 Physics of Plasmas: 11 published, 2 submitted Journal of Computational Physics: 2 published IAEA: 4 published Other Journals: 3 published Conference Proceedings: 11 published

Code Development

- GTS
 - -- A global code for turbulence transport simulations
 - -- Shaped plasma in general geometry interface with TRANSP, JSOLVER and ESC
 - -- Electron dynamics based on the split-weight scheme: delta $\delta h,$ non-adiabatic part of δf
 - -- GK Poisson's equation is solved simultaneously for zonal flows and perturbed potentials

GTS

• GTC

- -- Adiabatic electron version for high performance computing
- -- Electrostatic electron dynamics based on the hybrid scheme
- -- Electromagnetic electron dynamics based on the hybrid scheme: $|\omega/k_{\parallel}v_{\parallel}|\ll 1$
- GTC-neo -- For neoclassical transport simulations in
 - -- General toroidal geometry
 - -- Fully operational collision operators
- GEM
 - -- A wedge code with multi-ion species for turbulence and gyrokinetic MHD simulations
 - -- Shaped plasma in general geometry with interface with TRANSP and JSOLVER
- Object Oriented GTC framework -- Based on Fortran-90 to facilitate team coding

GEM

GTC performance on MPP platforms aiming for ITER-size Plasmas

GTC is very portable, scalable and efficient on both cache-based and vector-parallel MPPs.
20 TeraFlops/sec performance has been achieved with 74 billion particles on Jaguar (ORNL) with 22,976 cores and 2.8 times faster than with 32,786 BG/L cores

Compute Power of the Gyrokinetic Toroidal Code

Number of particles (in million) moved 1 step in 1 second

Number of processors

S. Ethier, PPPL, Apr. 2007

Numerical Considerations for Gyrokinetic Simulation Codes

- Flux Tube codes are valid for large (m, n) modes
- Wedge codes include radial variations and some are valid only for large (m,n) modes
- Global codes are valid for any (m, n) modes and are truly five dimensional
- Physics of turbulence transport alone dictates the the usefulness of these codes, i.e.,
 - -- are radial modes local or global?
 - -- does energy cascade to lower or higher (m, n) modes ?
 - -- how about enstrophy, to higher (m,n) modes?
 - -- perpendicular spatial resolution: ion gyroradius, electron skin depth or electron gyroradius?
 - -- parallel spatial resolution: field line following coordinates?
 - -- velocity space resolution?
 - $\sqrt{\text{trapped particle dynamics}}$
 - $\sqrt{\text{wave-particle interactions}}$
 - $\sqrt{artificial dissipation}$
 - $\sqrt{\text{discrete particle noise}}$
 - -- collisions: can neoclaasical transport be simulated?

General Geometry GTS W. X. Wang [PoP '06]

$E \times B$ Shear Layer Blocks Turbulence Spreading

- $\omega_{E \times B}^{max} = 0$: turbulence widely spreads to fill up big area in both directions
- $\omega_{E \times B}^{max} = 0.13 \frac{c_s}{a}$: inward spreading partially blocked
- $\omega_{E \times B}^{max} = 0.26 \ c_s/a$: almost completely blocked
- Shear layer not only reduces turbulence spreading extension but also slows down the spreading
- Turbulence level not increased in source region as spreading blocked
- Outward spreading is not affected

Recent Development of GTC-S and NSTX-physics-oriented Algorithm

Generalized Poisson Solver to solve integral equation for total potential Φ = δΦ + ⟨Φ⟩ using superLU/PETSc previous solver solves δΦ and ⟨Φ⟩ separately using approximations: i) Pade approximation Γ₀(b) ≡ I₀(b)e^{-b} ≈ 1/(1 + b) and ii) ⟨Φ⟩ ≈ ⟨Φ⟩ - not justified for NSTX geometry!

General Geometry GTC-neo W. X. Wang [PoP, '06]

Comparisons of GEM with NSTX: Energy Flux Measurements

 First results - does not include parallel ion equilibrium flows! (which are transonic or supersonic)

- 128 particles / species / grid cell, 3 ion species, experimental $\boldsymbol{\beta}$

Colorado

G. Rewoldt and Y. Chen

ITG simulations with for adiabatic electrons based on Cyclone-based parameters using GTC

• Steady state fluxes remain essentially the same with or without zonal flows and with or without parallel velocity space nonlinearity for a small simulation volume.

• But, these nonlinearities become progressively important for larger systems

ITG simulations using GTC (cont.)

