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Abstract

This lecture addresses a potpourri of topics in confinement analysis of
tokamaks with auxiliary heating. First we discuss the different roles of
on-line and off-line confinement analysis codes - what should the strengths
of each be, and what are the allowable weaknesses? Next we examine the
analysis of plasma rotation experiments, a topic which has not been f ormally
treated in the literature. We discuss neutral beam injection of momentum
into rotating plasmas, both in the context of Monte Cario and of Fokker -
Planck codes, taking into account time-changing 2-D plasma geometry. The
transport equations for toroidal angular momentum, including the effects of
momentum dissipation on power balance, are formulated.

Finally, we touch briefly on statistical techniques for interpreting
confinement data bases. Simple models of the form: g o [52 BrPRC... are
frought with danger. First of all, experience has shown that ohmic tokamak
plasmas at low Bp exhibit different scalings than strongly auxiliary-heated
plasmas at high Bp. In addition, however, the results of simple multiple
regression analyses can.give misleading error bars for the coefficients a, b,
C... above. If there is correlation in the data set amongst the "independent”
variables Ip, BT, Ne... » then the uncertainty ranges of 3, b, and ¢ are
correlated as well. This structure of the data is pot reflected in the error
bars generally considered. A simple way to study the joint confidence region
of the fit coefficients, for situations with pairwise correlation of
independent variables, is presented.

165




L. On- and Off-Line Analysis Codes

Two major transport analysis codes are used on TFTR for interpreting
confinement data. One code, TRANSP, which has been in development and in
use at PPPL since 1978 (Ref. 1), does time and space-dependent analysis of
current diffusion and energy and particle transport. [t features a
sophisticated Monte Carlo beam treatment, appropriate for careful
calculations of beam-orbit effects, and of beam-related neutral collisions,
which are important at high Pp/ng (Ref. 2). TRANSP has recently been
upgraded to treat time-changing 1'/, D plasma geometry, in order to handle
TFTR compression and PBX beans. The second transport analysis code, SNAP,
only performs time-independent analysis, and uses a relatively simple
Fokker-Planck beam treatment. Its advantage is that it is quick to run, so
that it can be used for between-shots data analysis during an experimental
run. In addition, because SNAP requires much less data input than TRANSP,
and therefore also much less data preparation, it is possible to prepare and
maintain on disk hundreds, or even thousands of input data sets for SNAP, and
then run literally hundreds of analyses in overnight batch jobs.

The natural mode of data analysis at TFTR is that shots are first
analyzed with SNAP during the experimental runs. This helps the task force
leader know whether the objectives of the run are being successfuily met,
while the run proceeds. Good shots are selected both during the run and
after, and more careful data verification is performed. Large numbers of
data sets are built up for each task force, and typically a substantial number
of SNAP analyses are performed on each data set, using different assumptions
for the more uncertain parameters (e.g. =}, or np/ng), and using different
input data (e.g. neutron vs. X-ray crystal Tj, ECE vs. TVTS T,). Because of
the quantity of results generated in this manner, electronic database tools
have become increasingly central to the process of studying SNAP transport
analysis results. :

Time-dependent transport analysis using the TRANSP code is limited to
a much smaller set of discharges. These are typically selected for one of
three reasons. First, the physics of interest may be intrinsically
time-dependent, such as plasma compression or pellet injection. Second, the
plasma conditions may be at the extremes of the data range where the more
complete physics in TRANSP is needed to obtain acceptably accurate results.
The energetic-ion mode in TFTR, where ny/ng approaches SO%, and rotation
speeds reach 6x10° m/sec is an example of such a regime. Finally. data sets
which constitute the "premier” data, from which one intends to draw crucial
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conclusions, are analyzed with TRANSP in order to be sure that no subtleties
of importance have escaped the simpler code. TABLE 1 illustrates the
different emphases of these two codes.

Table |

SNAP TRANSP
Magnetic Shifted circles 11/, D, multiple
geometry moments (Ref. 3)
Beam Simple Fokker-Planck Full Monte Carlo
treatment (first orbit average)
Run time 2 min. VAX 8600 20 hrs. VAX 8600
Database Online archives, easy x| MByte/TRANSP
interface electronic path from run; multiple runs

archives to databases stored on disk

Clearly these two codes occupy different niches in the ecology of data
interpretation. Interestingly, however, they are in some ways evolving
towards one another. We are improving the SNAP beam treatment to include
more of the beam-related atomic physics effects in TRANSP, such as
beam-ion impact ionization of recycling neutrals. More general geometry will
also be needed in SNAP as we move towards higher Bp in TFTR. On the other
hand, we will fit an arbitrary-geometry bounce-averaged Fokker-Planck
treatment into TRANSP, to reduce CPU time for cases where detailed orbit
physics is not required. Improved database interface tools for TRANSP will
be developed as well. With these (and other) improvements to both codes, as
well as continuing efforts to simplify data handling, we anticipate that their
two ecological niches will remain separate, and that both species of code
with evolve and flourish.

