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ABSTRACT. The Tokamak Simulation Code (TSC) has been used to model the time dependence of several 
Ohmic discharges in the TFTR experiment. The semi-empirical thermal conductivity model and the sawtooth model 
in TSC have been refined so that good agreement between the simulation and the experiment is obtained in the electron 
and ion temperature profiles and in the current profiles for the entire duration of the discharges. Neoclassical resistivity 
gives good agreement with the measured surface voltage and the rate of poloidal flux consumption. 

1. INTRODUCTION 

The Tokamak Simulation Code [l] (TSC) is a two- 
dimensional time dependent free boundary simulation 
code that advances the MHD equations describing the 
transport time-scale evolution of an axisymmetric 
magnetized tokamak plasma. TSC evolves the magnetic 
field in a rectangular computational domain using the 
Maxwell MHD equations for the plasma, coupled 
through boundary conditions to the circuit equations 
for the tokamak poloidal field (PF) coils. The plasma 
model in TSC is completed by providing functional 
forms for the electron and ion thermal conductivities, 
for the particle diffusion coefficients and for the plasma 
electrical resistivity. 

A semi-empirical plasma transport model [2-61 is 
presently utilized in TSC . While having some theoretical 
and empirical foundations, the model contains several 
free coefficients, or adjustable parameters, which are 
chosen so that the predictions of the simulation code 
agree as closely as possible with the experimental data- 
base. We report here on our experience in benchmarking 
this model against Ohmic discharges in the TFTR 
experiment. 

2. THE TSC MODEL 

TSC solves a modified force balance equation on a 
background Cartesian grid to maintain the plasma in 
near equilibrium during its evolution [ 13. The poloidal 
flux function \k and the toroidal field function g are 
also evolved on this fixed background grid, where 

the axisymmetric magnetic field is represented in the 
standard form 

ii = v4 x v9 + g v 4  (1) 
with 4 being the symmetry angle in a cylindrical 
co-ordinate system (R, 4 , z ) .  

The evolving magnetic surfaces define a magnetic 
geometry which changes in time. We use the toroidal 
flux + inside a magnetic surface as the co-ordinate label 
for that surface. The large ratios of parallel to perpen- 
dicular diffusivity and of parallel to perpendicular 
thermal conductivity permit magnetic surface averaging 
to obtain one-dimensional transport equations for number 
and entropy densities, 

a (N’r)  + SN a 
at a@ - N ‘  = -- 

aK a 
at a+ a+ (Qi + Qe) 

(3) 

(4) 

where the time derivatives are with respect to surfaces 
containing fixed toroidal flux [7, 81. 

the differential electron number density, N’ = neaV/a+, 
and the differential total and electron entropy densities, 

In Eqs (2)-(4), the quantities being advanced in time are 
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U = p(aV/aip)5’3 and U, = ~,(aV/aip)”~.  The derivative 
dV/aip is the differential volume element 

2.1. Resistivity and equipartition 

and p 

VL = 

is the 

The equipartition term appearing in Eq. (4) is given 
(5) [91 by -=- av a $ d r = $  $- d l  

aip dip BP 

and pe are the total and electron pressures. Also, QAe = 1 Pi - (ni + nl) pl]lrAe ’ [  ne 
(15) 

{B * V4) 
loop voltage and 

where 
(6) 

[s-’] = 3.1 X lo-“ ne [m-3] 7, [n-m] (Z)  

(7) 

is the total toroidal current within a flux surface. 

