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The effects of n = 1 nonaxisymmetric perturbations on a tokamak poloidal divertor are 
described. Despite the existence of a region of chaotic field line trajectories outside the last 
closed flux surface, the footprint of the trajectories on the divertor plates is found to be largely 
coherent, forming a spiral structure. At a fixed toroidal angle, the footprint exhibits a 
bifurcation similar to that seen experimentally on DIH-D [ Nucl. Fusion 28,902 ( 1988) 1. For 
field errors of the magnitude that exist in present-day tokamaks, the width of the 
nonaxisymmetric structure in the divertor footprint is comparable to the width of the scrape- 
off layer. 

1. INTRODUCTION 
Poloidal divertors are a common feature of large pres- 

ent-day tokamak devices, and are proposed in the BPX’ and 
ITER’ designs. Conventional modeling of divertor effects 
assumes axisymmetry.3 In this paper we study the effects of 
small nonaxisymmetric perturbations on the structure of a 
simple divertor. We find that perturbation amplitudes typi- 
cal of error fields in existing and contemplated tokamaks 
produce large nonaxisymmetries that should be taken into 
account in realistic divertor modeling. We will see that the 
nonaxisymmetry shows both chaotic and coherent features. 

We are ultimately interested in issues related to heat flux 
deposition at the divertor plates. Since particle motion is 
predominantly parallel to the magnetic field lines, it is clear 
that the magnetic field line trajectories are a strong determi- 
nant of the heat deposition. In this paper, we concentrate on 
characterizing these trajectories. In particular, we will be 
especially interested in the footprint of the field lines on the 
divertor plates. 

The structure of tokamak magnetic field lines in the 
presence of an axisymmetric poloidal divertor is shown in 
Fig. 1. (The figure shows a double null divertor, that is, a 
divertor with two X lines. ) Inside the separatrix, field lines 
lie on nested flux surfaces. Just outside the separatrix, the 
field lines are open and intersect the divertor plates. Particles 
can move rapidly along the field lines to the divertor plates, 
implying that the plasma density and energy fall off rapidly 
as a function of distance from the separatrix. The scale 
lengths over which the density and energy go to zero define 
the density and energy scrape-off widths. For BPX param- 
eters’ (R, = 2.59 m, a = 0.80 m), for example, the energy 
scrape-off width is predicted to be about 0.4 cm at the mid- 
plane. 

It is well known that a symmetry breaking perturbation 
in a dynamical system produces a stochastic layer at a separ- 
atrix.4 For tokamaks, magnetic field errors due to imperfect 
construction of the poloidal and toroidal field coils provide 
such a perturbation. This suggests an investigation of the 
effect of field errors on the physics of the divertor region of 
tokamaks. 

In bounded Hamiltonian systems, one deals with a situ- 
ation where the orbits both inside and outside the separatrix 
are quasiperiodic. For tokamaks this would correspond to 
the situation where there is a diverted plasma with no diver- 
tor plates or material surfaces to limit the magnetic field 
lines in the vacuum. A nonaxisymmetric perturbation pro- 
duces a stochastic layer about the unperturbed separatrix. 
Magnetic field lines in this layer wander throughout a vol- 
ume, rather than lying on a surface, and have infinite length. 
The orbits are bounded by flux surfaces on either side of the 
stochastic layer and have an infinite number of encounters 
with the X points. Coherent nonaxisymmetries are associat- 
ed with the shape of the boundary of the stochastic layer, and 
with remnant islands within the stochastic layer. 

Consider the effect of introducing divertor plates to this 
picture. All field line trajectories with initial conditions just 
outside the last closed flux surface of the plasma region now 
terminate at the divertor plates after a finite number of en- 
counters with the X points. Since these trajectories have fi- 
nite length they are no longer stochastic in the usual time- 
asymptotic sense. One must ask whether the 
nonaxisymmetric perturbation significantly affects a trajec- 
tory over its finite length. The investigation leads us to relate 
the problem of trajectory evolution in the presence of diver- 
tor plates to the general field of chaotic scattering,5 investi- 
gated in the context of plasmas by Lau and Finn,6 who stud- 
ied plasmoid models relevant to the solar corona. 

It is natural to address the question of divertor nonaxi- 
symmetry in two steps. The first step is to investigate diver- 
tor nonaxisymmetry in the absence of divertor plates. If the 
width associated with the nonaxisymmetry were small for 
perturbation amplitudes of interest, then it is clear that the 
additional complication introduced by the divertor plates 
would be irrelevant. We investigate the field line trajectories 
in the absence of divertor plates in Sec. HI. We find that the 
width associated with the nonaxisymmetries is large com- 
pared to the scrape-off layer (SOL) width for typical error 
field amplitudes. 