The TRANSP and SNAP codes have not yet been used to analyze plasma
rotation experiments. This has previously been done at PPPL using standalone
codes. Clearly there is a strong advantage to using the data-handling front
end tools, and the database back end tools of these codes, for rotation
studies. Furthermore as rotation speeds approach the plasma sound speed,
the power flows associated with driving and damping toroidal rotation begin
to play an important role in the overall power balance, and thus cannot be
neglected in energy confinement analyses.
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. Analysis of Plasma Rotation Data

1. Momentum Balance

Radial transport of toroidal angular momentum in tokamak plasmas is
much more rapid than predicted on the basis of simple neoclassical theory.
In neoclassical theory the transport of angular momentum is much slower
than transport of energy or particles. This follows from the axisymmetry of
the system, and the resulting intrinsic ambipolarity of neoclassical transport
to rather high order in pg/a. The fact that energy and momentum transport
in experiments are roughly comparable provides a powerful Clue into the
mechanisms of transport in tokamaks. In order to analyze experimental data
in detail, and in order to be able to compare the analyses from one
experiment to another, it is important to formulate the momentum balance
equations, including anomalous effects. With these equations in hand, we
know precisely what we are speaking of when we compare "measured"
momentum transport coefficients from one experiment to another.
Furthermore, as plasma rotation speeds increase, we have to consider the
power coupled into plasma rotation within the framework of the overall
power balance equations we currently use.

We begin here by assuming for simplicity that all bulk ion species have
the same ug and T (which are assumptions others may choose to relax). We
ignore the electrons for the purpose of studying momentum balance: for
example fast ion momentum transferred collisionally to the electrons is
assumed to be shared immediately with the ions. In a fixed, straight
cylindrical system, the momentum conservation equation for the bulk plasma
looks like:

ou on;
mei—a?*LwimH:g = Feol * FijxB * Fptn * Fiz

!

+

Tocx Tos

- Znjmjug [ ] + V- (Enjm() X¢Vug - V- ZmiTjug

leq. 1]

Where the F's are collisional, jxB, beam thermalization, and plasma
ionization and recombination forces, described in more detail below. Xg I8
the perpendicular momentum diffusivity which we are trying to deduce from
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experimental data, so that it can be compared with theoretical calculations
of anomalous-transport or of more complex neoclassical effects (Ref. 4).
Tocx: Tgs are local momentum loss times due to charge-exchange and field
ripple. The field ripple may originate from the discrete nature of the
toroidal field coil system or other machine asymmetries, or it can arise from
plasma-induced magnetic perturbations, which couple to even axisymmetric
machine structures (Ref. 5). Note that we have assumed here that particle
convection carries momentum across flux surfaces.

For more general axisymmetric 1!/, D geometries we need to consider
a toroidal system and angular momentum conservation, and so deal with
torques, moments of inertia, and anguiar velocites, rather than forces,
masses and velocities. Remember some definitions and results:

T=[RFd¥
| = [£nmR2 d3r
P¢ = |w
Jdw al
| — =T-w— leq.’s 2]
ot ot
w?]
Wrot =
awr-ot _ (1)2 al
ot 2 ot

The final term in the last equation of this set is important, and will

require clarification as we go along. A similar term appears in the energy
balance for a straight cylinder.

[n addition to working with angular momentum we would like to work
with flux surface averages, and we would also like time-dependent geometry.
If we assume Ug o R on a flux surface (another assumption which others may
choose to relax), then the appropriate flux surface quantity to deal with is
Up/R, or w, the angular velocity. The thermodynamic force driving momentum
diffusion is then Vw, and the toroidal, flux surface averaged version of
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equation 1 is:

3w an 3<R?>
Znimi<R?> — + W<R2>Em; — + Enjm;w
ot ot

aVv
+ Znimi<R?> w [—]
9p

13 a8v
at ap

| 1
=Tcol * Tixb * Toth * Tiz - Znimi<R2>w[ * ]
Tocx Tob
3Vl 3 av | 3w
=] = xR —
dp~’ 3p 3p dp

vy~ 8 3V v
- [—] — — Znijm;w<R%(Vp)?> [—9] [eq. 3]
9~ 9p9p vp

The terms on the left hand side represent the average angular momentum
density stored in a flux surface. 3V/dp is a differential flux surface volume,
where p is an arbitrary flux surface label, which moves with the toroidal
flux. Teo| IS the collisional torque density. This can be calculated from a
Monte Carlo sum of nympR(By/B)(Bvyp/Bt)cq. In the simplest drift equations
where |B|=|Bg | is assumed, the (B/B) term is left out. One could imagine
including higher order terms in (avq,/at), but the fast ion drift equations
itself is generally not solved including terms of higher order than the Alfvén
drifts, so one would lose momentum conservation. Indeed it is important to
use a drift formulation which conserves a canonical angular- momentum
(unlike the pure Alfvén drifts), and includes the presence of a radial electric
field, as in Ref. 6. In simpler codes, a cylindrical Fokker-Planck solution can
be performed in the rotating plasma frame, by transforming the beam velocity
to the plasma frame. The collisional force can be derived in the manner of
Ref. 7, (summing over all bulk plasma species). TjxB is the average torque
density exerted on the plasma due to any radial current of beam ions. This
can be easily calculated via Monte Carlo; the change in mechanical angular
momentum, myR(Bg/B)vyp, due to orbiting is taken to be delivered directly to
the plasma. This topic has received theoretical attention in Ref. 8. In
quasi-cylindrical codes it would be appropriate to give the difference
between the input neutral beam momentum and the first-orbit-averaged
momentum (including radial electric fields and banana precession) to the
plasma as Tj.g. The initial pitch angle in a cylindrical formulation would
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then be chosen such that the first-orbit- averaged momentum was delivered
to the Fokker-Planck equation. Tt is the torque delivered to the plasma in
the form of thermalized beam ions with finite lab-frame toroidal velocity.
This is easily calculated via Monte Carlo, and can be derived from the slowing
down rate and from the first two Legendre harmonics of the-distribution
function in the lowest energy zone of a Fokker-Planck solution. (We return to
the topic of beam-ion slowing down in section 2B.) T, is the'torque density
due to ionizing new rotating neutrals into the ion distribution function and
losing rotating ions via recombination. Loss from the ion distribution
function via charge-exchange with beam neutrals should be included here as
well.

Tocx 1S the momentum loss time to charge-exchange. One has to
recognize that neutral atoms may be rotating at a speed close to that of the
bulk plasma, so that the charge-exchange part of this term is not just the
charge-exchange time. To fair accuracy Tocx * TexlUp/(Ug=Upo)l. To do this
properly, one should include toroidal rotation in the neutral transport codes,
and calculate ugq (or better yet, Tgcy) directiy. For the time being we can
perhaps assume ug/(Ugp-Ugpg) = Ti/(Ti-Ty).

The term including Xq, refiects momentum diffusion, or perpendicular
viscosity, in units of 12/t. This particular formulation comes from assuming
that the cross-fieid flux of angular momentum (I'q,) driven by Vw is given by:

Fep = Znir‘nixq,RZVpa— (eq. 4]
p
and so
Jw
JT¢-dA = £nimiXg (27§ dIp | Vp |RY) P leq. 5]
p
Since the definition of the flux surface average of any quantity X is:
<x> = (21§ dIn(XR/ | ¥ l)][av]-' leq. 6]
= — eq.
p p 3p q |
we have: _
r MY somite RV (eq. 7]
-dA = {-—} ZnimiXg < p)e>— eq.
¢ “apd iMiAe p 3p q

The Xq, term of equation 3 follows by conservation of angular momentum.

The last term in equation 3 represents convection of momentum across
flux surfaces. Here we are taking what one might call the "average Joe"
model of convection, assuming that the convected particles carry the average
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local anguiar momentum with them. Other weightings could be treated as

of f-diagonal elements in the matrix of transport coefficients. The particular
form for the convection of momentum in eq. 3 follows from the same sort of
arguments as eq.'s 4 - 7, if we assume that I'j o« Vp along a flux surface, as
we have assumed for I'g,. Note that in transport analysis codes D; is deduced
from measured fluxes, rather than the other way around as in simulation
codes.