The ion and electron heat fluxes are defined as 

(9) 
av 
aip 

Qe = ~ ((Zie*V+) + $Per) 

where Ze and qi are the random heat flux vectors, 
I’ denotes particle flux, and the standard definition 
of the flux surface average operator is used: 

(a) = 0 (df/B,) 

The plasma is assumed to have two temperatures: 
T, for the temperature of the electrons of density ne, 
and Ti for the temperature of the bulk ions of charge 
Zi, mass Mi and density ni. A single impurity ion of 
charge ZI, mass MI and density nI is assumed. 

the standard way: 
Pressures, densities and temperatures are related in 

k,Te = Pelne (10) 

kBTi = pi/(ni + nI) (1 1) 

with kB = 1.60 x 
neutrality, we have 

ne = Zini + ZInI 

The effective charge 2 and the equipartition charge (Z)  
are defined as 

J/eV. Also, from charge 

(12) 

Z = (niZf + nIZ:)/n, 

{z) = (niZf/Mi 4- nIZ?/MI)/(n,/MH) 

(13) 

(14) 

where MH is the proton mass. 

and 71, is the classical plasma resistivity for a hydrogen 
plasma, given by (see Ref. [9]) 

7, [Q.m] = (1.03 X lo-“) lnA(T,[eV])-3/2 (16) 

with 

1nA = 17.1 - In ((n,[m-3])1/2 (Te [eVI>-’} 

Neoclassical corrections to the resistivity are assumed. 
These are given [lo] by 

where 
- 3.40 ( 1.13 + ”> 

Z 2.67 + Z 
&(Z) = T 

- 0.56 3.0 - Z CR(z) = T 
Z (3.0 + i)  

((2) = 0.58 + 0.202 

and the electron collisionality parameter is evaluated as 

U*, = (10.2 X 

Here, the local inverse aspect ratio is evaluated as 
6 = a/Ro, where 

a = [ V / ( ~ T ~ R ~ ) ] ” ~  

V is the volume inside a given magnetic surface and 
Ro is the radius of the magnetic axis. The trapped 
particle fraction f, is evaluated in terms of surface 
averages over the magnetic surfaces [7] as follows: 

ft = 1 + (B2) {B-2) + q{B2) (B-* [(l - B/B,)1’2 

Ro[m] qn,[m-31 A/ft6(Te[evl)2 

- 1 (1 - B/B,)3’2]) (18) 

where B, is the maximum value of B on a given flux 
surface. 

In the absence of other forms of current drive, the 
parallel electric field is the sum of two terms - the 
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resistive diffusion term and the bootstrap current drive 
term. Thus, 

(19) E.B = V I I [ ? . ~  - ?Bs‘ri] 

Here, 

- -  
J = p;*V X E (20) - 
is the total current density, and JBS is the bootstrap 
current density given [ 111 by 

with the definitions 

NI  = f,(0.754 + 2.212 + 2’) 
+ f:(0.348 + 1.242 + %2) 

N2 = f,(0.884 + 2.072) 

D = 1.4142 + Z2 + f,(0.754 + 2.6572 + 22’) 

+ f:(0.348 + 1.2342 + 2’) 
( ~ l i  = -1.172/(1.0 + O.462fx) 

f, = fJ(1 - ft) 

A simple modification of the neoclassical resistivity 
theory has been used in the calculations presented here 
to take into account the effect of the sawtooth instability 
on the evolution of the plasma. There are sawtooth 
models which attempt to resolve in time the occurrence 
of each sawtooth event [ 12, 131, Rather than incorporate 
one of these models, which would necessitate resolving 
the evolution of the equilibrium on the rapid time-scale 
of the sawtooth period and crash, we utilize a time 
average model that consists of enhancing the resistivity 
inside the magnetic surface for which q = 1. We 
introduce the parameter a120 (0 < a120 I l) ,  which 
represents the degree by which the resistivity profile, 
and hence the steady state current profile, is flattened 
inside the sawtooth inversion radius. In terms of this 
parameter, the sawtooth model can be described as 

Vll = VNC for (22) 

78 = alZO?lNC + (1 - al20)4NC1q=l for 4 < 1 

A discussion of the TSC ‘averaged’ model and a 
comparison with the Kadomtsev reconnection model 
[12] is given in the Appendix, where it is argued that 
the volt-second consumption predicted by these two 
models should be the same. 

