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Abstract 

This lecture addresses a potpourri of topics in confinement analysis of 
tokamaks with auxiliary heating. First we discuss the different roles of 
on-line and off-line confinement analysis codes - what should the strengths 
of each be, and what are the allowable weaknesses? Next we examine the 
analysis of plasma rotation experiments, a topic which has not been formally 
treated in the literature. We discuss neutral beam injection of momentum 
Into rotating plasmas, both In the context of Monte Carlo and of Fokker ­
Planck codes, taking into account time-changing 2-D plasma geometry. The 
transport equations for toroidal angUlar momentum, including the effects of 
momentum dissipation on power balance, are formulated. 

Finally, we touch briefly on statistical techniques for Interpreting 
confinement data bases. Simple models of the form: t'E ()( IpaBrbnec... are 
frought with danger. First of all, experience has shown that ohmic tokamak 
plasmas at low Pp exhibit different seal ings than strongly auxi I iary-heated 
plasmas at high Pp. In addition, however, the results of simple mUltiple 
regression analyses can give misleading error bars for the coefficients a, b, 
c... above. Jf there is corre lation in the data set amongst the· independent· 
variables Ip, Br, ne... , then the uncertainty ranges of a, b, and care 
correlated as well. Hlis structure of the data is 0Qt. reflected in the error 
bars generally considered. A simple way to stUdy the" joint confidence region 
of the fit coefficients, for situations with pairwise correlation of 
independent variables, is presented. 
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I. On- and Off-line AnaJUs(s Codes 

Two major transport analysis codes are used on TFTR for interpreting 

confinement data. One code, TRANSP, which has been in development and in 

use at PPPL since 1978 (Ref. I), does time and space-dependent analysis of 

current diffusion and energy and particle transport. It features a 

sophisticated Monte Carlo beam treatment, appropriate for careful 

calculations of beam-orbit effects, and of beam-related neutral collisions, 

which are important at high Pb/ne (Ref. 2). TRANSP has recently been 
upgraded to treat time-changing 11/ 2 0 plasma geometry, in order to handle 

TFTR compression and PBX beans. The second transport analysis code, SNAP, 
only performs time-independent analysis, and uses a relatively simple 
Fokker-Planck beam treatment. Its advantage is that it is quiCk to run, so 

that it can be used for between-shots data analysis during an e><perimental 
run. In addition, because SNAP requires much less data input than TRANSP, 

and therefore also much less data preparat ion, it is possible to prepare and 

maintain on disk hundreds, or even thousands of input data sets for SNAP, and 
then run Iiterally hundreds of analyses in overnight batch jobs. 

The natural mode of data analysis at' TFTR is that shots are first 

analyzed with SNAP during the experimental runs. This helps the task force 

leader know whether the Objectives of the run are being successfully met, 
while the run proceeds. Good shots are selected both during the run and 
after, and more ,carefUl data verification is performed. Large numbers of 

data sets are built up for each task force, and typically a SUbstantial number 
of SN~P analyses are performed on each data set. using different assumptions 
for the more uncertain parameters (e.g. t:p or nh/nd)' and using different 
input data (e.g. neutron vs. X-ray crystal T j, ECE vs. TVTS Te). Because of 

the quantity of re~ults generated in this manner, electronic database tools 

have become increasingly central to the process of stUdying SNAP transport 
analysis results. 

Time~dependent tra.nsport analysis us ing the TRANSP code is I imited to 

a much smaller set of discharges. These are typically selected for one of 

three reasons. First, the physics of interest may be intrinsically 
time-dependent, such as plasma compression or pellet injection. Second, the 

plasma conditions may be at the extremes of the data range Where the more 

complete physics in TRANSP is needed to obtain acceptably accurate results. 

The energetic- ion mode in TFTR, where nb/ne approaches 50%. and rotation 
! i 

speedS reach 6><10 5 m/sec is an example of such a regime. Finally. data sets 
which constitute the "premier" data, from which one intends to draw crucial 
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conclusions, are analyzed with TRANSP in order to be sure that no subtleties 
of importance have escaped the simpler code. TABLE I illustrates the 
different emphases of these two codes. 