The second step is to investigate the field line trajector- 
ies in the presence of divertor plates. We do that in Sec. IV, 
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FIG. 1. Structure of tokamak magnetic surfaces in the presence of an axi- 
symmetric poloidal divertor. Here ZP and Z, indicate the straight line cur- 
rent filaments used in our three-wire model. 

The effect of magnetic perturbations on a divertor se- 
paratrix has previously been studied by Tomita, Seki, and 
Momota,7 and by Boozer and Rechester.8 These papers em- 
ploy the Chirikov overlap criterion to estimate the width of 
the stochastic layer in the absence of divertor plates. Both 
papers focus on the nonaxisymmetric perturbation due to 
magnetic field ripple. The effect due to this is found to be 
small because of an exponential dependence on the toroidal 
mode number of the perturbation. Boozer and Rechester 
also offer a rough estimate of the stochastic layer width for a 
more general perturbation of their single null divertor model 
in the absence of divertor plates. The predictions of their 
formula are roughly consistent with the numerical results of 
Sec. III for stochastic layer widths in double null divertors 
without divertor plates. The key element not considered in 
this early work is the effect of the divertor plates in terminat- 
ing field line trajectories. 

LaHaye’ has investigated some details of field line tra- 
jectories in the divertor region of the DIII-D” tokamak. His 
field line tracing is for full toroidal geometry and uses infor- 
mation from experimental measurements of the poloidal 
field irregularities in DIII-D to define the dominant compo- 
nent of the error field spectrum. The results clearly show 
that error fields have a significant effect on the details of 
trajectory evolution even when the finite length of the trajec- 
tories is taken into account. 

In this paper, we choose a simple model of a tokamak 
divertor defined by three straight wires with codirectional 
currents to which an n = 1 field error perturbation is added 
whose magnitude is typical of field errors that exist in pres- 
ent-day tokamaks. The simple geometry allows us to follow 
thousands of field line trajectories, and to construct detailed 
magnetic footprints of the field line intersections with the 

divertor plates. The footprints are found to have a generic 
spiral structure, very suggestive of the observed poloidal bi- 
furcation in the heat deposition profiles in DIII-D.” 

II. THE DIVERTOR MODEL 

A simple model of an axisymmetric divertor region is 
seen in Fig. 1. The system comprises three straight wires 
with codirectional currents. One of the wires (representing 
the plasma), $ placed at x = 0, z = 0 and carries a current of 
+ I, in the q5 direction. The other two wires (coils), are 

located at x = 0, z = f z,, and each carries a current of 
+I,. 

The magnetic field for this unperturbed configuration 
can be written as 

B = hW’, t-B,& (1) 
where 

\v, =~,1,/4~log(?~ r’r? ) (2) 
and 

yd,/I,. (3) 
For any positive value of 3: a separatrix surface divides 

the plasma region from the coils. Denoting the midplane 
radius of the separatrix by a, the separatrix X-point height 
by z,,,, and the separatrix elongation by K~ = zN/a, the rela- 
tionship between the separatrix geometry and the wire posi- 
tions and currents is given by 

2~ = [ 1 + (1 +Ki2)/(27’)]2Y, (4) 

z,,, = &z,/(@+ l)1’2. (5) 
Figure 2 shows that ~~ is a monotonic function of y with 

asymptotic maximum at eNax=: 1.87. In order to make the 
model divertor geometry relevant to open divertor configu- 

FIG. 2. Separatrix elongation, K~, as a function of wire current ratio, 
y = ZJZ,, for the three-wire model. 
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rations such as the proposed BPX experiment, it is necessary 
to avoid large values of y. This limits the attainable separa- 
trix elongation of the model. For the numerical calculations 
shown in this paper, we therefore choose a = 0.80, and 
K~ = 1.60, giving y = 0.64 and z, = 1.93. 

It remains to fix the length scale 

L =p,I,/4lT& (6) 
which is easily identified as the inverse of the safety factor 
per unit length. For the computations, we choose L = 0.06 
to fix qg5 = 3.2, where the subscript on 4 refers to its evalua- 
tion on a flux surface passing through the midplane value 
x/a = 0.95. Figure 3 shows a plot of the safety factor in the 
neighborhood of the separatrix. A logarithmic increase of 4 
is seen as ix/a - 1 1 -+ 0 -+ . Since L is positive, magnetic field 
lines corresponding to x/a > 1 at z = 0 rotate in a clockwise 
poloidal direction around all three wires. For x/a) 1, the 
safety factor is determined as if the system were a single wire 
with current equal to 1, + 21,. Thus, c(- (x/a) * as x/a -+ ~a, 
and a minimum value of QZ 3.5 is obtained for x/a z 1.12. 