2. Energy Balance associated with Rotation
A. Source-Friction

It is important to follow all of the energy flows implied by equations |
and 3, so that we can make up a proper energy balance for the beam ions, the
plasma thermal energy, and the plasma rotational energy. First, however, it
is instructive to look at power balance in a very simple problem, in which a
moving plasma with velocity upot and temperature T has a source rate of
ions S moving at velocity ug, for example due to electron ionization of
neutrals. In this case we have the gbvious equations:

dan
_CI =S Particle Conservation [eq. 8]
a{ (nmurot) = Smug Momentum Conservation [eq. 9]
d ¢nmupqt?  3nkT
Sl L G LU A
dt 2 2

| Energy Conservation leq. 10]

Substituting equation 8 into equation 9 we get

d

which is not surprising. However, substituting equations 8 and 11 into
equation 10 we get

d 3nkT  Sm(upgt - Ug)?

= feq. 12]
a2 2
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Equation 12 simply shows that the net particle energy in the plasma frame
goes into increasing plasma thermal energy. This is what we generally label

as Ppth-

It is now instructive to think about this case by constructing an energy
balance equation from the momentum balance equation. The R.H.S. of equation
9 can be viewed as a force, Fg, giving rise to a time rate of change of
momentum. Multiplying both sides by upqt and substituting equation 8 gives

d nmup? Smup ot 2

— = Felpnt -~ ———— [eq. 13]
at > s'Urot > q

Note, then, that the energy in plasma motion is increased by a work-like term
of the form Fg-urot, and decreased by a new term which we might call
source-friction. This is the linear momentum analog of the fast term in the
last equation of equations 2. Note that the Fg-u.qt term here is quite
different from the input power associated with the new ions even if ug =
Urot- However when we add up the R.H.S.’s of equations 12 and 13 we do, of
course, obtain the original input power, Smug?/2. In the special case where
Ug = Upqt, the two terms in equation 13 sum to the input power and the Ppyp
thermalization power is, of course, zero.

B. Beam jon slowing down

The excercise we have just completed will allow us to better
understand the relationship of the rotational power balance to the thermal
power balance. In particular it addressed issues which will be important in
understanding effects associated with beam ions and plasma neutrals being
delivered to a rotating bulk ion distribution. We have not completed the

discussion, however, of how to obtain energy balance in the calculation of
beam ion slowing down in a rotating plasma. [n Monte Carlo codes beam ion
orbits are followed in the lab frame, so at each collisional time step the
beam ion velocity must be transformed to the local rest frame of the plasma.
Since the drift velocities (inciuding ExB drifts) are ordered smail, we need
only include the parallel component of ug in the transformation [Avyy =

- (Bq,/B)uq,]. Collisions can then be executed with the usual Monte Carlo
techniques. (For simplified drift equations with |B[=|Bg| we take

AVp = - Ug .) The loss of plasma-frame energy from collisions simply goes
into plasma heating as before. In the lab frame a different amount of enerqgy
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is lost, however. Taking the plasma-frame beam ion velocitg to be

Vpl = Viab ~ Ujrot leq. 14]

we can evaluate the time derivative of the lab-frame energy due to
collisions:

d | mpvigy 4| mpvip
d
" MpYirot " - l"lab [eq. 193]
CcoO

where we have used (d/dt)cq|Viah = (d/dt)coVp|- Thus the extra lab-frame
energy loss goes into simple Fg|* Upgt. ANY Net perpendicular Fq due to
the beam ions is neglected. There is also a beam-driven torque due to jp %
Bp. which corresponds to the change in mechanical angular momentum of
beam ions as they cross flux surfaces. It can be shown from conservation of
canonical angular momentum that the wTjyp power which results from this
force is exactly balanced by the radial motion of beam ions up or down the
electrostatic potential.

In section 1 we discussed how simple Fokker-Planck calculations can
be performed in a rotating plasma, by transforming the beam ion velocities to
the plasma frame when the beam ions are first deposited, and then
performing the usual flux-surface-local slowing down calculations. (Wwe also
discussed how to take into account the first-orbit ji x By, torque.) The
approach we outlined is a bit curious, since it leads one to wonder about
what becomes of the energy difference between mpv|an2/2 and mbvp|2/2.
However, we note that we can simply time-integrate equation 15, and find

|

Y-
5 b IabO

t 1

t t
= -m V2 + Mun U . (V ) . [e 16]
5oVl * Mo Mirot * WViap)| o q

Thus again the lab-frame energy goes directly into plasma heating, and into
F-u power. Note that for strict energy accountability, beam ion charge
exchange losses will need to be transformed back into the lab frame. The
power density of charge-exchange loss in the plasma frame is given by

Qex = Jbeb'plchd£p|2ﬂvp|2dvp| [eq. 17]
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where &p) = vy 51/Vp|, and fy can be conveniently expressed in Legendre
polynomials. To find the energy loss in the lab frame, we need only replace
Eb,pl (= mbvp|2/2) with Eb,1ab using

_Mp 2 Dy, 2
Eo.lab =~ [y + vpi&p1)? + (185 9)vp)°]
m

D (uy? + 2upvpi&pp) (eq. 18]

=E +
b,pl 5

The integral d&y| of eq. 17, using Ep, |ap. Will only inciude the first two
Legendre polynomials. Note that in this formuiation we have ignored the
difference between uy and ug, and between vy and vg, assuming that the
momentum input to the Fokker-Planck calculation was Smv,.