Table 1 
SNAP TRANSP 

Magnetic Shifted circles 11/ 2 0, mUltiple 
geometry moments (Ref. 3) 

Beam Simple Fokker-Planck Full Monte Carlo 
treatment (first orbit average) 

Run time 2 min. VAX 8600 20 hrs. VAX 8600 

Database On line arch ives, easy :l:: 1MByte/TRANSP 
interface electronic path from run; multiple runs 

archives to databases stored on disk 

Clearly these two codes occupy different niches in the ecology of data 
interpretat ion. Interestingly, however, they are in some ways evolving 
towards one another. We are improving the SNAP beam treatment to include 
more of the beam-related atomic prlysics effects in TRANSP, such as 
beam-ion impact ionization of recycling neutrals. More general geometry will 
also be needed in SNAP as we move towards higher ~p in TFTR. On the other 
hand, we will fit an arbitrary-geometry bounce-averaged Fokker-Planck 
treatment into TRANSP, to reduce CPU time for cases Where detai led orbit 
physics is not required. Improved database interface tools for TRANSP will 
be developed as well. With these (and other) improvements to both codes, as 
we II as continu ing efforts to simpl ify data handling, we anticipate that their 
two ecological niches wi II remain separate, and that both species of code 
with evolve and flourish. 

The TRANSP and SNAP codes have not yet been used to analyze plasma 
rotation experiments. This has previously been done at PPPL using standalone 
codes. Clearly there is a strong advantage to using the data-handling front 
end tools. and the database back end tools of these codes. for rotation 
stUdies. Furthermore as rotation speeds approach the plasma sound speed, 
the power flows associated with driving and damping toroidal rotation begin 
to play an important role in the overall power balance, and thus cannot be 
neglected in energy confinement analyses. 
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II. Analysis of Plasma Rotation Data 

1. Momentum Balance 

Radial transport of toroidalangular momentum in tokamak plasmas is 

much more rapid than predicted on the basis of simple neoclassical theory. 

In neoclassical theory the transport of angUlar momentum is much slower 

than transport of energy or particles. This follows from the axisymmetry of 

the system, and the reSUlting intrinsic ambipolarity of neoclassical transport 

to rather ~ligh order in Pa/a. The fact that energy and momentum transport 

in experiments are roughly comparable provides a powerful clue into the 

mechanisms of transport in tokamaks. In order to analyze experimental data 

in detail, and in order to be able to compare the analyses from one 

experiment to another, it is important to formulate the momentum balance 

equations, inclUding anomalous effects. With these equations in hand, we 

know precisely what we are speaking of when we compare "measured" 

momentum transport coefficients from one experiment to another. 

Furthermore, as plasma rotation speeds increase, we have to consider the 

power coupled into plasma rotation within the framework of the overall 
power balance equations we currently use. 

We begin here by assum ing for simpl icity that all bulk ion species have 

the same u4> and Tj (which are assumptions others may choose to relax). We 

ignore the electrons for the purpose of stUdy ing momentum ba lance; for 

examp Ie fast ion momentum transferred coil is iona Ily to the electrons is 

assumed to be shared immed iately with the ions. In a fixed, straight 

cylindrical system, the momentum conservation equation for the bulk plasma 

looks I ike: 

-t V' (l:njmj) X4> VU4> - V' l:mjriu4> 

[eq. 1J 

Where the F's are coil isional, jxB, beam thermalization. and plasma 

ionization and recombination forces, described in more detail below. X4> is 

the perpendicular momentum diffusivity which we are trying to deduce from 
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experimental data. so that it can be compared with theoretical calculations 

of anomalous .transport or of more complex neoclassical effects (Ref. 4). 

L<PCX' L<PS are local momentum loss times due to charge-exchange and field 

ripple. The field ripple may originate from the discrete nature of the 

toroidal field coil system or other machine asymmetries, or it can arise from 

plasma-induced magnetic perturbations, which couple to even axisymmetric 

machine structures (Ref. 5). Note that we have 8/:J"bllmed here that part icle 

convect ion carries momentum across flux surfaces. 

For more general axisymmetric 11/ 2 D geometries we need to consider 

a toroidal system and angu lar momentum conservation, and so deal with 
torques, moments of inertia. and angular velocites, rather than forces, 

masses and ve locities. Remember some definitions and resu Its: 

T == SRFd3r 

I == SEnmR2 d3r 

Pq> == iw 

aw ar 
r- =T-w- [eq. 's 2] 

at at 
w2J 

Wrot =-­
2
 

2aWrot w aJ 
=wT - - ­

at 2 at 

The final term in tne last equation of tnis set is important, and will 

require clarification as.we go along. A similar term appears in the energy 
balance for a straight cy I inder. 