To study the effects of nonaxisymmetry on the structure 
of the poloidal divertor, we add an n = 1 vacuum field per- 
turbation to Eq. ( 1). The curl and divergence free form we 
choose is 

SB=B, VV, 

where 
(7) 

V= dR,/B, )exp(x/R, )cos($), (8) 
and where the periodicity length for the “toroidal” angle 4 is 
chosen to give an “aspect ratio” a/R, = 0.30, namely 
R, = 2.67. 

The field line equations resulting from Eqs. ( I), (7)) 
and (8) are 

0 I I t , 1 I 1 
1 .o 1.0 1.0 1.1 1.2 

x/a 

FIG. 3. Safety factor, q, as a function of minor radius on midplane near the 
separatrix. 

dx B” -=--, 
dgf, B& 
dz B’ 

3=B”’ 

where 

B’=$$+eexp(L)cos(q5), 

B”=* [& --eex;2) sin(+)], 

and 

(94 

(9b) 

(104 

(lob) 

(IOC) 

These equations are integrated for given initial conditions, 
x = x0, 4 = c$,,, z = z,, and selected values of the held per- 
turbation amplitude, e/L&. 

Nonaxisymmetric error fields are produced in present- 
day tokamaks by such things as finite tolerances in the instal- 
lation of the poloidal and toroidal field coils, the presence of 
bus bars, etc. Typical magnitudes of such fields are 
&B/B= 10 - 4 for the low-order Fourier components. In 
JET ii the m = 2, n = 1 Fourier component of the field er- 
ror ii believed to be of order 1 G at the Q = 2 surface, and to 
be caused by the toroidal bus bars. In ASDEX,12 the (2,1) 
Fourier component of the error field is believed to be about 
one or two Gauss, and to be caused by the finite tolerances in 
the installation of the toroidal field coils. In DIII-D, the field 
error is believed to be about 2 G, and to be due to the finite 
tolerances in the installation of the poloidal field (PF) 
coils.‘3 The BPX Physics Project’ has adopted a tentative 
field error tolerance of the form 

,,;eG,; (+y2 <EzO.O’. 

The left-hand side of this expression is motivated by a rough 
estimate of the total width of the plasma region occupied by 
islands, assuming a constant rotational transform. The nu- 
merical value of the right-hand side comes from extensive 
field line tracing and three-dimensional equilibrium calcula- 
tions using experimental data.“,’ For easy comparison with 
different devices, the Fourier decompositions used in evalu- 
ating the BPX criterion, Eq. ( II), are performed on a refer- 
ence circular surface centered at the major radius R,, and 
having minor radius P = a. 

In addition to the field error, there is also a nonaxisym- 
metric component of the magnetic field produced by the dis- 
creteness of the toroidal field coils. The magnitude of this 
“field ripple”’ is typically much larger than the magnitude of 
the field error, but it has a high toroidal mode number. The 
effect of the nonaxisymmetric Fourier components can be 
expected to decrease exponentially as a function of the toroi- 
da1 mode number,‘*’ so that field errors can be expected to 
have a greater effect on the divertor separatrix. 

The scaling with toroidal mode number seen in Eq. ( 11) 
motivates the focus in this paper on n = 1 perturbations. The 
field error produced by shifts and tilts of the PF coils can be 
expected to be predominantly v1= 1. The field errors pro- 
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duced by toroidal field coils and buss bars will generally have 
a broad Fourier spectrum in the toroidal mode number. Be- 
cause the effects of the n = 1 Fourier components are ex- 
pected to dominate, it is reasonable to study the effects of a 
pure n = 1 nonaxisymmetric field. The exponential depend- 
ence on x in Eq. (8) models the toroidal fall off of a tokamak 
vacuum field, with the scale length appropriately deter- 
mined by the aspect ratio. 

Equation ( 11) can be used to estimate a physically rel- 
evant value for the tokamak error field magnitude E of the 
model perturbation used in our study. For this purpose we 
use the expression’4 

where Zj denotes the modified Bessel function of order j. 
Evaluation of the m = 1, n = 1 Fourier component of 
SB,/B, yields 0.52dB,, while the m = 2, n = 1 and m = 3, 
n = 1 Fourier components are 0.0766/B,, and O.O057dB,, 
respectively. In terms of the BPX field error tolerance, 
E = 0.05 would require c/B0 < 1.6~ 10 - 3, with SBrzl /B, 
<1.2x 10-4. 

