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Abstmct- The role of the resistive wall mode in limiting 
tokamak plasma performance is well chronicled and is a cen- 
tral topic of the Feedback Stabilization Initiative (FSI). It 
is believed that stabilization of this mode, which is a con- 
verted branch of the ideal-MHD external kink mode, may 
lead to the design of devices capable of accessing higher per- 
formance advanced operating regimes. We have developed 
a formulation of the resistive wall mode, for the limiting 
case of infinite aspect ratio, using the elementary physi- 
cal concepts of sell‘ and mutual inductance. This results 
in a set of coupled lumped-parameter circuit equations with 
the variables being the perturbed plasma current, the heli- 
cal component of induced current in the resistive shell, and 
(with feedback) the current in the active coil. These equa- 
tions, which describe plasma perturbations of n 2 l, have a 
one to one correspondence with plasma vertical positional 
n = 0 control. Comparisons between the dispersion relations 
for the two cases show that the quantity that carries the 
strength of the instability for the resistive wall mode, equiv- 
alent to the negative decay index in vertical position control, 
is Lpl(l  - f)  where Lpl is the helical inductance of the per- 
turbed plasma current and ( 1  - f )  is related to the helicity 
of the ideal-MHD kink mode. This method has been ap- 
plied successfully to describe the resistive wall mode in gen- 
eral terms and to describe analytically resistive wall mode 
feedback stabilization schemes. Formulation in this man- 
ner should facilitate numerical simulation of resistive wall 
mode feedback schemes. In this paper, we will describe the 
formulation in detail, show how the resulting circuit equa- 
tions compare to the equations arrived at using traditional 
MHD analysis methods (particularly with the inclusion of 
feedback), and compare the resistive wall mode equations 
to those that describe the (n = 0 )  vertical instability. 

I. INTRODUCTION 

The success achieved in controlling the n = 0 vertical in- 
stability in non-circular cross-section tokamaks has helped 
initiate a new era in tokamak fusion research with large 
tokamak devices that routinely operate in high tempera- 
ture regimes. Key to the success of vertical position control 
was the integration of a passive stabilizing system which en- 
abled the feedback control system to operate on a timescale 
much longer than Ithe ideal-MHD time scale characteristic 
of the instability and maintain the plasma column at a de- 
sired vertical location. 

With high temperature regimes achievable, current 
large-scale tokamak programs are confronting the next sig- 
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nificant challenge, sustainment of a high @ plasma near 
the ideal-MHD @ limit. The ideal-MHD mode most of- 
ten suspected of inducing high @ disruption is the external 
kink. There are several experimental results which strongly 
indicate that a close-fitting passive shell (either installed 
conducting plates or the vacuum vessel) can reduce the 
growth rates of external kink modes and consequently these 
modes are modified into the resist‘ive mode branch[l], [2], 
[3]. When the mode is converted into the resistive wall 
mode branch[4], [5], it can be controlled by a combination 
of a passive shell system and a feedback control system that 
operate on a slower time-scale in a manner similar to what 
has been successful for n = 0 vertical position control[6], 

Recently, several schemes for controlling the resistive 
wall mode have been proposed which utilize integration of 
both active and passive systems. One of these schemes is 
the intelligent shell, which was originally developed for the 
“thick” shell RFP devices to control locked modes caused 
by eddy currents near the gap of the conducting shell[8]. 
An alternative scheme is the fake rotating “thin” shell con- 
cept proposed for tokamaks, where the conducting wall 
becomes effectively thin because the period of operation 
is much longer than the magnetic field penetration time 
through the first wall or vacuum vessel[9]. This highly con- 
ducting plasma-facing component can also serve effectively 
as the thin shell needed in the rotating shell control con- 
cept. 