In addition to working with angular momentum we would like to work 

with f lux surface averages, and we wou Id aIso I ike time-dependent geometry. 

If we assume u<p ex R on a flux surface (another assumption w~lich others may 

choose to relax), tnen the appropriate flux surface quantity to deal with is 

uq>/R, or w, the angular velocity. The thermodynamic force driving momentum 
:,iL,! diffusion is then 'Vw, and the toroidal, flux surface averaged version of 

lj."':, 

. :-:r-::.•......• 

169 I 



equat ion I is: 

aw ani a<R2>
 
Ln-m-<R2> - + w<R2>Lm - + Ln-m-w - ­

I I at I at 'I at
 

av -1 a av 
+	 Ln-m _<R2> w [-] -- ­

I I ap ot ap
 

- T	 1 + T· b + Tbth + T- -Ln-m-<R2>w[ _1_ + _1 ]- co JX IZ 1 I
 
1:q>cx 1:q>S
 

av] - 1 a av aw
 
+ - - -- LnimjXq><R2(Vp)2> ­[ 

ap ap ap	 ap 

_ [av] -, ~ av Enjmjw<R2(Vp)2> [~] [eq. 3] 
ap ap ap Vp 

The terms on the left hand side represent the average angular momentum 

densit~ stored in a flux surface. aV/ap is a differential flux surface volume, 

where p is an arbitrar~ flux surface label, which moves with the toroidal 

flux. Tcol is the collisional torque density. This can be calculated from a 

Monte Carlo sum of nbmbR(Bq>/B)(aVllb/at)col' In the simplest drift equations 

where IBI=IBq> I is assumed, the (Bq>/B) term is left out. One cou Id imag ine 
including higher order terms in (avq>/8t). but the fast ion drift equations 

itself is generally not solved including terms of higher order than the Alfven 

drifts. so one would lose momentum conservation. Indeed it is important to 

use a drift formulation which conserves a canonical angular momentum 

(unl ike the pure Alfven drifts). and includes the presence of a radial electric 

field. as in Ref. 6. In simpler codes, a cylindrical Fokker-Planck solution can 

be performed in the rotating plasma frame, by transforming the beam velocity 

to the plasma frame. The coil isional force can be derived in the manner of 

Ref. 7, (summing over all bulk plasma species). T jxB is the average torque 

density exerted on the plasma due to any radial current of beam ions. This 

can be easily calculated via Monte Carlo; the change in mechanical angular 

momentum, mbR(Bq>/B)vllb. due to orbiting is taken to be del ivered directly to 
the plasma. This topic has received theoretical attention in Ref. 8. In 

quasi-cylindrical codes it would be appropriate to give the difference 

between the input neutral beam momentum and the first-orbit-averaged 

momentum (including radial electrk fields and banana precession) to the 

plasma as T jxB. The initial pitch angle in a cy I indrical formulation would 
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then be chosen such that the first-orbit- averaged momentum was delivered 

to the Fokker-Planck equation. Tbth is the torque del ivered to the plasma in 

the form of thermal izeel beam ions with finite lab-frame toroidal velocity. 

This is easily calculated via Monte Carlo, and can be derived from the slowing 

down rate and from the first two Legendre harmonics of the'distribution 

function in the lowest energy zone of a Fokker-Planck solution. (We return to 

the topic of beam-ion slowing down in section 2B.) Tiz is the"torque density 

due to ionizing new rotating neutrals into the ion distribution function and 

losing rotating ions via recombination. Loss from the ion distribution 

function via charge-exchange with beam neutrals should be included here as 

well. 