In a Fokker-Planck calculation, the thermalization force, Fptp, Can be
found by integrating the flow of momentum across the lowest energy zone.
This is similar to the problem of calculating the plasma-frame
charge-exchange loss. The general form of the slowing down equation is

afb | 3 ov
= - v2 fp + C.X. terms
ot v2 v Bt |col
+ Pitch-angle scattering terms. [eq. 19]

Integrating by parts we get that the flow of momentum to thermalization per
unit volume is

8P¢,
ot |th

ov
= = [ Tp(v=vn)Pe2TdEp vin? ~

at | col, v=vth

[eq. 20]
Pg in the lab frame for this case is mp(vtn&py *+ Uy). Thus we see again that
only the first 2 Legendre harmonics will be needed.

In the general geometry, Monte Carlo case we will take the
thermalization torque, Tpyp, to be Empvy (Bg/BIRs, where Rg is the major
radius at which the fast ions are thermalized, and vy, | the beam ion toroidal
velocity. In this case there is a new effect because Rg? # <RZ>. Another
way to say this is that the (w?2/2)31/8t term of equations 2. associated with
beam ion thermalization is represented in general geometry by the beam part
of (w?2/2)Em;(3V/3p)™1<R2>8/3t(nj3dV/3p). However in the beam ion power
balance this equation has Rg?, rather than <R?>, by analogy with equation 13.
This paradox is resolved by realizing that beam ions thermalized unevenly
across the flux surface will exchange bulk rotational energy for thermal
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enerqy as they spread out. In particular, if they are deposited towards the
inside in major radius they will take energy out of rotation as they distribute
outwards, and vice-versa for ions deposited outboard in major radius. The
net effect is a new term in Ppip |

(1)2
APpih = —2—mb(<R2><Si,Dth> - <R525i,bth>) leq. 21]

This new term does remind us of the fact that our assumption that n; = nj(p)
only, rests on shaky ground at high rotation speeds. Another uncertain
assumption is that the beam ion source rate due to thermalization is the only
ion source rate with poloidal variation.

C. Power Balance

It is interesting to generate a power balance equation in the spirit of
equation 13, based on the fixed, cylindrical model equation 1. Multiplying
both sides by ug, we obtain

1 3U¢2 | R ani
Znjm; — t— Uy Imj— =
2 0ot 2 ot

1 an;
Y Ugp2Em; Se  UFol * UgFixb * UgFbth * UgFiz

1 ]
- Znimqu,? [ - + ——]
dcx Tl
+ UV (Enjm;) XeVug - upV- EmiTjug [eq. 22]

| have placed the time derivative of the stored rotational energy density on
the L.H.S.. The first terms on the right hand side can be identified as the
source-friction, plus four F-upgt work terms. Remember, however, that the
UpFphth term contains twice the rotational energy associated with the
plasma-frame isotropic part of the thermalizing beam ions. [f we add the
negative source-friction term associated with the beam-driven dn;/dt, we
then have the correct beam energy balance. The loss rate of rotational ,
energy via Tecyx and Teg is twice the rate of loss of momentum, which is the
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expected result for charge exchange with siower-moving thermal neutrals or
ripple drag. In the case of recombination, or charge exchange loss via
collisions with beam neutrals, where net momentum is changed by changing
the total number of particles, one expects half this rate. ugFiz plus the
negative ion source rates associated with these processes acting through the
source-friction term, give the proper net effect on rotational energy. The
meaning of equation 22 becomes clearer if we substitue dn;/ot = -V-T'; +
Sibth * Siz. and volume integrate from 0 tor.

| Bug? | an,
411’2R0H £nim; > ot + Py Ugp?Em; P ] rdr =

!
4Tf2RoH UgFcol * UgF jxb = — Up*EMi(Siptn * Siz) * UgFbtn

+ UpFiz - Enjmjug? [ 'Uc:)c; 'L’ips] ] rdr

_ au
- 4‘1’(2ROI (Znimi)X¢(VU¢)2 rdr + 4‘JT2ROT‘ u¢(2nimi)X<p '“ai)
r

- 272Rgr Em;(Tj- Fug?
leq. 23]

