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Determination of three-dimensional equilibria from flux surface
knowledge only
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It is shown that the method of Christiansen and Taylor, from which complete tokamak equilibria can
be determined given only knowledge of the shape of the flux surfaces, can be extended to
three-dimensional equilibria, such as those of stellarators. As for the tokamak case, the given
geometric knowledge has a high degree of redundancy, so that the full equilibrium can be obtained
using only a small portion of that information. @002 American Institute of Physics.
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Christiansen and TayldCT) have showhthat complete We briefly review the origin of the 3D-GS equatidin
magnetohydrodynami¢MHD) equilibria may be obtained a general flux coordinate systedy'}={p,6,{} (for i
for axisymmetric tokamaks with noncircular cross-sections=1, 2, 3) parametrizing a torus, with poloidal andgle tor-
provided that one initially knows only the shapes of the fluxoidal angle{, and flux-surface labeb already introduced,
surfaces, described by some flux surface lapgt) over  one may represent the magnetic field in both the contravari-
real-spacex. The demonstration is accomplished by takingant (Clebsch representation,
appropriate flux—surface averages of the Grad—Shafranov _ I
(GS) equatiori® to obtain a simple radial second order ordi- B=VyXV{+VOXVo=e,B’+eB", @)
nary differential equatiofODE) for the poloidal flux¢s as a  and in the covariant representation
function of p. This can be solved analytically, and, given
#(p), one can obtain expressions for the pressure gradient B=JVO+FV{—vVp+V¢. @
profile p’=dp/dp and poloidal current profil€ which ap-  Here, thee =76/ x & are the contravariant basis vectors,
pear in the GS equation. Singgx) can be inferred from wherei, j, andk are cyclic. These are reciprocal to the co-
measurements of physical quantities which are also approxizariant sete, usually taken equal t§q', in which caseg
mately flux functiongsuch as density, temperature, or pres-=gx/q'. J=(e'- X &%) =g, -e,X g; is the Jacobian. We
surg the method has the potential to be an important diagassume good flux surfaces throughout the plash{a) and
nostic, and efforts have been made to apply this method tg(p) are, respectively, 1/2 times the toroidal magnetic flux
measuring the current arglprofiles on the Joint European inside, and the poloidal flux outside, flux surfageandJ(p)
Torus (JET),* Alcator C-Mod? and PEGASUS. andF(p) are, respectivelyy/2m times the toroidal current
It is natural to consider whether such a method also exinside, and the poloidal current outside, flux surfac&lsing
ists for three-dimensional3D) toroidal equilibria such as Eq. (2) in Ampere’s law, one obtains the contravariant rep-
stellarators. In this paper, we demonstrate that this is theesentation of the current,
case. The GS equation is an elliptic partial differential equa-
tion (PDE) in two dimensions, usually parametrized by the
distanceR from the major axis, and the vertical height +(J' +9,v)VpXV6. 3
above the midplane, independent of the geometrical toroidal . ) ]
azimuth £, about that axis. Since the derivation of the GsEquations(1) and (3) automatically satisfyv - B=0 and the
equation makes use of axisymmetry, it is unclear that th&teéady-state conditiof-J=0, as well as the equilibrium
method will generalize. However, Degtyaret al” have CconditionsB’=Vp-B=0 and J’=Vp-J=0 arising from
shown, through insightful choices of flux coordinate systemsd0tting B and J into the force-balance equatiop’Vp
that a 3D generalization of the GS equation fx) exists, =JXB. The final equilibrium condition is the radial compo-
which we shall refer to as the 3D-GS equation. Here wehent of this,
_show that this more cor_nplicatec_i equation may a_Iso be s_ub- |Vp|?p’=Vp-IXB. (4)
jected to a procedure like that in Ref. 1 to obtain a radial ) )
ODE for (p) of the same form as in the 2D case, but with The standgrdZD) GS equation uses ne_lther the co- nor the
more complicated coefficients. CT have pointed out that theifontra-variant representations BfandJ in Eq. (4), but the
procedure for tokamaks is more robust the more highly Mixed” representation
shaped the tokamak cross-.section. Ong might cqnjecture .that, B=Vyxb+bF, ued=—bA*y+VFxb, (5)
because of the strong poloidal and toroidal shaping of typical
stellarators, the CT procedure would in fact be more suited tovhere b=V {,= ZIR, andb?A* y=V - (b?V ). Using Egs.
stellarators than to tokamaks. (5) in EqQ. (4), one obtains