't"q>cx is the momentum loss time to charge-exchange. One has to 

recognize that neutral atoms may be rotating at a speed close to that of the 

bu Ik plasma, so that the charge-exchange part of this term is not just the 

charge-exchange time. To fair accuracy t'q>cx ~ t'cx[uq>l(uq> -uq>o)l. To do this 

proper Iy, one shou Id include toroida I rotation in the neutral transport codes, 

and calculate uq>o (or better yet, 't"q>cx) directly. For the time being we can 

perhaps assume uq>l(uq>-uq>o) ~ Ti/(Ti-T0)' 

The term inclUding Xq> ref iects momentum diffusion, or perpend icu lar 

viscosity, in units of 12/t. This particular formulation comes from assuming 

that the cross-field flux of angUlar momentum (fq» driven by f;Jw is given by: 

aw 
f q> = LnirTI iXq> R2f;JP- [eq. 4] 

ap
and so 

aw
Sfq>·dA = LnimjXq> (21l'fdl p If;Jp IR3) ­ [eq. 5] 

ap 

Since the defir"litiofl of the flux surface average of any quantity X is: 

av -I 

<X> " [2rrpdlp(XAI IVp Il] [ap] [eq. 6] 

we have: . [av} awSfq>'dA = - LnimjXq> <R2(f;Jp)2>- [eq. 7] 
ap . ap 

The Xq> term of equation 3 follows by conservation of angUlar momentum. 

The last term in equation 3 represents convection of momentum across 

f lux surfaces. Here we are tak ing what one might call the "average Joe" 

model of convection, assuming that the convected particles carry the average 
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local angular momentum with them. Other weightings could be treated as 

off-diagonal elements in the matrix of transport coefficients. The particular 

form for the convection of momentum in eq. 3 follows from the same sort of 

arguments as eq.'s 4 - 7, if we assume that rj 0< Vp along a flux surface, as 

we have assumed for r <p' Note that in transport analysis codes OJ is deduced 
from measured fluxes, rather than the other way around as in simulation 

codes. 

2. Energy Balance associated with Rotation 

A. Source-Fr iction 

It is important to follow all of the energy flows implied by equations 1 

and 3. so that we can make up a proper energy Dalance for the beam ions, the 
plasma thermal energy, and the plasma rotational energy. First, however, it 

is instructive to look at power Dalance in a very simple proDlem, in which a 

moving plasma with velocity Urot and temperature T has a source rate of 
ions 5 moving at velocity us. for example due t9 electron ionization of 
neutrals. In this case we have the obvious equations: 

dn 
- = 5 Part icle Conservat ion [eq. 8J 
dt 

d 
- (nmurot) = Smus Momentum Conservation [eq. 9]
dt . 

~ [nmurot2 + 3nkT] __ 
Smus

2/2
 
dt 2 2
 

Energy Conservation [eq. 10] 

Substituting equation 8 into equation 9 we get 

d 
nm -Urot = Sm(us- Urot) [eq. I I] 

dt 
which is not surprising. However, suDstituting equations 8 and 11 into 
equat Ion lOwe get 

d 3nkT Sm(urot - US)2 
= [eq. 12] 

dt 2 2 

-,J.'i .....
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Equation 12 simply shows that the net particle energy in the plasma frame 
goes into increasing plasma thermal energy. This is what we generally label 

as Pbth' 

It is now instructive to think about this case by constructing an energy 
balance equation from the momentum balance equation. The R.H.S. of equation 
9 can be viewed as a force, Fs' giving rise to a time rate of change of 
momentum. Multiplying both sides by Urot and substituting equation 8 gives 

d nmurot2 Smurot2 

= Fs·urot - [eq. 13] 
dt 2 2 

Note, then, that the energy in plasma motion is increased by a work-I ike term 
of the form Fs· Urot, and decreased by a new term which we might call 
source-fr iction. This is the Iinear momentum analog of the last term in the 
last equation of equations 2. Note that the Fs·urot term here is Quite 
different from the input power associated with the new ions even if Us = 
Urot. However when we add up the R.H.S.'s of equations 12 and 13 we do, of 
course, obtain the original input power, Smus 

2/2. In the special case Where 
Us =Urot, the two terms in equation 13 sum to the input power and the Pbth 
thermal ization power is, of course, zero. 