2.2. Thermal conductivity 

The random heat flux contributions to Qi and Q, in 
Eqs (8) and (9) are evaluated using a general geometry 
formulation of the Coppi-Tang transport model. In this 
model, the electron heat flux and the ion heat flux 
depend only on their own respective temperature 
gradients. Thus, the random heat fluxes are of the 
form 

The electron and ion thermal conductivities are taken 
to be of the following form (see Ref. [6]): 

where a126 is a constant parameter and F(9) is a profile 
factor given by 

Here, a b  is the toroidal flux at the plasma boundary, 
P(9) is the total heating power (including Ohmic heating) 
minus the total radiated power inside the surface 9, and 
aq is taken to be 

where qg5 is the safety factor at the surface containing 
95% of the toroidal flux between the magnetic axis and 
the plasma edge. We limit aq to lie between 2.5 and 6.5 
in order to avoid unphysical results in regimes where the 
assumptions underlying the transport model presented 
here are not valid. 

The functional form of the profile factor F(9) given 
in Eq. (26) follows from the insertion of the empirical 
steady state temperature profile 

into the steady form of Eq. (3), and using the definitions 
in Eqs (8), (9) and (23) to solve xe and xi. It is a 
generalization to arbitrary geometry of the form first 
suggested by Coppi [2]. 
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From Ref. [3] we obtain multipliers for the two 
confinement regimes: 

These are combined in accordance with Eq. (24). 

The factor f, in Eq. (24) is used to account for the 
time averaged effect of the sawtooth instability in causing 
additional flattening of the temperature profile inside the 
q = 1 surface. Thus, in addition to the prescription given 
in Eq. (22) for modifying the resistivity profile, the 
sawtooth model is completed by enhancing the thermal 
conductivity inside the sawtooth inversion radius 
according to the prescription 

f, = 1 for q > 1 

f, = a124 for q < 1 

Eq. (26), we assumed that J? = 0, so that these two 
assumptions are consistent. 

2.4. Radiation and impurities 

In the simulations reported, it was assumed that the 
dominant radiation was from fully stripped ions. The 
surface averaged radiated power density is computed 
[14] as 

%(a, t) = 1.7 x (ne(@, t)[m-3])2 

x Z(t) (T,(@, t) rev]) (33) 

The variation of the effective charge with time, Z(t), 
was computed from visible bremsstrahlung, assuming 
the radial dependence to be flat. When the dominant 
impurity is taken to be carbon, ZI = 6 ,  the ratio of 
impurity density to ion density, nr/ni, is defined from 
Eq. (14). 

2.3. Particle transport 

In all of the simulations presented below, the particle 
flux r appearing in Eqs (2), (4), (8) and (9) was set to 
zero: 

r = o  (31) 

The source term SN in Eq. (2) was continuously adjusted 
so that the electron density profile ne(@) matches both 
the experimentally measured line averaged density and 
the central density, where the experimental data were 
digitized every 0.0002 s. This matching was achieved 
by assuming a density profile of the form 

ne(@, t) = n:(t) [I  - $ B ~ ~ o l ~ ( t )  + nb(t) (32) 

where \I is the normalized poloidal flux which varies 
between 0 at the magnetic axis and 1 at the plasma 
boundary, and nb(t) is the density at the plasma 
boundary. In these studies, we set ON = 1.0 and 
nb = 0.3ng, and adjusted np(t) and aN(t) to match 
the experimental data. 

This approach to modelling the density evolution 
was adopted for several reasons. One reason is that we 
are unaware of a satisfactory dynamic particle transport 
model for the density profile. Even if such a model did 
exist, it would be very difficult to infer the actual source 
SN in the presence of both gas fuelling and recycling 
under actual conditions. Note that for the derivation 
used in obtaining the thermal conductivity form factor, 

2.5. Boundary conditions 

The boundary conditions required for TSC are of 
two kinds: (i) electromagnetic boundary conditions 
needed to evolve the magnetic field and hence define 
the magnetic geometry, and (ii) transport boundary 
conditions for the surface average densities and 
temperatures. 