Both zonal flows and velocity-space nonlinearity are essential for maintaining steady state flux for an even larger system (a/ ρ = 500).

• There is no steady state without these nonlinearities in large scale global simulations. Lee, Ethier and Kolesnikov

Conservation properties of ITG simulation (20 particles/cell)

Lee, Ethier and Kolesnikov

 χ_i is enhanced above the adiabatic electron level (with NLV)

• TEM simulation with collisionless electrons using GEM with the split-weight scheme [Lang, Parker and Chen]

GTC-EM : fluid electron model

Mode structures for (a) the electrostatic potential and (b) the vector potential Growth rates and real frequencies for finite-beta modified ITG modes

Nishimura, Lin and Wang

Momentum Pinch from Magnetic Curvature

Two different mechanisms for non-diffusive momentum flux

$m_i B^* dv_{\parallel} / dt = -(eB + m_i cv_{\parallel} \nabla \times \hat{b}) \cdot \nabla \delta \phi$

	Gurcan, Diamond, Hahm, Singh [Phys. Plasmas 14, 042306 '07]	Hahm, Diamond, Gurcan, Rewoldt [Phys. Plasmas, June '07]
Net acceleration of parallel flow:	$-e_i B \nabla_{\parallel} \delta \phi$	$-m_i c \mathbf{v}_{\parallel} \nabla \times \hat{b} \cdot \nabla \delta \phi$
Symmetry-breaking:	k over the spectral width	curvature drift $\sim \hat{b} \times (\hat{b} \cdot \nabla) \hat{b}$ over the flux surface
Provided by:	mean E x B shear shifting fluctuations radially	ballooning mode structure causing finite net parallel acceleration over the flux surface
Main consequence:	residual stress driven by $\mathbf{E} \mathbf{x} \mathbf{B}$ shear (or $\nabla P_i/n_i$ and velocity shear via radial force balance)	convective pinch-like term (the TEP-like piece is insensitive to mode details)
Most likely to be relevant for:	plasmas with strong ExB shear, incl. H-mode, ITB's	pinch is likely to be inward for OH and electron-heated plasmas

Hahm et al.

Discrete particle noise in particle-in-cell simulations of plasma microturbulence

[Nevins, Hammett, Dimits, Dorland, and Shumaker, PoP 12, 122305 (2005)]

$$\{1 + [1 - \Gamma_0(k_\perp^2 \rho_e^2)]\} \frac{e\phi_{\mathbf{k}}}{T} = \frac{S_G(\mathbf{k})}{N_p} \sum_{\mathbf{p}} S(\mathbf{k}_{\mathbf{p}}) \sum_i w_i J_o(k_\perp \rho_i)$$
$$\times \exp(-i\mathbf{k}_{\mathbf{p}} \cdot \mathbf{x}_i), \qquad (1)$$

$$\left\langle \left| \frac{e\phi}{T} \right|^2 \right\rangle = \sum_{\mathbf{k}} \left\langle \left| \frac{e\phi_{\mathbf{k}}}{T} \right|^2 \right\rangle = \frac{\langle w^2 \rangle}{n_p V_{\text{shield}}},\tag{8}$$

$$V_{\text{shield}}^{(N)} = \left\{ \frac{1}{(2\pi)^3} \int d^3 \mathbf{k} \frac{S_G^2 \Gamma_0(k_\perp^2 \rho_e^2)}{[2 - \Gamma_0(k_\perp^2 \rho_e^2)]^2} \right\}^{-1}, \tag{9}$$

$$V_{\text{shield}}^{(H)} \equiv \left\{ \frac{1}{(2\pi)^3} \int d^3 \mathbf{k} \frac{S_G^2 \Gamma_0(k_\perp^2 \rho_e^2)}{(2 - \Gamma_0)[2 - (1 - S_G d_{\parallel})\Gamma_0]} \right\}^{-1}.$$
(10)

• Since dynamic plasma response is not included in the calculation, it is difficult to assess the effect of the shielding volume noise on long wavelength modes.