B. Beam ion slowing down 

The excercise we have just completed will allow us to better 
understand the relationship of the rotational power balance to the thermal 
power balance. In particLilar it addressed issues which will be important in 
understanding effects associated witrl beam ions and plasma neutrals being 
del ivered to a rotating bulk ion distribution. We have not completed the 

discussion, however, of how to obtain energy balance in the calculation of 
beam ion slowing down in a rotating plasma. In Monte Carlo codes beam ion 
orbits are followed in the lab frame, so at each coil isional time step the 
beam ion velocity must be transformed to the local rest frame of the plasma. 
Since the drift velocities (including ExB drifts) are ordered small, we need 
only include the parallel component of uq> in the transformation [[Wllb = 
- (Bq>/B)uq>]. Collisions can then be executed with the usual Monte Carlo 
techniques. (For simplified drift equations with IBI= IBq> I we take 
6vllb =- uq> .) The loss of plasma-frame energy from coli isions simply goes 
into plasma heating as before. In the lab frame a different amount of energy 
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is lost, however. Taking the plasma-frame beam ion velocity to be 

[eq. 14]Vpl == vlab - UIIrot 

we can evaluate the time derivative of the lab-frame energy due to 

coli is ions: 

d mbv2plmbv2 1ab d 
=
 

dt
 22 dt colcol 

d 
+	 mbUllrot· - vlab [eq. 15] 

dt col 

where we have used (d/dt)coIVlab = (d/dt)coIVpl. Thus the extra lab-frame 

energy loss goes into simple Fcol . Urot. Any net perpendicular Fcol due to 
the beam ions is neglected. There is also a beam-dr iven torque due to jb x 

BpI which corresponds to the change in mechanica I angu lar momentum of 
beam ions as they cross f lux surfaces. It can be shown from conservat ion of 

canonical angular momentum that the wT jxB power which results from this 

force is exactly balanced by the radial motion of beam ions up or down the 

electrostatic potential. 

In section 1 we discussed how simple Fokker-Planck calculations can 

be performed in a rotating plasma, by transforming the beam ion velocities to 
the plasma frame when the beam ions are first deposited, and then 

performing the usual flux-surface-Iocal slowing down calculations. (We also 

discussed how to take into account the first-orbit jb x B torque.) Thep 
approach we outlined is a bit curious, since it leads one to wonder about 

what becomes of the energy difference between mbvlab2/2 and mbvpl2/2. 
However. we note that we can simply time-integrate equation IS. and find 

[eq.16] 

Thus again the lab-frame energy goes directly into plasma heating, and into 

F· u power. Note that for strict energy accountabi Iity, beam ion charge 

exchange losses will need to be transformed back into the lab frame. The 

power density of charge-exchange I'oss in the plasma frame is given by 

Qcx = ffbEb,PIUcxd~PI21TVpI2dVpl	 [eq. 17l 
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where ~Pl :: VII,pl/vpl, and fb can be conveniently expressed in Legendre 
polynom ials. To find the energy loss in the lab frame, we need only replace 

Eb,pl (= mbvpl2/2) with Eb,lab using 

mb
 
Eb,lab =2 [(UII + vpl~PI)2 + (1~~PI2)vPI2]
 

mb 
= Eb,pl + 2 (u 11 2 + 2u IIvpl~pl) [eq. 18] 

The integral d~pl of eq. 17, using Eb,lab' will only include the first two 
Legendre polynomials. Note that in this formulation we have ignored the 
difference between ull and uq>' and between vII and vq>. assuming that the 
momentum input to the Fokker-Planck calculation was SmvlI' 

In a Fokker-Planck calculation. the thermal ization force. Fbth. can be 
found by integrating the f low of momentum across the lowest energy zone. 
This is simi lar to the problem of calculating the plasma-frame 
charge-exchange loss. The genera I form of the slow ing down equation is 

8fb 1 8 8v
 
- = - - - v2 - fb + C.X. terms


2at v av at col 

+ Pitch-angle scattering terms. [eq. 19] 

Integrating by parts we get that the flow of momentum to thermalization per 
unit volume is 

[eq. 20] 
pcp in the lab frame for this case is mb(Vth~pl + ulI)' Thus we see again that 
only the first :2 Legendre harmonics will be needed. 