III. NONAXISYMMETRIC FIELD LINETRAJECTORIES IN 
THE ABSENCE OF DIVERTOR PLATES 

It is convenient to begin our presentation of results by 
considering field line evolution in the absence of divertor 
plates. For the three-wire system described in Sec. II, this 
corresponds to a conventional treatment of the magnetic sys- 
tem as a it degree of freedom nonintegrable Hamiltonian. 
Each nonperiodic field line is then an orbit of infinite length 
in a bounded phase space. For initial conditions close to the 
separatrix, each orbit has an infinite number of close en- 
counters with each X point. It is well known that under the 
action of a nonintegrable perturbation, the magnetic separa- 
trix and nearby surfaces are destroyed, and a stochastic layer 
develops. The width of the stochastic layer depends on the 
amplitude of the perturbation. 

Results of integrating the field line equations [ Eq. (9) ] 
for selected initial conditions and perturbation amplitude 
c/B0 = 1.0 x 10 - 3 are shown in Fig. 4. Each field line is 
followed for 5000 toroidal circuits, and a Poincare section is 
constructed by plotting a point every time the orbit passes 
through a chosen 4 section. Two sections, corresponding to 
different values of 4, are shown in the figure. Each section 
shows two regions of “good” flux surfaces, separated by a 
stochastic layer. The layer is clearly associated with the re- 
gion of the unperturbed separatrix. In the inner (plasma) 
region islands associated with the q = 1 and q = 3 orbits are 
shown. The good surfaces are limited to q values less than 
about 3.7. The dashed line in the figure is drawn at constant 
Izp 1 = 1.40, and we should imagine this to be a possible loca- 
tion for a divertor plate. The plate is separated from the 
unperturbed X point by approximately 0.17 units of distance 
along the direction of the unperturbed separatrix. Within the 
stochastic layer are island structures, dominated by the 
q = 5 islands. Comparing the two section views of the diver- 
tor region shows that the q = 5 island region overlaps the 
plate to a substantially different extent depending on the 4 

1 

z 0 

-1 

Z 

FIG. 4. Surface of section for field line integrations without divertor plates 
for d/B,, = 1 x lo-‘. (a) d= 0 and (b) 4 = 8n/5. 

value, indicating both a poloidal and a toroidal magnetic 
asymmetry on the proposed divertor plate surface. Outside 
of the stochastic layer are good surfaces representing the 
vacuum region. 

The magnetic structure in the divertor region is dis- 
played more clearly in Figs. 5 and 6, which show, respective- 
ly, a magnified view of the lower divertor region outlined by 
the solid box in Fig. 4, and the section x vs 4 at zp = - 1.40. 
To obtain these figures, initial conditions were selected for 
the orbit integrations at 4. = 0.00, z, = 1.28, with 30 values 
of x0 chosen at equal intervals between 0.00 and 0.30. [ Re- 
call that the X point lies at (x,z,4) = (0.0,1.28,0.0). ] Each 
field line was again followed for 5000 toroidal transits. Aided 
by the natural flux expansion in the divertor region, the rich- 
ness of the field line structure is readily apparent in these 
plots. To measure the width of the stochastic region we use 
the nominal BPX scrape-off distance as a ruler. At the mid- 
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FIG. 5. Expanded view of lower divertor region of Fig. 4. 

plane this value is SxsoL = 0.004. Field line tracing from the 
midplane yields LLvsoL = 0.018 for the scrape-off width at 
the divertor plates. The measured width of the stochastic 
region at the divertor plates is therefore seen to be an order of 
magnitude greater than the width of the unperturbed diver- 
tor SOL. 

Field line following for several values of the perturba- 
tion strength shows that the stochastic width at zP scales 
linearly with dBo. Furthermore, the stochastic width at the 
midplane and the stochastic width at the plate are related by 
the unperturbed flux expansion rule, Ax = 4.36x. Thus, in 
the absence of any field line terminating divertor plates, the 
width of the stochastic layer at the midplane and at the diver- 
tor plates for nonaxisymmetric field perturbations typical of 
present-day tokamaks is an order of magnitude greater than 
the nominal axisymmetric scrape-off widths. 

FIG. 6. Surface of section x vs C# at zP = - 1.40 for t-/B,, = 1 x 10 - .‘. 