Here, we present a formulation for resistive wall mode 
feedback control schemes utilizing concepts from electric 
circuit ‘theory. Specifically we introduce the inductance 
matrix to describe the interactions between the plasma, 
passive shell, and active coil systems. In this formulation 
the off-diagonal terms of the inductance matrix (mutual in- 
ductance terms) are directly related to the geometry of the 
coupled components and should provide a means to read- 
ily evaluate the merits of proposed designs. This approach 
has proved useful in both the analysis and the design of 
power and control systems for the vertical position control 
scheme. 

[71. 
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To apply this technique to resistive wall mode stabiliza- 
tion, the definitions of several key elements of the feedback 
system must be redefined in a way that is consistcnt with 

sistive wall mode feedback stabilization system: 
1. The resistive helical flux loss in the case of n 2 1 resis- 
tive wall modes corresponds to the radial flux loss in the 
case of n = 0 vertically unstable modes. 

carry the superscript “0”). The r- and &components of 
Faraday’s Law (linearized) are: 

the more complicated geometry needed to describe the re- y B ,  = iFv,, (2 )  

and 

(3) 
8 0  ?Be = ikB2ve - ikBjV, - -v,B~ 
dr 

2 .  The cause of the external kink mode, which in the pres- 
ence of the conducting wall becomes a resistive wall mode, respectively. Finally incompressibility allows us to write 

(4) 
is related to the internal current or pressure profiles anal- 
ogous to the manner in which the negative external field 
curvature (the magnetic decay index n = -$ln(Bext) < 0, 
or more conveniently the second derivative of mutual in- 
ductance of the external field flux Mrxt) is the source term 
for the vertical position instability. 
3. A helical current filament (or helical sheet current) must 

I d  m 
----Tu, + i-we + ikv, = 0. r dr r 

Using 2, 3, and 4 to eliminate B,, and Be from 1 we get 

(5) 
X B: 
r r g& = -im- + 2-iFJT, 

+ 
where E v/y, and g = y2p0 + F2. be employed as the trial function for the resistive wall mode 

in contrast to the rigid n = 0 plasma displacement repre- 
sented by an axisymmetric current filament used to analyze At the unperturbed plasma-vacuum interface, r = a, 

the vertical position instability. 
Results arrived at using this formulation will be useful 

to physicists and engineers tasked with the design of a sys- 
tem for controlling resistive wall modes who must deal with 
constraints imposed both by reasonable machine and con- 
trol system design practices and the current state of the 
art. To facilitate the analysis the large aspect ratio limit is 
used in the formulation. 

11. DERIVATION OF THE CIRCUIT 
EQUATIONS 

The resistive wall mode has been studied by various au- 
thors[8], [ll], [12]. The formalism used in analysis of the 
resistive tearing mode is also typically used to analyze the 
resistive wall mode as the eddy current on the passive shell, 
in the thin shell approximation, plays a role similar to A’, 
the flux jump, in the tearing mode analysis. 

Here the feedback control scheme is formulated from an 
electrical engineering point of view to dcscribe explicitly 
the magnetic flux and its relationship to the active feed- 
back coils and passive shell outside the plasma boundary. 
We describe the resistive wall mode in a cylindrical geom- 
etry in the infinite aspect ratio limit. 

To derive the equation for the plasma perturbation we 
use the O-component of the Momentum equation, the 13- 
and r-components of Faraday’s Law, and an assumption 
of incompressibility[lO]. Also, we will assume a uniform 
plasma current density profile throughout (for a more gen- 
eral derivation see [l3]). Assuming that our solutions are 
of the form eytei(me-n$), the O-component of the linearized 
Momentum equation can be expressed as 

(1) 
X 

Ypove = -im- + iFBe + J:B,, 

where X = p + Bo B is the perturbed pressure, 
J:(r) = (l/r)(O/Or)(rB:) is the equilibrium axial current, 
and F = (B:/r)(m - nq) (note that unperturbed quantities 