The magnetic boundary conditions are largely 
defined by using the experimentally measured currents 

-2.0 1 1  
1 .o 2.0 3.0 4.0 5.0 

R(m) 

FIG. 1 .  Locations of the PF coils in TFirR, listed in Table I 
(indicated by boxes). Also shown are the plasma-vacuum inter- 

faces at various times during the discharge simulation. 
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Volt-seconds 

TABLE I. CO-ORDINATES OF THE POLOIDAL 
FIELD COILS IN TFTR 

Maximum temperature 
(keV) 

OH coils 

0.6668 
0.6703 
0.7797 
0.8162 
0.7551 
0.9108 
0.9250 
0.9816 
1.1980 
1.6040 
2.3324 
2.8390 
3.8798 
4.9997 

2.2 

2.2 

2.2 

1.8 

1.8 

1.4 

1 .o 

EF coils 

2.8403 
3.8785 
4.8809 

0.35 

0.35 

0.65 

0.30 

0.70 

0.37 

0.66 

VC coils 

0.7170 
1.6046 
2.3326 
4.9997 

0.2451 
0.7688 
0.8020 
0.8351 
1.0133 
0.9863 
1.0673 
1.0943 
1.5861 
1.8424 
2.1380 
2.3040 
2.0860 
0.7101 

2.1694 
1.9471 
0.8088 

1.4650 
2.0202 
2.2959 
0.8748 

100 
40 
7 
2 

71 
4 

11 
2 

26 
18 
9 
5 
6 
2 

-9 
-14 
-26 

-15 27 

-4 
3 

0.1924 
0.1721 
0.0486 
0.0243 
0.2576 
0.0566 
0.0850 
0.0283 
0.1706 
0.1433 
0.0592 
0.1217 
0.1549 
0.0372 

0.1028 
0.1547 
0.1467 

0.1220 
0.1269 
0.0503 
0.0372 

0.4070 
0.1992 
0.1328 
0.0664 
0.2162 
0.0541 
0.1081 
0.0541 
0.1717 
0.1580 
0.1547 
0.0462 
0.0655 
0.0696 

0.1550 
0.1560 
0.3428 

0.2339 
0.1443 
0.0888 
0.1090 

in the four coil systems in TFTR: the Ohmic heating 
system IOH(t), the equilibrium field system IEF(t), the 
variable curvature field system Ivc(t) and the toroidal 
field system ITF(t). Figure 1 shows a layout of the 
poloidal field coils in TFTR. The co-ordinates of each 
of the poloidal field coils are listed in Table I. 

The experimental currents were modified in two ways 
for the simulations reported here: 

(1) A plasma current control feedback system was 
used in the simulation in which a fictitious loop voltage, 
V,(t), was added to the computational boundary at each 
time step in order to force the plasma current in the 
simulation to match the experimental plasma current. 
The time integral of this, 1 Vf(t)dt = A+:', represents 
the error of the simulation in reproducing the experi- 
mental volt-second consumption. 

tion to add a small correction to the equilibrium field 
system current, IEF(t), in order to force the plasma 
major radius in the simulation to match the experimen- 
tal value Rp(t). Again, this feedback correction, &F(t), 
is a measure of the error in the simulation. 

The TFTR limiters can be represented by two 
circular arc segments: an inner one, with major radius 
R = 2.661 m and minor radius a = 1.01 m, and 
extending for 1.047 rad; and an outer one, with 
R = 2.601 m and a = 0.990 m, and extending for 
2.043 rad. We define the plasma boundary as being 
the innermost magnetic flux surface that makes 

(2) A similar feedback system was used in the simula- 

TABLE 11. SUMMARY OF SIMULATION AND EXPERIMENTAL RESULTS 
FOR DISCHARGES AT 0.05 5 t I 4.5 s 

Discharge No. 