IV. FIELD LINE TRAJECTORIES IN THE PRESENCE OF 
DIVERTOR PLATES 

From the point of view of heat flux deposition, the mag 
netic field lines that connect the plasma region to the diver- 
tor plates serve as the conduit for particle exhaust. Since the 
close tie between particle orbits and field line trajectories is 
broken once an orbit encounters a divertor plate it follows 
that a physically relevant field line integration study should 
terminate the field lines immediately upon first intersecting 
a plate. This section describes such a study. 

To obtain some understanding of the effects of terminat- 
ing the trajectories at the divertor plates, we perform the 
following preliminary numerical experiment. For each of 
several initial values of x/a z 1 on the midplane, the field line 
equations are integrated for 20 equally spaced initial values 
of the toroidal angle, and the number of toroidal transits 
made by each trajectory before it intersects a plate is record- 
ed. Results are shown in Fig. 7. The vertical axis denotes 
initial midplane radius, the horizontal axis denotes initial 
toroidal angle, and each number in the array of data repre- 
sents the number of toroidal transits, N4. Trajectories that 
fail to intersect a plate within 5000 transits are terminated. 
These are identified in the figure by the symbol “X.” The 
dividing line between initial conditions that lead to trajector- 
ies that intersect the plates and initial conditions of trajector- 
ies that remain trapped for 5000 transits is considered to 
represent the approximate edge of the plasma region. The 
plasma edge in the presence of divertor plates must, of 
course, be the same as the plasma edge in the absence of 
divertor plates. The n = 1 modulation of the edge is approxi- 
mately captured by the function 

1.010 

1.005 

1 .ooo 
d 

0 x 

0.995 

0.990 

0.985 

FIG. 7. Number of toroidal transits, N*, before reaching a plate, as a func- 
tion of initial x and 4. 
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(x,/a),, = 0.990 + 0.004 sin(#,), (12) 
which is represented in Fig. 7 by the lower of the two solid 
curves. 

Outside of the plasma region is a band of Nb values 
greater than zero. Much of the band appears to show little 
correlation between adjacent values of iV$. We will refer to 
the band as the stochastic layer in the presence of a plate, and 
justify the reference to stochasticity shortly. Within the band 
is an island of X values. By constructing a surface of section 
for orbits with initial conditions in this region, it is identified 
as a q = 4 island that never intersects the divertor plate. 

A guide to the location of the outer boundary of the 
stochastic layer is provided by a second curve in Fig. 7, 
roughly corresponding to the contour value N+ = 8. The 
reason for choosing this contour value will also be justified 
shortly. The outer boundary is seen to have an n = 1 oscilla- 
tion about x,/a z 1.0, the location of the unperturbed separ- 
atrix. The stochastic layer is therefore predominantly asso- 
ciated with a region inside the unperturbed separatrix. The 
width of the stochastic layer is Sx/a~O.OOB, substantially 
less than the stochastic width in the absence of plates (calcu- 
lated in the last section to be 6x/a ~0.07), but comparable to 
the nominal scrape-off width of 6x,,,/u = 0.005. 

Since we are interested in the heat deposition on the 
divertor plates, it is natural to ask what form the footprint of 
field line intersections with the divertor plate takes for tra- 
jectories launched at the edge of the plasma region. The true 
edge has a complicated structure that would require a signif- 
icant computational effort to map out. To avoid expending 
this effort we consider a modification of the field line equa- 
tions, which replaces Eq. (9b) with 

dz B” z -=- 
dq5 B-R,’ 

(13) 

where 77 is a random number whose value changes with each 
new initial condition. The random number 77 is uniformly 
distributed in a range between v0 and 2~,, where v0 is a 
small positive constant that remains fixed for all initial con- 
ditions. The effect of the modification on the field lines is to 
introduce a tight spiral in the (x-z) plane, so that an orbit 
that initially lies within the plasma region is guaranteed to 
eventually cross the last closed flux surface and escape to the 
divertor plate. By choosing random 7 values but the same 
initial x, z, and 4 values, the trajectories cross the true edge of 
the plasma region at random poloidal and toroidal locations. 
If the constant v0 is small enough, the magnetic footprint at 
the plate can be made indistinguishable from the footprint 
produced by initial conditions at the true plasma edge. 

A suitable value of 70 was determined from a sequence 
of numerical experiments on the unperturbed three-wire sys- 
tem, where 2000 trajectories were followed, each with a ran- 
dom 11 value and initial x/a = 0.95, z = 0, 4 = 0. The value 
of q0 was decreased until all the orbits in a given experiment 
intersect the plates at the known separatrix location 
xp = 0.110 to within five parts in 104. This determined 
v. = ~xIO-~.W’ h h it t is value of vO, the intersections of the 
orbits with the plate are distributed uniformly in 4. 