T 

(6) 
a X ( a + )  = (Bo . B)”ac = F(a);B;“(a), 

where we have used f . V  x BVac = 0 to write 
BZV,, = (kr/m)By. At the boundary X(a+) = X(a-) so 
we can write 5 as 

g&(a) = -iF,Biac(a) + 2-iF&.(a). B j ( 4  (7) a 

The radial component of B is also continuous at r = a 
which allows us to write B$‘(a) = iFa&(a). Substituting 
this into 7 gives 

Because we are assuming a uniform current density equa- 
tion <e/& can be replaced by i. In addition, by introduc- 
ing TA = (p:’’a)/B:(a) (the edge poloidal Alfvkn time) and 
also using B = V x @&/(27rRo), 8 simplifies to 

(9) 

where f G (m - nq(a)). Equation 9 is the form we will use 
in the circuit equation formulation. 

The perturbed helical flux at r = ri is produced by per- 
turbed helical currents in the plasma, passive shell eddy 
currents, and the active (feedback) coil current. In what 
follows we will consider each of these components as a cur- 
rent carrying circuit. The current path corresponding to 
the perturbed plasma current we denote as circuit “1” and 
the passive shell and active feedback coil circuits are de- 
noted as circuits “2” and “3” respectively. The vacuum 
poloidal flux at r; can be written as 
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The Ij are the currents in each circuit with the Li and 
Mij being the self and mutual inductances respectively. In 
general the inductaiice terms may be obtained numerically 
once the geometry is fixed and the perturbed plasma cur- 
rent path is known. 
We can write an equation for the poloidal flux at the plasma 
boundary, r = a+, using 10: 

$(a+) = LlI l  + M1212 + M1313 (11) 

where L1 is the self inductance of the perturbed plasma 
current "circuit" arid the M1j are the mutual inductances 
between the perturbed plasma current circuit and the pas- 
sive shell and the active coil system. Taking the spatial 
derivative of 11 we obtain: 

$'(a+) = LiIl  + Mi212 + Mi313. (12) 

Now substituting both 11 and 12 into 9 we get a circuit 
equation for the perturbed plasma current circuit 

- 2 f = 0 .  (13) 

We can write an equation for the flux at the passive shell 
similar to 11. 

$ ( r w )  = M2111+ Ld2 + M2313 (14) 

Differentiating 14 with respect to time and applying 
both Faraday's arid Ohm's law at the wall to get 
i3@(rW)/i3t = -R212 we can write 

7M2111+ ( 7 ~ 5 2  + R2)12 + ~M2313 = 0 (15) 

as the circuit equation for the passive shell. Similarly for 
the active coil, with the inclusion of a feedback voltage 
term, V3, we get 

YM311i + ~M3d2  + (7~53 + R3)13 = V3 (16) 

where the form of V3 depends of the details of the feedback. 

111. DISPERSION RELATIONS 
Equations 13, 15., and 16 can be used to derive disper- 

sion relationships fctr various resistive wall mode feedback 
control schemes. First, consider a plasma that is not sur- 
rounded by a passive shell system and without active feed- 
back system coils. I n  this instance we are left with 13 with 
both I2 and I3 set to zero. Inspection of the resulting equa- 
tion reveals the usual dispersion relation for ideal external 
kinks: 

7272 = 2 f ( l -  f ) .  

To complete the system we add a passive shell system at 
radius r = 1-2 where r2 is less than the critical radius where 
a perfectly conducting shell would stabilize ideal external 
kinks over the operating region considered (determined by 
the value of f in this model) and an active coil system at 

r = r3 (a < r2 < 1-3). We note that y 7 A  << 1 and that in 
the resistive wall mode limit we can drop r 2 ~ i  in 13. In 
this limit 13 becomes 

Denoting the L/R times of the passive and active sys- 
tems as 72 and 73 respectively we can rewrite 15 and 16 
as 

and 

(773)M3111 + (773)M3212 + (773 + 1)L313 = v373 (20) 

respectively. 
Next consider the case of a plasma surround by a passive 

shell. The equations of interest are 18 and 19 with terms 
having subscript 3 eliminated. If we solve these equations 
for 772 and use 7 % ~ :  = 2f(l - f )  we obtain 