24088 

24095 

24096 

24098 

24100 

24093 

24089 

Total 

16.2 

16.1 

16.4 

14.2 

14.2 

12.3 

11.3 

Resistive A*rF 

3.4 0.01 

3.6 -0.10 

3.4 -0.12 

3.4 0.06 

3.3 -0.33 

3.2 0.45 

3.4 -0.20 

4.4 4.4 2.9 3.4 

4.4 4.5 3.0 2.9 

3.8 3.5 3.0 3.0 

4.5 4.2 3.1 3.1 

4.0 3.6 3.2 2.9 

3.4 3.4 2.7 2.7 

2.5 2.8 2.2 2.3 
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, I I I 

0 1 2 3 4 
TIME (s) 

3.0 , 
I I 1 

2.2 L 

2.0 1 I I I I I 
0 1 2 3 4 

TIME (s) 

FIG. 2. (a) Plasma current and (b) major radius versus time. 
Comparison of the TSC simulation data (-) and the experimental 
data (. . . . .). The agreement is aided by feedback on the OH and 
EF systems, as explained in Section 2.5. 

contact with one of these limiter surfaces. At the 
plasma boundary we apply the boundary condition 
that the electron density is 30% of its central value 
and that both the electron and the ion temperatures 
are equal to the ‘vacuum temperature’, an input 
variable for TSC which we set to between 2 and 4 eV 

2.6. Free parameters 

In the simulation model, there are five free 
parameters, which are best determined by calibrating 
the simulation results with experimental data. These 
parameters and the equation numbers where they were 
introduced are: a120 (Eq. (22)), which describes resistivity 
flattening inside the q = 1 surface; alZ6 (Eq. (25)), which 
is the ratio of the ion to electron thermal conductivity; 
alZ2 (Eq. (28)) and a121 (Eq. (29))) which are the coeffi- 

cients for the TEM and the T~ induced transport; and 
alZ4 (Eq. (30)), which describes the additional flattening 
of the temperature profile inside the q = 1 surface. 

In all the simulations presented here, we have used 
the following values for these parameters: 

alz0 = 0.10 
aIz1 = 0.08 
alzz = 0.40 

a126 = 1.00 
a124 = 4.00 

3. EXPERIMENTAL COMPARISONS 

(34) 

We report here on the success of the TSC simulation 
model (described in Section 2) in reproducing the time 
dependence of seven ohmically heated helium discharges 
in TFTR. These discharges, which ranged in peak 
plasma current from 1.0 to 2.2 MA and in central 
density from 0.30 to 0.70 X 10’’ m-3, were all used 
in the parallel resistivity study reported in Ref. [15]. 
Their parameters are listed in Table 11. 

The evolution of the plasma current I, and the major 
radius R for shot 24095 is shown in Fig. 2. (The evolu- 
tion of the other six shots considered here is qualitatively 
similar). The simulation time ranges from 0.05 to 4.50 s 
after plasma initiation. The plasma current was ramped 
at approximately 3.0-5.0 MA/s until it reached a value 
of 1 MA, at which point the ramp rate was decreased 
to about 0.5 MA/s until the current reached its flat-top 
value. The 1.0 MA/s current rampdown began at 3.5 s. 
As indicated in Fig. 2 and shown also in Fig. 1, the 
plasma is grown off the outer limiter. During the current 
rampup the minor radius increases from 0.60 m to 
0.83 m. 

Figure 3 shows the experimentally measured values 
and the simulation values for the effective charge Zeff(t), 
the line averaged density &(t) and the ratio of peak to 
volume averaged density n:/( ne) (t). These quantities were 
input into the simulation, as discussed in Sections 2.3 
and 2.4. The slight differences between the simulation 
and the experimental curves are an artefact of the way 
in which these data were input into the simulation: the 
values of Z,,(t) and the density exponent aN(t) were 
taken as piecewise linear over 0.5 s intervals, whereas 
the line averaged interval was 2 ms. 