This equation makes clear the distinction between local dissipation of

rotational energy into heat, and radial transport of rotational energy. New
local heating terms are thus introduced into (presumably) the ion energy
balance equation:

3 9 A . «  Znimjug?
— = IniTj = (previous terms)” + ———— + Enjm;X¢(Vug,)?
2 ot t¢8 ‘

. [eq. 24]
*See equation 31

- The last step in this power balance problem is to create an arbitrary
geometry generalization of equation 22, by multiplying equation 3 by w, in

~the spirit of equations 2.

177



i dw? | an;
nim; — <R2> + — m2<R2>Zm.i !
2 ot 2 at

I 3<R2>
+ — Znim i(1)2
2 ot

I dvVy~t 3 oV
+ — Znjm;<R2>w? [—] — —
2 3p 3t 3p

] 9<R2>
- — Znjm;w?

2 ot
1 ov,7'9 vV
o (2] 0 2
2 ap) ot @ lap
WTcgl + WTjgp *+ WTpth + ©Tj;

+

1 |
£nim; <R2> w? [ + ———]
Tocx  Tos
[av]—' 3 aVv - X <RV D)2 3w
wl— — — Znjm; > —
8p) apap e P gy

ov,"! 9 3V v
- W [—] — — Znjmw<R3(Vp)?> [——Q]
ap dp 3p Vp leq. 25]
All of the terms in this equation are simply identified with the terms in
equation 22, except for the first term on the R.H.S., which takes account of
compression effects. It reflects the fact that the rotational energy per
particle is proportional to 1/R2. Integrating eq. 25 over volume clearly gives
rise to an analog of equation 23. The generalized geometry version of
equation 24 becomes:

. 4 Znjmj<RZ>w?2
— — ZnT; = (previous terms)™ +
2 Bt N
$d
w? , .
" Mp(<R2><S; htn> - <Rs2S; pth>) See equation 31

w2
+ EnimiX <RV p)2> [g]

w2

+zni‘miXP_ 28_22_2 25 '
. [Vp] [<(Vp) > 0 <R2> - <RAVp)2> 5 ] e 261
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The last term does not exist in a cylinder; it arises from the same physics
as the Sj ptp term, given the assumption of Vp & Vp.

3. Ancillary Effects
A. Beam Deposition

[t is necessary to take into account the fact that the plasma is
rotating, in the atomic physics calculations. This is straightforward in the
sense that one need only make a vector subtraction of the beam and plasma
velocities to get a new relative velocity between the two, and then proceed
to calculate reaction rates with this new vpq), as before.

B. Charge-Exchange Analysis

This is really the same thing as for beam deposition, except we also
need to launch the neutrals from a shifted Maxwellian, although one could
question this approximation for f;.

C. Beam/plasma B's

The beam § calculation in Monte Carlo codes is unchanged; w) p and
W) b are accumulated in the lab frame via Monte Carlo techniques as before.
In Fokker-Planck codes, however, the beam distribution function is calculated
in the plasma frame. wl b Can be calculated as before, but w b must be
evaluated in the lab frame, using equation 18.

Stored energy in rotation looks to magnetic measurements just like
stored energy in wy = ("/)mvy,?, to first order in inverse aspect ratio.
Thus B due to rotation is simply 2 <Upot>/(B2/87), where <Upqt> is the
volume-average energy density in rotation. There is no effect on §,. B€Q
(the quantity measured via the vertical field strength required for
equilibrium) is given, as always, by 884 = (8, + B,)/2. At high rotation
speeds the plasma anisotropy will need to be included in MHD equilibrium
calculations for transport analysis.

D. Neutral transport

It should be relatively straightforward to generalize current Monte
Carlo neutral transport codes to include a rotating background plasma. The
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necessary physics for power balance is described in section 2A, since the
Monte Carlo neutrals represent §-function distributions of particles, which is
what is treated there. Note the particular definition of power to the thermal
plasma due to ionization; the same term with a negative sign will occur for
loss of particles from the ion distribution.