It is convenient at this point to give explicit formulas for 
the self a?d mutual inductances and their derivatives for 
the limiting case of infinite aspect ratio. In this case the 
inductances are trivially given by: 

Li = R 0 ,  

Mij = Ro(ri /r j )m ri < r j ,  and 

= &(rj / r i )m ri > r j .  (22) 

The formulas relating the self and mutual inductances to 
their spatial derivatives are also quite simple: 

(~&)/(mLg) = -1, and 

( r iM&) / (mMi j )  = +I. (23) 

When these substitutions are made, the quantity 
Mf2/(L1L2(1 - f ) )  in 21 simplifies to ( a / ~ ) ~ " / ( l  - f )  and 
the dispersion relation becomes 

which is the familiar dispersion relation for the resistive 
wall mode. 

It is interesting to compare 24 to the dispersion rela 
tion for the vertical positional instability of a filamentary 
plasma 

Comparing 21 and 25 we see that whereas MZxt carries the 
strength of the vertical positional instability L1(1 - f )  plays 
that role in the resistive wall mode. Similarly the necessary 
condition for vertical stability, LzM&,:, - Mi: < 0, becomes 
LlL2(1 - f )  - Mfz in the resistive wall mode case. We see 
that the resistive wall mode can be thought of as a n 2 1 
version of the vertical positional instability. 
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IV. DISCUSSION 
To put the equations in a form more suitable for simula- 

tion we differentiate 18 with respect to time to obtain. 

Equations 26, 15, and 16 comprise a complete set of circuit 
equations in a form suitable for simulation of the resistive 
wall mode. In matrix form we write 

MI+RI=V (27) 

with 

M =  

and 

(30) 

We first note that in the equations that the L1 term is mul- 
tiplied by the quantity (1 - f )  and we say that the effective 
inductance of the plasma is Ll(1- f). 

It is the term V3 that produces the feedback action in 
the resistive wall mode feedback schemes. For example, 
in what is called “intelligent shell”[8] feedback we would 
replace the term V3 by the quantity Gi,I2 where Gj, is a 
gain applied to a measurement of the passive shell current 
to be applied in a manner so as to reduce the shell current 
to zero. In what is termed “fake rotation”[9] feedback V3 
is replaced by a quantity proportional to the flux measure- 
ment at radial position “0”. In this scheme we replace V3 
by imGfr(MioIi+ M2oI2 + M3013). 

It is clear from the above that this formulation results in 
equations suitable for numerical simulation studies of resis- 
tive wall mode feedback schemes. The simulations them- 
selves should be straightforward once the particular geom- 
etry, operating regime, and feedback scheme are chosen. It 
is also apparent from the form of the equations that a hard- 
ware simulator could be constructed to allow realtime sim- 
ulations of resistive wall mode stabilization schemes with- 
out an operating tokamak experiment. The main difficulty 

would be simulating in hardware the reduced plasma induc- 
tance L1(1 - f). It is believed that this could be achieved 
by using a feedback system to produce a negative induc- 
tance in the hardware simulator. 

V. SUMMARY 

We have presented a formulation of the resistive wall 
mode instability that results in a set of linear lumped- 
parameter circuit equations. The set of equations yield 
dispersion relations identical to those derived using differ- 
ent means for the cases of the ideal external kink and the 
resistive wall mode without feedback. The set of equa- 
tions are in form suitable for numerical simulation of re- 
sistive wall mode feedback schemes. The form of these 
equations should also facilitate resolution of engineering 
issues in an actual system design. These results also indi- 
cate that it should be possible to study resistive wall mode 
feedback stabilization schemes using a hardware simulator 
with Ll(1- f) representing the plasma inductance and the 
strength of the kink mode. Further details will be presented 
in [13]. 
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