Having determined v0 in this way we return to the per- 

3 0.01 - 

.g 
6 O- 
2 
a 

5 -0.01 - 

-0.02 - 

a,+:*---; \ ‘, 
/ ,’ -\ 

-0.03 - 
-0.03 -0.02 -0.01 0 0.01 0.02 0.03 

(xp-0.10) cos (cp) 

FIG. 8. Magnetic footprint of 2000 field line intersections with the (a) low- 
er and (b) upper divertor plates for initial conditions inside the plasma re- 
gion using Eq. ( 13). Thedashedcircleshows the location ofthe intersection 
of the unperturbed separatrix with the divertor plate. 

turbed system with e/B0 = 1 X 10 - 3, select 2000 initial con- 
ditions with random 77 at x/a = 0.985, z = 0 and 4 = 0, and 
follow each trajectory until it intersects a plate. Figure 7 
shows that the chosen initial conditions lie well inside the 
plasma region. Polar plots of the magnetic footprint of field 
line intersections with the upper and lower divertor plates 
are shown in Fig. 8. Since the width of the footprints are 
small compared with their radial location, it helps to use the 
quantity rp = xp - 0.10 as the radial variable for the polar 
plots. This allows us to choose a radial scale that magnifies 
the footprints and emphasizes their structure. For reference, 
the location of the intersection of the unperturbed separatrix 
(at xp = 0.110) is shown as a dashed circle. The footprint is 
seen to take the form of a spiral loop structure accompanied 

943 Phys. Fluids B, Vol. 4, No. 4, April 1992 N. Pomphrey and A. Fieiman 943 

Downloaded 30 Dec 2004 to 198.35.4.169. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



by some stochastic spreading. The radial extent of the foot- 
print on the lower plate is Ax, ~0.015, approximately a fac- 
tor of 3 wider than the region on the upper plate. The dispar- 
ity of widths is due to the asymmetry of the field 
perturbation with respect to x [see Eq, (7) ] and will be 
discussed later. 

To understand what causes the spiral structure at the 
plate we return to a consideration of the original field line 
equations (i.e., q. = 0) and perform a series of computa- 
tions where we follow trajectories with initial conditions on 
midplane curves parallel to the approximate plasma edge 
defined by Eq. ( 12). Specifically, we investigate the foot- 
print of groups of 2000 trajectories equally spaced in initial 
toroidal angle 40, which have initial x values lying on mid- 
plane curves, defined by 

x0 x0 

( > 
6x0 -= - -I- -? (14) 

a a IN a 

and study the form of the footprint for different values of 
?%,/a. 

Figures 9(a), 9(b), and 10(a) display polar plotsof the 
footprints on the lower divertor plate for curves of initial 
conditions with&x,/a = 0.0140,0.0125, and 0.0120, respec- 
tively. A sharp spiral pattern is seen to develop for this se- 
quence of decreasing values of 6x,/a. To understand why 
this pattern develops, imagine recasting the original field line 
equations with the variable z as the dependent variable in- 
stead of 4, and consider the evolution of a curve of initial 
conditions as z is advanced from z = 0 to the z value of the 
plate. If the curve, %, lies entirely within a single flux surface 
then each trajectory shares the same rotational transform. 
Consequently, the change in toroidal angle, A& per unit 
change in z is the same for each trajectory, and the shape of 
55’ is preserved. As an example, consider the unperturbed 
three-wire system and a curve of initial conditions parallel to 
the unperturbed separatrix. Viewed with the (x,4) polar 
representation, the curve of initial conditions at z = 0 is a 
circle. The magnetic footprint on the divertor plate is there- 
fore a circle. 

Now consider the case when 5%’ does not lie on a single 
flux surface. Then the shape of Ce must change as z advances 
since each point of the curve has a different pitch and must 
move a different A4 per unit AZ. The points of Ce with the 
smallest transform have the smallest A4/Az and, therefore, 
move the smallest angular distance. This leads to the devel- 
opment of a spiral pattern as z increases, with an inflection 
point corresponding to the minimum transform. (A simple 
model that illustrates the development of the spiral pattern is 
presented in the Appendix of this paper). The sequence of 
initial curves leading to Figs. 9 and 10 have decreasing trans- 
form since these curves are approaching the plasma edge. 
Therefore, since each plot has advanced the same z with re- 
spect to the starting value, the spiral is progressively more 
developed. Following the notation of Berry ef aZ.,15 who 
studied the changing form of curves under the influence of a 
nonlinear map, we will call the spiral footprint a whorl. 