In the general geometry, Monte Carlo case we will take the 
thermal ization torque, Tbth, to be ~mbvb, II (Bcp/B)Rs, where Rs is the major 
radius at which the fast ions are thermal ized, and vb,II the beam ion toroidal 
velocity. In tt"lis case there is a new effect because RS2 ~ <R2>. Another 
way to say this is that the (w 2/2)8I18t term of equations 2· associated with 
beam ion therma Iization is represented in general geometry by the beam part 
of (w2/2)~m i(oVlopt 1<R2>8/8t(njoVlop). However in the beam ion power 
balance this equation has RS2, rather than <R2>, by analogy with equation 13. 
This paradox is resolved by realizing that beam ions thermalized unevenly 
across the flux surface will eXChange bulk rotational energy for thermal 
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energy as they spread out. In particular, if they are deposited towards the 
inside in major radius they wi II take energy out of rotation as they distribute 
outwards, and vice-versa for ions deposited outboard in major radius. The 
net effect is a new term in Pbth 

[eq. 21] 

This new term does rem ind us of the fact that our assumption that nj =nj(p) 
only, rests on shaky ground at rligh rotat ion speeds. Another uncertain 
assumption is that the beam ion source rate due to thermal ization is the only 
ion source rate with poloidal variation. 

C. Power Balance 

It is interesting to generate a power balance equation in the spirit of 
equation 13, based on the fixed, cylindrical model equation 1. MUltiplying 
both sides by ucp, we obtain 

_ Lnjmiucp2 [_1_ + _1 ] 
t:q>cx t:q>S 

+ uq>V' (~nimi) Xq>Vuq> - uq>V' ~miriuq> [eq. 22] 

I have placed the time derivative of the stored rotational energy density on 
the L.H.S.. The first terms on the right hand side can be identified as the 
source-friction, plus four F· Urot work terms. Remember, however, that the 
Uq>Fbth term contains twice the rotational energy associated with the 
plasma-frame isotropic part of the thermalizing beam ions. If we add the 
negative source-friction term associated with the beam-driven dn/dt, we 
then have the correct beam energy ba lance. The loss rate of rotal iona I 
energy via 't"cpcx and 't"q>& is tw ice the rate of loss of momentum, which is thp 
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expected resu It for charge exchange with slower-moving thermal neutrals or 
ripple drag. In the case of recombination, or charge exchange loss via 
collisions with beam neutrals, where net momentum is changed by changing 
the total number of particles, one expects half this rate. Uqliz plus the 
negative ion source rates associated with these processes acting through the 
source-friction term, give the proper net effect on rotational energy. The 
meaning of equation 22 becomes clearer if we substitue ani/at = -V'fj + 

Sj bth + Siz. and volume integrate from 0 to r., 

1 au q>2 1 . an' ]

4rr2R Ln'm' - -- + - um2Lm' _I rdr =
J[o I I 2 at 2 '1' I at 

4rr2RoJ[ uqlcol ' Uq,F jXb - +Uq>2Lmj (Si,bth ' Siz) , Uq>Fbth 

+ uq>F iz - Lnimjuq>2 [ _1_ + _1-] ] rdr
 
Lq>CX Lq>O
 

aUq> 
- 4rr2Rof(Lnjmj)Xq>(Vuq»2 rdr + 4rr2Roruq>(Lnjmj)Xq> ar 

- 2rr2Ron::m j (fi' r) Uq> 2 

leq. 231 

This eQuat ion makes clear the distinct ion between local dissipation of 
rotational energy into heat, and radial transport of rotational energy. New 
local heat ing terms are thus introduced into (presumably) the ion energy 
balance equation: 

[eq. 241 
*See eQuat ion 31 

The last step in this power balance problem is to create an arbitrary 
geometry general izat. ion of equat ion 22, by mu ltiply ing equat ion 3 by w. in 
the spir it of equations 2. 
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- ---

21 aw 1 . ani 
~n'm' - <R2> -- + - w2<R2>~m' ­

1 1 2 at 2 I at 

1 a<R2>
 
+ - ~n'm'w2 - ­

2 1 I at
 

av] -1 a av 
[ 

ap at ap 

1 a<R2> 
= - - ~nimiw2 - ­

2 at 

[eq. 251 

All of the terms in this equation are simply identifieq with the terms in 

equation 22, except for the first term on the R.H.S., which takes account of 
compression effects. It reflects the fact that the rotational energy per 

particle is proportional to I/R2. Integrating eq. 25 over volume clearly gives 
rise to an analog of equation 23. The generalized geometry version of 
equat ion 24 becomes: 

3 a * Lnjmj<R2>w2
 
- -- ~niTi =(previous terms) + -..........;..-- ­

2 at Lq>S
 

+ 2w
2 

mb«R2><Si,bth> - <Rs2S j,bth» *See equation 31 

[eq. 261 
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The last term does not exist in a cylinder; it arises from the same physics 

as the Si,bth term, given the assumption of Vp 0< Vp. 