mod=VXB=—(F'+d,v)V{XVp
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b?A* =~ pop’ /4’ —b*FF'1 4. (6)
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where A=b?|Vp|?, C=b2A%*p, Do=puo, D;=b2, D,
—be- VX byt (b, X Vp)- VX (b:XVp)/|Vp|?], Da=b,

Axisymmetry has been used in obtaining the simple forms_(bnxvp) andD,= — (b, X Vp)- (VX b,)/|Vp|2. Only the

for J and Eq.(6). Specializingp to ¢ here so thaty’' =1, and
noting thatb?=R ™2 yields the GS equation.
In the fully 3D problem, Degtyareet al.” have shown

coefficientsA, C, Dy and D; are nonvanishing in the 2D
case.
As in Ref. 1, we note that Eq.12) has an immense

that a mixed representation may again be given, making Usgmount of redundancy: an infinite number of coupled ODEs

of two special flux coordinate systems, the
“conatural” systems p,6,,,¢,) and (p,6.,{;), respectively,

“natural” and;

in p may be generated from it by taking different flux surface
averages. For example, for any “test functionsj(x), (i

which become the same system in the 2D case. Demanding0_4) with vanishing flux surface averagé;)=0, taking

Vp-VXB=0 from representation Eql) for B, and further

((12)x h; /D;) yields a 1D equation of the form of E¢L2),

that this condition hold independent of the rotational trans+yt with the term irD; annihilated. Generating such an ODE
form (= —¢'/@’ results in equations determining the angleso each of the fiveD, , one obtains a set of five linear equa-

for the natural coordinate system:
V- [VpXx(V#,XVp)]=0, V-[VpX(V{,XVp)]=0, (7)

and demanding/-B=0 from representation Eq2) for the

conatural system, and further that this hold independent of
the ratio F/J results in similar conditions determining the

angles for the conatural system:
V-[VpX(V8:XVp)I|Vp|?]=0,

V-[VpX(V{XVp)I|Vp|*]=0. (8)

Each of Eqs(7) and (8) have no radial derivatives, and so

are 2D PDEs over a flux surface. Starting only wjit(x),

tions in the seven “unknowns”{y’ W' %p FF,
Fy',(Fy')',F2}. Thus, by taking linear combinations, one
can eliminate the last five of these, and obtain an equation of
the same form as found in Ref. 1,

@' Y AT+ 2Cr=0, (13

which is easily solved fors(p). Calling the coefficient of
the ith equationa;, (i=0-4), Eq.(13) is thus obtained
by the flux-surface average(12)xhy), with hy(x)
=3 ;a;h;(x)/D;(x). Given y, one may obtain any of the
other flux function unknowns, and thys andF, through
other combinations of the five ODEs. A slightly different
approach is to make contact with the starting point of CT for

one uses Eqs7) and(8) to obtain the full natural and con-  this part of the analysis, the GS equation written witkas
atural coordinate sets. Given these, the generalized mixee radial variable. As noted above, this is just Ek®) with

representation foB is shown in Ref. 7 to be

B=VyXb.+b,F, 9

where b.=e.3/(e;3-€,3) and b,=e,3/(e;3-€,3). The cur-
rent is then given by

110d=V X (Vipx be) + VF X by +FV X b, (10

where the final term vanishes in the 2D case. Using Es.
and(10) in (4) yields the 3D-GS equation,

b2A* = — uop' /' —b2FF' Iy’ +Fb,-VXb,—F'b,
-(bnXVp) = (F/4'|Vp|?) (DX Vp)- VX (b
XV i)+ (F?1y' [V p|?)(byX Vp)- (VX by),
11

where the operatoA} generalizesA* in the GS equa-
tion: b2A* yy=—b,- VX (VX b)) =V - (b2Vy)— V- b,

X (VXb). Of the six terms on the right side of Ed.1), all
but the first two vanish in the axisymmetric cd6¢ as does
the second term in the last form given fafA¥ .