The initial curves with 6x,/a = 0.0140 and 0.0125 are 
sufficiently far from the plasma edge, and the rotational 
transforms are sufficiently high, that every trajectory inter- 
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FIG. 9. Magnetic footprint on the lower divertor plate for 2000 field lines 
lying on initial curves defined by Eq. ( 14) with (a) &~,,/a = 0.014 and (b) 
&,/a = 0.0125. 

sects the lower divertor plate with N6 G 1. Figure 10(c) 
shows the dependence of N4 on the initial angle 4. for the 
curve with 8x,/a = 0.0120.Most of the orbits reach the low- 
er divertor plate within a single toroidal transit and lead to 
the sharp spiral pattern shown in Fig. IO(a). However, there 
exists a small region of initial conditions near 4. = 0.4, 
where N6 $1 .Some of these longer orbits intersect the upper 
divertor plate producing the footprint shown in Fig. 10(b). 
The remainder intersect the lower divertor plate at the 
points that do not lie on the sharp spiral. 
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for 6x,/a = 0.012. (c) N, vs 4,, for this set of initial conditions. for 6x,/a = 0.007. (c) N+ vs &, for this set of initial conditions. 
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Figures 11 and 12 show results for &,/a = 0.007 and 
0.002, respectively. The curves of initial conditions for these 
runs lie near the outer and inner edges of the stochastic layer 
defined by the solid curves in Fig. 7. The magnetic footprints 
are now seen to be remarkably similar to the footprint in Fig. 
8, despite the completely different method used to generate 
the initial conditions. The footprint is a spiral dressed with a 
stochastic spread, which we will call a fuzzy whorl. Figures 
11 (c) and 12 (c) show the dependence of IV+ on &. As pre- 
viously noted in regard to Fig. 7, there is little correlation 
between the field line connection lengths (measured by N+ ) 
for nearby initial conditions. The “average” connection 
length is seen to be greater*for the initial curve that lies clos- 
est to the plasma edge, as expected. 

The fact that Figs. 8, 11, and 12 are so similar suggests 
that the footprint structure is determined by the passage of 
the trajectories through the stochastic layer, but does not 
depend on the detailed structure of the plasma edge. This 
passage leads to a scattering process that can be considered 
as having three phases, which are depicted schematically in 
Fig. 13. We focus on a single trajectory that initially lies well 
within the stochastic layer and follow its evolution in the 
poloidal (x-z) plane. In the first phase of evolution the tra- 
jectory is confined within the stochastic layer, making many 
toroidal (and hence also poloidal) circuits. The first phase is 
declared to end when the trajectory crossesx = 0 for the last 
time before intersecting a plate. The second phase of evolu- 
tion takes the trajectory from this last crossing of x = 0, 
across the stable/unstable manifold corresponding to the 
perturbed separatrix (plasma edge), and ends at the point of 
closest approach of the trajectory to the perturbed X point 
near the active divertor plate. The distance between the X 
point and the point ofclosest approach represents the impact 
parameter of the scattering process. The third phase of evo- 
lution takes the trajectory from the X-point region to the 
divertor plate. 

The above picture of events implies that the stochastic 
spreading that makes the whorl “fuzzy” is due to the chaotic 
scattering of trajectories. Since the distribution of N+ values 
with respect to +0 is effectively random, the poloidal loca- 
tion of the crossing point of the trajectory with the plasma 
edge is also random. This leads to a random scattering im- 
pact parameter. 

The picture also allows a calculation of the relative size 
of the magnetic footprints on the upper and lower divertor 
plates. For this we integrate the field line equation (9b) over 
the phase 2 motion after expanding about the unperturbed 
separatrix. Defining A + and A _ to be the maximum possi- 
ble impact parameters for the lower and upper perturbed X 
points, respectively, then 

A + =Ro$exp( kg)J* COS++, (15) 

where the 4 integrations are over the limiting orbits that give 
rise to the maximum impact parameters. Since these maxima 
are defined with respect to all possible orbits, we can take the 
same (b values for the integrations. Then 

A, /A- -exp2a/R,. (16) 
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FIG. 12 Magnetic footprints on the (a) lower and (b 1 upper divertor plates 
for &,/a = 0.002. (c) N+ vs &, for this set of initial conditions. 
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Ax; 

FIG. 13. Cartoon of the three phases ofevolution of a trajectory between the 
stochastic layer and the divertor plate. 

To relate the maximum impact parameters to the maximum 
footprint widths, we use the flux expansion relationship 

Ax; /Ax,- =(A+ /A- 1’. (17) 
Thus 

Ax,+ /Ax,,- =: exp 4a/R, z 3.3 (18) 
is an estimate for the ratio of the width of the footprint on the 
lower plate to the width on the upper plate. This agrees well 
with the numerical results shown in the figures. 