The results of this simulation, together with the 
corresponding experimental data, are shown in Figs 4-10. 
Figures 4 and 5 show the time history of the central 
electron and ion electron temperatures and their peak to 
average ratios. Both the central electron temperature 
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5.0 I I I 1 I 

2.0 1 1 I I I i 
0 1 2 3 4 

TIME (s) 

0.5 

0.4 

6- 0.3 

I I I I I 
1 2 3 4 

TIME (s) 

' ,--\ 1 , I I 2.0 

1.8 1 

...#I 
0.8 1 3 
0 1 2 3 4 

TIME (s) 

FIG. 3. Experimentally measured values (. . . . .) and simulation 
values (-) of (a) the effective charge Zerr(t), (b) the line 
averaged densiry ii,(t), and (c) the ratio of peak to average 
den@ n,(O)/(n,) (t). These values were input into the simulation, 
as discussed in Sections 2.3 and 2.4.  

and the central ion temperature in the simulation are 
seen to track the experimental values to within 10% 
for the entire duration of the simulation. 

Figures 4(b) and 5(b) show that the TSC transport 
model is capable of tracking not only the central tem- 
peratures but also (to a large degree) the temperature 
profile shapes during the current rampup. Although the 
model slightly overestimates the peakedness of the 
profiles during the initial second of current rise, it 
correctly reproduces the time at which the profiles 
peak (t = 1.2 s) and the time at which they become 
broadest (t I: 3.5 s); also it reproduces quite accurately 
the profile shape during the interval in between. 
A comparison of the temperature and density profiles 
across the midplane at the end of the current flat-top, 
t = 3.5 s, is given in Fig. 6 .  

4- 

3 -  

2 -  Y 1 

I 
, 4 I I 

1 2 3 4 
TIME (s) 

3.5 1 

t 

0 1 2 3 4 
, I I , 1.51 

TIME (s) 

FIG. 4. Time history of the simulation values (-) and the 
experimental values (. . . . .) of (a) the central electron temperature 
and (b) the ratio of peak to average values of electron temperature. 
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- 4 -  

3.5 , I I I 

I I I I I I I 

(b)  + 

3.01 2.5 

1.5 

1.01 

1 -  . y j i  
I L! 

: 1  
I I I I 1 

A 

0.5 ,! I! 
I I 4 I i 
1 2 3 4 

TIME (s) 
1 I I I I I I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

RADIUS ( m ) 

Figure 7 presents a comparison of the total volt- 
seconds delivered to the plasma in the experiment (E) 
and the simulation (S), as well as a breakdown of the 
resistive (R) and the internal (I) components in the 
simulation. Here, the experimental curve is computed 
directly from the coil currents as the total flux linkage 
from all coils to the nominal plasma centre at R, = 2.65 
and Z, = 0. Thus, the experimental volt-seconds is 
computed as 

N 

E = M , ~ A I ~  
1 = 1  

where MPi is the mutual inductance between coil i and 
the plasma, and AIi is the amount by which the current 
in coil i has changed since the beginning of the simula- 

0.40 0~50r-----l 
0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

RADIUS ( m ) 

FIG. 6. Comparison of the simulation values (-) and the 
experimental values (. . . . .) of (a) the electron temperature, 
(b) the ion temperature, and (e) the electron density versus 
the minor radius at t = 3.5 s. 

378 NUCLEAR FUSION, Vo1.33 No.3 (1993) 



TSC SIMULATION OF OHMIC DISCHARGES IN TFTR 

0.2 

TIME (s) 

..I 

- 

FIG. 7. Comparison of the total volt-seconds (T) delivered to the 
plasma in the experiment (. . . . .) and ?he simulation (-). Also shown 
is the breakdown in the simulation between intemal (I) and resistive 
(R) components using ‘axial’ accounting. 

20, I I I 

I I 
U 1 3 4 

TIME (8) 

FIG. 8. Coil currents versus time for the three coil systems from 
the simulation (-) and ?he experimen? (. . I .). I,, is the equilibrium 
field system, Io, is the Ohmic heating system and I ,  is the variable 
curvature system. The latter two were the same for the Simulation 
and the experiment. 

tion (t = 0.05 s). The total volt-seconds used in the 
simulation is computed as 

S = MpiAIi + 

where A q S  is the time integral of the additional fictitious 
loop voltage used in the simulation. 