We now show that Eq(11) has a form amenable to the

analysis to which CT subjected E@) in Ref. 1. Usingp as
the radial variable, we write each of the termsyhx Eq.

vanishing D,,D5, and D,. Using only the last threei(
=2,3,4) of the five averaged equations above, one can
straightforwardly eliminate the unknows)’,(F¢')’, and

F2 from Eq.(12), obtaining

o'y A+ C=—p'Do—FF Dy, (14)

where all four coefficientsX here are given byX=X
—(Xh;/D;)D4/(D4h; /D), and X=X—(Xh,/D,)Ds/
(D3h, /D) —(Xh3/D3)D,/{Dyh3/D3). Equation(14) is of
the same form as the GS equation, but with the replacements
b?|Vp|2—A, b?A*p—C, me— Do, andb?—D;. Thus, the
same expressions given in Ref. 1 fgérp’ and FF’ apply
here as well, with these replacements.

Summarizing, we have shown that the 2D result of Ref.
1, that knowing only the shapg(x) of the flux surfaces in a
toroidal MHD equilibrium is sufficient to determine the full
equilibrium, can be extended to 3D equilibria, such as those
of stellarators. This is achieved by building on the results of
Ref. 7, which showed that a 3D analog for the GS equation
exists, and by demonstrating that this 3D-GS equation retains
the needed properties for the CT method to be applied. As
noted in Ref. 1, the equilibrium equation has a great deal of
redundancy, reflected in the great flexibility in the choice of

(11) as the product of some combination of the physicsthe test functiond(x). These may be chosen to be appre-

related profile functionsg/(p),p(¥) andF(p) and their de-
rivatives, times a geometric coefficienfA(x),C(x),
D;_q_4(x)] which varies over a flux surface:

@' YA+ y'?C=~p'Do—FF'D;—Fy'D,

—(Fy')'D3—F?Dy, (12

ciable everywhere over each flux surface, or highly localized,
depending, for example, on what type of data one has avail-
able to determingp(x). The fact thatp(x) describes a 3D
equilibrium assures that any choice will yield the same re-
sult. However, if the precision with which this information is
known is limited, as will be the case g(x) is measured

Downloaded 30 Dec 2004 to 198.35.4.169. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



1052 Phys. Plasmas, Vol. 9, No. 3, March 2002 H. E. Mynick and N. Pomphrey

experimentally, a corresponding spread in the results fortJ. p. Christiansen and J. B. Taylor, Nucl. Fussh 111 (1982.
¢,p’ andFF’ will arise for different choices off; . Study of ~ ?H. Grad and H. RubinProceedings of the 2nd United Nations Interna-

; Al : _ tional Conference on the Peaceful Uses of Atomic Enérgly 31 (United
this, and the practicality of the CT approach to profile deter Nations, Geneva, 1958p. 190,

mination in stellarators, are left to future work. 3V, D. Shafranov, Sov. Phys. JETR 545 (1958.
4J. P. Christiansen, J. D. Callen, J. J. Ellis, and R. S. Granetz, Nucl. Fusion
29, 703(1989.
ACKNOWLEDGMENT 5R. S. Granetz and M. C. BdisaFusion Eng. Des34—35, 153 (1997).
. 6K. Tritz, R. Fonck, and T. Thorson, Rev. Sci. Instruf, 595 (1999.
This work supported by U.S. Department of Energy 7 . pegtyarev, V. V. Drozdov, M. I. Mikhailov, V. D. Pustovitov, and V.

Contract No. DE-AC02-76-CHO3073. D. Shafranov, Sov. J. Plasma Phy4, 22 (1985.

Downloaded 30 Dec 2004 to 198.35.4.169. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