This calculation suggests that the width of the footprint 
scales linearly with the perturbation amplitude. This is veri- 
fied by our numerical calculations. 

V. DISCUSSION 
In the presence of n = 1 nonaxisymmetric magnetic 

field perturbations, the footprint of the field line trajectories 
on a divertor plate assumes a spiral structure, shown in Fig. 
11. We have shown that the existence of this spiral structure 
follows under quite general assumptions, and does not de- 
pend on the particular three-wire model that we have investi- 
gated numerically. For field errors of the magnitude that 
exist in present-day tokamak devices, and are contemplated 
for the next generation of tokamaks, the radial width of this 
structure is comparable to the width of the scrape-off layer. 
The nonaxisymmetric perturbations will be larger in the 
presence of locked modes, producing spiral structures of cor- 
respondingly larger dimension. (The radial width of the 
structure scales linearly with the perturbation amplitude.) 

One striking feature of this calculation is that the foot- 
print exhibits multiple peaks as a function of R at a fixed 
value of 4. Experimental measurements of the heat depo- 

sition profile on the DIII-D divertor plates do exhibit a dou- 
ble peak of this sort in the presence of locked modes. 

Cross-field diffusion can be expected to wash out the 
details of the spiral footprint structure, so that it only ap- 
proximately represents the heat deposition profile. The ex- 
tent to which the small-scale structure is washed out will be 
determined by the ratio of the scrape-off width to the width 
of the spiral structure. This is consistent with the observa- 
tion of bifurcated heat deposition profiles in DIII-D only in 
the presence of locked modes. Larger tokamaks, with 
smaller scrape-off widths, can be expected to preserve more 
of the structure, producing more localized hot spots. 

The nonaxisymmetric structure of the footprint on the 
divertor plate can be expected to lead to nonaxisymmetric 
heat deposition, Even though much of the structure is 
washed out by cross-field diffusion in the absence of locked 
modes on present-day tokamaks, we might expect some re- 
sidual nonaxisymmetry. The toroidal dependence of the heat 
deposition has been measured on ASDEX,16 and nonaxi- 
symmetric deposition has been observed, even in the absence 
of locked modes. 

In larger tokamaks, with smaller scrape-off widths, we 
can expect a greater nonaxisymmetry in the heat deposition, 
giving a larger heat load peaking factor. This poses a poten- 
tial problem for the next generation of tokamaks, where heat 
load on the divertor plates is already an issue. 

Finally, we remark that stochasticity in the neighbor- 
hood of the divertor separatrix is sometimes proposed as a 
method for spreading the heat load on the divertor plates. 
We have found that for n = 1 magnetic field perturbations 
there is a significant region of chaotic field line trajectories 
outside the last closed flux surface. Little of this chaotic 
structure is reflected in the divertor footprint. For pure 
n = 1 perturbations, the stochastic broadening is small com- 
pared to the scale of the coherent nonaxisymmetric struc- 
ture. 
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APPENDIX: MODEL ILLUSTRATING FORMATION OF 
THE SPIRAL PATTERN 

In this appendix we present a simple model that illus- 
trates the development of a closed curve into the spiral pat- 
tern known as a whorl. I5 For simplicity we consider a sys- 
tem whose flux surfaces are circles, whose rotational 
transform vanishes at the chosen flux value $ = 1 .O (repre- 
senting a separatrix), and whose shear is constant. The sys- 
tem dynamics that governs the evolution of a point with 
initial coordinates ( $k ,+k ) is defined to be 

* $kT k+l = (Al) 

4 k+l =4k +4k, (A21 
where 
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FIG. 14. Development ofspiral whorl for initial conditions on a circle, shift- 
ed with respect to flux surfaces. 

& = h-(t,b, - 1.0)/5.0. (‘43) 
Figure 14 shows the result of iterating the model equa- 

tions for initial conditions that lie on a shifted circle of radius 
1.5, tangential to the separatrix at 4 = r. The separatrix is 
indicated by a dashed circle, the initial conditions by open 
circles. Successive k iterates of the equations lead to the 
points represented by the symbols *, x , and + , respective- 
ly. These are seen to lie on a developing spiral whose inner- 
most point corresponds to the minimum transform. For the 
model in this appendix this minimum transform is*= 0. The 

similarity of the spiral pattern shown in Fig. 14 with the 
pattern developed in Figs. 9 and 10 is clearly evident. 
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