Also plotted in Fig. 7 is the resistive volt-second 
consumption in the simulation, defined as the time 

N 

i = l  

integral of the loop voltage on the plasma magnetic 
axis [16] or as the change of poloidal flux there. Thus, 

R = = q~~(O)J(O)dt S1 
where the second equality follows from application of 
Faraday’s law and Ohm’s law (Eq. (19)). The internal 
volt-second curve is the change in poloidal flux at the 
plasma limiter, 

I = A*&er 

Thus, the difference between the curves marked I and 
R is the total poloidal flux difference between the 
limiter and the magnetic axis at a given time. 

Figures 8 and 9 show a comparison between the 
simulation values and the experimental values of 
A = 4 / 2  + Pp and of the currents in the equilibrium 
field coils, IEF. The experimental curve for A was 
determined purely from magnetics measurements 
using the Shafranov formula. The simulation curve 
was calculated from computing integrals over the 
plasma volume using the definitions 

Note that the simulation current in the equilibrium field 
coil system is the sum of the experimental value and 
the feedback correction, as discussed in Section 2.5, 

1.2 I I I A 

FIG. 9. Comparison between the simulation values (-) and the 
experimental values (.....) of A = 4/2  + bp. The experimental 
curve for A is from magnetics measurements. 
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0.24 

0.20 c 
0 

2 0.16 - 
Z 

v) a: 

2 
9 0.12 

9 0.08 - z 

- 

0.04 /- 
0 
0 1 2 3 4 

TIME (S) 

FIG. 10. Comparison between the radius of the q = 1 surface in 
the simulation (-) and that deduced in the experiment .). 

1.15 4.14 
R (m) 

FIG. 11 .  Projles of the toroidal current density plotted across the 
midplane z = 0 at various times during the discharge simulation. 

Finally, Fig. 10 presents a comparison between the 
radius of the q = 1 surface computed in the simulation 
and that deduced experimentally by the soft X-ray 
camera. Figure 11 shows the computed midplane profiles 
of the toroidal current density. The effect of flattening 
of the current profile within the q = 1 surface after 
t = 2.0 s can be seen. 

Table I1 summarizes the simulation and experimental 
results for the seven discharges studied. For each 
discharge the table lists the total volt-seconds required 
for the 4.5 s of simulation time, the axial resistive volt- 
second consumption in the simulation, and the difference 
between the experimental and the simulation volt-second 
consumption, A\kgF. Also listed are the maximum 
electron and ion temperatures obtained in the simula- 
tion and the experiment. The simulation temperatures 

are seen to be generally within 10% of the experimental 
values for the range of discharges. 

The amount of resistive volt-seconds consumed in 
these discharges was remarkably similar, all falling 
within the narrow range from 3.2 to 3.6. The total 
volt-seconds required ranged from 11.3 for the 1 .O MA 
discharge to 16.4 for the 2.2 MA discharge. The 
absolute error in the volt-second consumption ranged 
from -0.3 to 0.5. This amounts to a maximum error 
of 4% in the total volt-seconds consumed, or an error 
of 15% in the resistive component. 

4. DISCUSSION AND SUMMARY 

The primary 'intent of this paper is to demonstrate 
that the plasma model which has been incorporated into 
the TSC code can reproduce many of the features of 
an Ohmic tokamak discharge to an accuracy close to 
the experimental uncertainty. These features include 
peak and average temperatures, current profile evolu- 
tion, location of the sawtooth inversion radius and volt- 
second consumption. This gives us some confidence 
in using TSC as a design tool for predicting the volt- 
second consumption during the Ohmic startup phase 
in future experiments. 

In performing the calibration runs presented here, 
several interesting trends were noted which are outside 
the original scope of this paper but which deserve 
mention. Probably the most important of these is that no 
anomalous parallel resistivity was needed to reproduce 
the current rampup phase. This was reported previously 
[15] and is confirmed by the present study. 