Discrete Particle Noise for Equilibrium Plasmas

• Fluctuation-Dissipation Theorem

$$L|E(k,\omega)|^2/8\pi = -(T/\omega)Im(1/\epsilon)$$

• Fluctuations per k-mode

$$L|E(k)|^{2}/8\pi = \int (d\omega/2\pi)L|E(k,\omega)|^{2}/8\pi = (T/2)[1/\epsilon(k,\omega=\infty) - 1/\epsilon(k,\omega=0)].$$

Figure 4.1: Contour integration

(John Reynders, PhD thesis, Princeton University, 1992)

Fluctuation Dissipation Theorem applied to a nonlinearly saturated driven system

$$1 + k_{\perp}^2 - i\sqrt{\frac{\pi}{2}} \frac{\omega_* - \omega}{k_{\parallel} v_{te}} \left[1 - \frac{k_{\perp}^4}{\gamma_l^2} |\phi|^2 \right] - \frac{\omega_*}{\omega} = 0$$

• Noise level for high frequency modes

$$\left|\frac{e\Phi}{T_e}\right|^2_{HF-noise} = \frac{\langle w^2 \rangle}{Nk_{\perp}^2\rho_s^2},$$

• Noise level for low frequency modes

$$\left|\frac{e\Phi}{T_e}\right|_{LF-noise}^2 = \frac{\langle w^2 \rangle}{N(1+k_{\perp}^2\rho_s^2)}$$

• Nonlinear saturation amplitude

$$\left|\frac{e\Phi}{T_e}\right|_{NL}^2 = \frac{\gamma_L/\Omega_i}{2k_x k_y \rho_s^2}$$

Discrete Particle Noise in Nonlinearly Saturated Plasmas

2D drift wave simulations with N = 32K, 500K, 1M

- high frequency noise decreases with particle number,
- saturation level is independent of particle number,
- background change is small.

[Jenkins and Lee, PoP '07]

ETG simulation using GTC: Noise-driven transport vs. fluctuation-driven transport

Electron transport in ETG simulation: total (solid line), noise driven contribution estimated by scramble test (dashed line) and estimated from δf weight (doted line).

[Holod and Lin, PoP '07]

Entropy conservation in ITG turbulence:

velocity-space nonlinearity, collisions and numerical noise & dissipation in steady state

$$\frac{\partial}{\partial t} \langle \int \frac{\delta f_i^2}{F_{0i}} dv_{\parallel} + \tau \phi^2 + \tau |\nabla_{\perp} \phi|^2 \rangle + \langle \tau \frac{\partial \phi}{\partial x_{\parallel}} \int v_{\parallel} \frac{\delta f_i^2}{F_{0i}} dv_{\parallel} + 2\tau \nu \int \frac{dv_{\parallel}}{F_{0i}} \left(\frac{\partial \delta f_i}{\partial v_{\parallel} / v_{ti}} + \frac{v_{\parallel}}{v_{ti}} \delta f_i \right)^2 \rangle = \kappa_{Ti} \langle Q_{ix} \rangle$$

$$\frac{\text{Monotonic}}{\text{increase in steady state}} \quad \text{Velocity Space} \\ \text{time} \quad \text{Nonlinearity} \quad \text{Collisional and/or numerical} \\ \tau \equiv T_e/T_i \quad \kappa_{Ti} \equiv -dlnT_{0i}/dx \quad \langle \cdots \rangle \equiv \int d\mathbf{x}/V \quad \text{Ime} \quad \mathbf{x} = \int d\mathbf{x}/V$$

• Coarse graining in velocity space has to be taken with great care [Parker and Chen '06, Watanabe and Sugama '06]

Resetting particle weights on a phase space grid periodically solves the so-called growing weight problem: no re-setting (black) vs. resetting (green and red)

[Chen and Parker]

Colorado

Two dimensional grid domain decomposition on GTC [Adams, Ethier, Wichmann]

• It is important for simulating ITER-size devices

• Scaling inefficiencies point to large numbers of Translation Lookaside Buffer (TLB) misses on some processes on XT4/3 with larger grids.

Visualization

[Klasky, ORNL; Ethier, Wang, PPPL]

[Klasky, ORNL; Ethier, Wang, PPPL]

[Ma, UC-Davis]

UCDAVIS

Conclusions

- It has been an exciting three years
- Too bad that we can't keep the same team together for the next three years
- The PPPL team's work on
 - -- GTC performance on MPP
 - -- GTS and GTC-Neo and their V&V work
 - -- PNL and noise
 - -- Theory
- The UCI team's work on
 - -- ETG, TEM and noise using GTC
 - -- EM capability for GTC
- The Colorado team's work on
 - -- GEM for TEM
 - -- Particle continuum method
 - -- EM capability in GEM and the V&V work
- The SAPP team on
 - -- Solvers
 - -- Visualization
 - -- Data management

Future Directions

- Verification and & Validation
- Electromagnetic physics in GTS
- ITER simulation capabilities
- Integrated simulation: Heating, Turbulence, MHD, Transport