For a model where one considers the neutrals as a rotating fluid, the
discussion in section 2A needs to be expanded. The clearest way to do this
is to consider two groups of particles, neutrals with mean velocity ug, and
average thermal temperature around this velocity Tq, and ions with mean
velocity u; and thermal spread T;. Define Sy; to be the source rate of ions
from the neutrals, and Sj, to represent the reverse process. Then we proceed
in parallel with the discussion in 2A.

anj  dng
—— 7" —=750i " Sio
dt at _
Particle Conservation (eq. 27]
’ ( ) ( )=5S S
— (nijm;uj) = - — (ngMily) = SeiMily ~ SiaM;u;
qp imid q oMitlo 0iMillg = 2jgM;U;
Momentum Conservation [eq. 28]
d r nimu2 3 d [ NgMQUg? 3
—[——I . +—nikTi]=-—_ [—0 00+—n0kT0]:
dt 2 2 dt 2 2
s [m.inZ > KTo| - 5 [mi"iz ° ]
il 5 110 io 5 <

Energy Conservation leq. 29]

Substituting equation 27 into equation 28 we get

nim; P uj = Sgjmi(ug-u;) [eq. 30]
which is not surprising. However, substituting equations 27 and 30 into
equation 29 we get

3 kT ’ SqikT ° SiokT ] Sgimi(uj-up)?

— — nikT; = — Sqi - — SjokTi + — Sgimi(u;-u

gt o 10Ty R0i o T 2ot T T S0t T

[eq. 31]
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The first term represents the familiar charge-exchange and ionization power,
expressed in the simplest way. The third term is new, and so somewhat
gives the lie to the "previous terms” entry in equations 24 and 26. In effect
the familiar Py and P, terms in the ion power balance have new parts.
These can be understood very simply. Suppose we have cool neutral and ion
fluids, moving in opposite directions at substantial velocity. If we let these
two fluids charge exchange with each other for a long time, eventually they
will come to rest, and their directed energy will have been converted to
thermal motion. The same argument hoids if one distribution is simply
ionized into the other.

E. Poloidal Variation of n;

In all of this analysis we have assumed nj was a flux-surface constant.
This is tantamount to assuming 2eug? << vip?, which is clearly not true for
impurity ions under recent conditions in TFTR. It also assumes that there is
no significant poloidal variation of the beam ion density - clearly incorrect
for high-power perpendicular injection. It would be valuabie to at least
calculate the theoretical nj(@) for each species. A simple calculation is
available in Ref. 9.

F. Beam-driven Current

The beam-driven current is as easily calculated in a rotating plasma as
in a stationary one. The calculation must simply be done in the plasma
frame. Corrections for the difference between the net current and the raw
rotating beam ion current (1-1/Zg¢¢ for classical, plus trapping corrections
for neo-classical) must be taken into account. A recent investigation (Ref.
10) indicates that the usual calculation of the combined effect of the
toroidal electric field and the distortion of the electron distribution function
on the beam ions, the so-called £, term (Ref. 11), neglects a part of the
distorion of fg which becomes important (relative to E”) when the raw
circulating beam ion current becomes comparable to the total plasma current.
In a classical plasma the term resuits in a reduction in the electron drag by

v MbVbn,pl” 6. 32)
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As the quantity of data available from diagnostics and from data
interpretation codes has grown, our dependence on electronic database tools
has Increased as well. The flexible and powerful LOCUS system (Ref. 12)
developed at PPPL has proven to be a tremendously valuable tool in the
day-to-day work of essentially all of the TFTR physicists. Thijs has the
fortunate consequence that we are able to handle a very large quantity of
data in the traditional ways. In the simplest sense, we are abie to just piot
more points on paper, without spending proportionately more time doing it.
On a more subtle level, these tools allow us to do more kinds of
investigations - examine data from many different viewpoints in order to see
what can be learned. Database tools can be used to compare massive
quantities of experimental results with theoretical prediction, and look for
trends in the patterns of agreement and disagreement. On the other hand,

they can also be used in the data verification process to look for
inconsistencies or odd behavior in the data. The ability to plot data easily in
many different ways, however, does not obviate the need for careful planning
of experiments and careful scrutiny of analysis procedures.