3. And llary Effects 

A. Beam DeDos it ion 

It is necessary to take into account the fact that the plasma is 
rotating, in the atomic physics calculations. This is straightforward in the 
sense that one need only make a vector sUbtraction of the beam and plasma 
velocities to get a new relative velocity between the two, and then proceed 
to calculate reaction rates with this new vrel' as before. 

B. CharQe-Exchange Analysis 

This is rea Ily the same thing as for beam deposition, except we aIso 
need to launch the neutrals from a shifted Maxwell ian, although one cou Id 
question this approximation for fi. 

C. Beam/plasma 13 's 

The beam ~ calculation in Monte Carlo codes is unchanged; wli band , 
w1 bare accumu lated in the lab frame via Monte Car 10 techniques as before., 
In Fokker-Planck codes. however. the beam distribution function is calculated 
in the plasma frame. w1 b can be calculated as before, but wlI,b must be 

t 

evaluated in the lab frame, using equation 18. 
stored energy in rotation looks to magnetic measurements just I ike 

stored energy in wlI,b =(1/2)mvb,,2, to first order in inverse aspect ratio. 
Thus ~ II due to rotation is simply 2 <Uroel(B2/8rr), where <Uroe is the 
volume-average energy density in rotation. There is no effect on ~ l' ~eq 

(the quantity measured via the vertical field strength required for 
equi Iibrium) is given, as always, by $eq = ($" + $1)/2. At high rotation 
speeds the plasma anisotropy will need to be inclUded in MHD equ i Iibr ium 
calculations for transport analysis. 

D. Neutra I transDort 

It should be relatively straightforward to generalize current Monte 
Carlo neutral transport codes to include a rotating background plasma. The 
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necessary physics for power balance is described in section 2A, since the 
Monte Carlo neutrals represent S-fundion distributions of particles, which is 

what is treated there. Note the particular definition of power to the thermal 

plasma due to ionization; the same term with a negative sign will occur for 

loss of particles from the ion distribution. 

For a model where one considers the neutrals as a rotating fluid, the 
discussion in section 2A needs to be expanded. The clearest way to do this 

is to consider two groups of particles, neutrals with mean velocity Uo and 

average thermal temperature around this velocity To, and ions with mean 

velocity Uj and thermal spread Ti. Define Soi to be the source rate of ions 

from the neutrals, and Sio to represent th~ reverse process. Then we proceed 
in parallel with the discussion in 2A. 

dni dno - - - - - S . - S·
dt - dt - 01 10 

Part icle Conservat ion [eq. 27] 

Momentum Conservat ion [eq. 281 

d [nimjUj2 3 ] d [nOmOU0
2 

3 ]
- + - n'kT' = - - + - n kT = 
dt 2 2 I 1 dt' 2 2 0 0 

mj U0 
2 

3 ] _ S' [m iU i
2 

3 
Soi [ 2 +;kTo 10 2 +2 kTi ] 

Energy Conservat ion feq. 291 

SUbstituting equation 27 into equation, 28 we get 

d 
njm i - Ui = Soimj(uo-u j) feq. 30] 

dt 

which is not surprising. However, sUbstituting equations 27 and 30 into 

equat ion 29 we get 

d 3 3 3 1 
- -
dt 2 n·kT· = -

I I 2 S 'kT - -
01 0 2 S· kT· + -

10 I 2 S 'm'(u'-u )2
01 I 1 0 

feq. 3 II 
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The first term represents the familiar charge-exchange and ionization power, 

expressed in the simplest way. The third term is new, and so somewhat 

gives the I ie to the "previous terms" entry in equations 24 and 26. In effect 

the familiar Pcx and Piz terms in the ion power balance have new parts. 

These can be understood very simply. Suppose we have cool neutral and ion 

fluids, moving in opposite directions at suDstantial velocity. If we let these 

two fluids charge exchange with each other for a long time, eventually they 

wi II come to rest, and their directed energy wi 11 have been converted to 

thermal motion. The same argument holds if one distribution is simply 

ionized into the other. 

E. Poloidal Variation of nj 

In all of this analysis we have assumed nj was a flux-surface constant. 