A second observation of interest concerns the evolu- 
tion of the peak to average temperature profile as illus- 
trated in Fig. 4@). It is seen that this ratio reaches a 
maximum during the current ramp at 1.1 s, which is 
the time when the plasma minor radius has grown to 
its full value (see Fig. 2). The ratio then decreases 
steadily until about 3.5 s, when the current ramp-down 
begins. This long time-scale is apparently set by the 
current diffusion time; it was also noted in previous 
publications [ 171, 

temperature profile evolution in a transient ignition 
experiment such as the proposed BPX [18] and 
IGNITOR [19] devices. The more peaked the tem- 
perature profiles, the easier it is to satisfy the ignition 
criteria for a D-T tokamak. By timing the current ramp 
and shape evolution of the discharge properly, it may 
well be possible to ignite the tokamak before the tem- 
perature profile broadening begins. 

It may well be possible to exploit the effect of this 
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Appendix 

Here we discuss the argument that the TSC sawtooth 
model described at the end of Section 2.1 (in particular 
by Eqs (22) and the preceding paragraph) will predict 
the same plasma edge loop voltage and transformer 
requirement for some value of the free parameter a120 
as does the more familiar Kadomtsev [12] reconnection 
model. This single free parameter of the TSC sawtooth 
model is analogous to the single free parameter in the 
Kadomtsev model - the sawtooth period T ~ .  

The Kadomtsev reconnection model describes a 
periodic phenomenon in which the plasma current inside 
the toroidal flux surface a0 is allowed to peak so that 
the safety factor on axis, qo, falls below unity. Then, 
at some predetermined value of qo (or, alternatively, 
after some predetermined time), the magnetic surfaces 
inside a0 reconnect in order to flatten the current inside 
that surface. Typical profiles of the plasma current in 
the Kadomtsev model just before and just after the 
flattening are shown as curves 1 and 2 in Fig. A- 1. 

In the TSC sawtooth model, the resistivity profile is 
artificially flattened inside a0 according to the descrip- 
tion given in Eq. (22). This causes the plasma current 
inside a0 to assume a steady state profile the peakedness 
of which is intermediate between that of the Kadomtsev 
model profile before the crash and that after the crash. 
The TSC current profile is shown in curve 3 of Fig. A-1. 

We argue here that the use of the TSC sawtooth 
model will produce the same loop voltage at the plasma 
edge as does the Kadomtsev reconnection model. The 
TSC model has one free parameter to affect the central 

FIG. A-I .  Curves 1 and 2 are the profiles of the plasma current in 
the Kadomtsev model before and afer reconnection. Curve 3 is the 
current produced by the TSC ‘averaged’ model. 

current peakedness (alzo), just as the Kadomtsev model 
has a free parameter to control the time averaged 
peakedness. 

is a function of the magnetic co-ordinate a. The time 
derivative of the inverse safety factor is equal to the 
derivative of VL with respect to the toroidal flux 

In general, the loop voltage VL as defined in Eq. (6) 

In particular, if the q-profile is stationary in time in 
the outer region of the plasma (Region 2 in Fig. A-1), 
then the loop voltage is constant in this region with the 
same value of VL as at the plasma edge. This is the 
voltage that must be supplied by the external trans- 
former. Thus, from Eqs (6) and (19)-(21), the loop 
voltage at the plasma edge is given by 

( ( J  - JBS,. B) 
(k€) VLIedge = 2 w  

where the right hand side is evaluated anywhere in 
Region 2. Therefore, we see that whatever is going 
on in Region 1 will not affect the loop voltage being 
supplied by the transformer as long as it does not affect 
any of the quantities in Eq. (A.2) in Region 2. This is 
the basis for concluding that the TSC ‘averaged’ model 
and the Kadomtsev reconnection model can give identical 
results for the loop voltage at the plasma boundary and 
hence for the volt-seconds required for a given discharge. 
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