Increased quantities of data, stored electronically, have naturally led
to increased use of statistical tools. Again here we find a realm of great
power and flexibility, but considerable danger. There is a strong tendency to
rely on multiple regression analysis to do data interpretation, in some sense,
for us. A clear example of how this can be misleading comes from the fact
that we know that simple models of the form g o I8 B1PneC cannot
adequately represent all tokamak confinement data. Density and current
scans in low Bp ohmic discharges give very different results than scans of
H‘le same parameters in high Bp beam—he_a_ted plasmas. In particular, if Tf
Ne! is observed in ohmic data, and T o« Ng? in high-power beam-heated
plasmas, there is no way that the constraints imposed by ohmic heating can
be "relaxed” in a way that allows the same scaling law to explain both
regimes. However statistical fits to data which include both categories of
plasmas, perhaps without the lowest-density ohmic cases, or the
highest-power beam cases, will give reasonably good-iooking regression
plots. How many of us study residuals from the fits we make, to look for
patterns in the errors, and therefore inadequacy of the models? Even this is
not a substitute for carefully controlied experiments with systematic scans
of individual parameters, covering as much of parameter space as possible.
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Another pitfall of muitiple linear regression comes from the presence
of correlation between nominally independent variables. In ohmic data, for
example, there tends to be a correlation of Iy and ne. If there is such
correlation, one consequence is that the error bars in the fit parameters for
Ip and ng are not independent. If the fit parameter for I, is chosen near the
top of its error range, then the fit parameter for ng must be taken near the
bottom of its range. For a concrete example, we will consider plasma
rotation measurements on PDX, reported in the doctoral thesis of Kevin Brau
(Ref. 13). See Fig. 1 below. In this figure vpp; represents the central
toroidal rotation speed, measured by X-ray crystal spectroscopy (Ref. 14);
Pabs is the absorbed beam power. Note that there is a strong correlation of
the fine average density with the injected beam power. This will make it
difficult to disentangle dependencies on density and power. (In addition there
is a correlation with Ip in this data, which we will not discuss here.)
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Figure 1. Toroidal rotation speed vs. absorbed beam power from PDX.

Data from PLT suggested that vy was proportional to Pghg and nearly
Independent of Ng. Looking at the saturation of rotation speed with
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increasing P5phg in this figure certainly suggests that the PDX data is quite
different. But how do we prove this statistically? If we model vg o Papg™
Feﬁ regression analysis gives individual 90% confidence ranges for « and 8
of 0.23 <o < 1.04, and -1.28 < B <0, so this would seem to indicate that
Pabs 'ne? cannot be excluded. However we really need to study the joint
confidence range of o« and 8 together, since there is significant correlation of
Pabs and Ng in the data set.

Graduate statistics texts (Ref. 15) give a simple formula defining the
joint confidence region by:

(8-B)xX'X(B-B)
pMSE

$ Feep,nep [eq. 33]

In this formula $ stands for a vector of possible regression coefficients,
with B the best fit, and X'X is a pxp matrix constructed from the data set.
p-1 is the number of independent variables, and n is the number of
measurements. MSg is the mean square error in the dependent variable,
evaluated from the quality of the fit to the data. F is the standard F
distribution statistic, with 100(1-&) the percentage confidence desired. The
textbooks | have consuited tend to use this formula for p=2, but do not find it
useful for larger values of p, because the hyper-ellipsoid it describes is hard
to compute and visualize. Monte Carlo techniques can easily be applied to
calculating the shape of this hyper-ellipsoid, however. Consider the
huypercube defined by, say, 3 times the individual confidence regions of the
various fit parameters. If by Monte Carlo we choose random points in this
region, and evaluate inequality 33, we can rapidly develop a group of 1000 (or
10,000) points within the hyper-ellipsoid. These points can be projected
onto any plane of our choosing, in order to look for the effects of correlation
of pairs of independent variables, for any value of p. (It is more difficult
with this technique to see the effects of correlations which involve more
than 2 variables, such as &V + BV, ~ V3.) Figure 2 shows the 90% joint
confidence region for the PDX rotation data, as well as the individual
confidence regions. Clearly the choice &« = 1, 8 = 0 is exluded by the joint
confidence region. On the other hand, while the choicex = 1, 8 = -1 is
included in the 90% confidence region, this figure makes clear that the choice
x = 0.5, B =0, for example, which gives quite a different sense of the
physics, is about equally well supported by this particular data.

Figures of this sort are easy to make, both in terms of programming
effort and in terms of computer run time. After the 1000 (or 10,000) points
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Figure 2. 90% individual confidence regions for o (fit coefficient for Pgps)
and B (fit coefficient for ng), their overlap region, and 90% joint confidence
region for « and B, displayed via Monte Carlo, using 1000 points.

defining the hyper-ellipsoid are stored in memory, they can easily be plotted
or examined in any way desired. Interestingly, all the data necessary to
communicate the dimensions of this hyper-ellipsoid are contained in the pxp
matrix X'X, B, and the values of MSg, p, and n. Plasma physics research
frequently comes up against correlated independent variables, so that
examination of joint confidence regions could be helpful to us, and perhaps
even the communication of X'X along with the individual confidence regions
would be useful. '
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