This is tantamount to assuming 2EU<p2 « Vth2, which is clearly not true for 

impurity ions under recent conditions in TFTR. It also assumes that there is 

no significant poloidal variation of the beam ion density - clearly incorrect 
for high-power perpendicular injection. It would De valuaDle to at least 

calculate the theoretical ni(e) for each species. A simple calculation is 

avai lable in Ref. 9. 

F. Beam-driven Current 

The beam-driven current is as easily calculated in a rotating plasma as 

in a stationary one. The calculation must simply be done in the plasma 

frame. Corrections for the difference Detween the net current and the raw 

rotating beam ion current (l-l/Zeff for classical, plus trapping corrections 

for neo-c lass ica I) must be taken into'account. A recent invest igat ion (Ref. 

10) indicates that the usual calcu lation of the combined effect of the 

toroidal electric field and the distortion of the electron distribution function 
on the beam ions, the so-calIed EII~ term (Ref. I J), neglects a part of the 

distorion of f e which becomes important (relative to Ell *) when the raw 

cirCUlating beam ion current becomes comparable to the total plasma current. 

In a classical plasma the term results in a reduction in the electron drag Dy 

aVII = nb<vbll,pl> 
[eq. 32J 

at e neZefft's 
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III. Statistical TechniQues for Interpreting Confinement Results 

As the quantity of data avai lable from diagnostics and from data 

interpretation codes has grown, our dependence on electronic database tools 

has Increased as well. The flexible and powerful LOCUS system (Ref. 12) 

developed at PPPL has proven to be a tremendously valuable tool in the 

day-to-day work of essentially all of the TFTR physicists. Th,is has the 

fortunate consequence that we are able to handle a very large quantity of 

data in the traditional ways. In the simplest sense, we are able to just plot 

more points on paper, without spending proportionately more time doing it. 

On a more subtle level, these tools allow us to do more kinds of 

investigations - examine data from many different viewpoints in order to see 

what can be learned. Database tools can be used to compare massive 
quantities of experimental results with theoretical prediction, and look for 

trends in the patterns of agreement and disagreement. On the other hand, 

they can also be used in the data verification process to look for 

inconsistencies or odd behavior in the data. The ability to plot data easily in 
many different ways, however, does not obvi-ate the need for careful planning 

of experiments and careful scrut iny of analysis procedures. 

Increased quantities of data, stored electronically, have naturally led 

to increased use of statistical tools. Again here we find a realm of great 

power and fleXibility, but considerable danger. There is a strong tendency to 

rely on mUltiple regression analysis to do data interpretation, in some sense, 

for us. A clear example of how this can be misleading comes from the fact 

that we know that simple models of the form t'E 0< IpaBTbne
C cannot. 

adequately represent all tokamak confinement data. Density and current 

scans in low ~p ohmic discharges give very different results than scans of 

the same parameters in high ~p beam-heated plasmas. In partiCUlar, if 1:"E 0< 

ne1 is observed in ohmic data, and t'E 0< neD in high-power beam-heated 

plasmas, there is no way that the constraints imposed by ohmic heating can 

be "relaxed" in a way that "allows the same scaling law to explain both 

regimes. However statistical fits to data which inclUde both categories of 

plasmas, perhaps without the lowest-density ohmic cases, or the 

highe.st-power beam cases, will give reasonably good-looking regression 

plots. How many of us stUdy residuals from the fits we make, to look for 

patterns in the errors, and therefore inadequacy of the models? Even this is 

not a substitute for carefu lIy controlled experiments with systematic scans 

of individual parameters, covering as much of parameter space as possible. 
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Another pitfall of mUltiple linear regression comes from the presence 

of correlation between nominally independent variables. In orlmic data, for 

example, there tends to be a correlation of Ip and ne. If there is such 
correlation, one consequence is that the error bars in the fit parameters for 

Ip and ne are not independent. If the fit parameter for lp is chosen near the 

top of its error range, then the fit parameter for ne must be taken near the 

bottom of its range. For a concrete example, we will consider plasma 

rotation measurements on POX, reported in the doctoral thesis of Kevin Brau 

(Ref. 13). See Fig. 1 below. In this figure vphi represents the central 

toroidal rotation speed, measured by X-ray crystal spectroscopy (Ref. 14); 

Pabs is the absorbed beam power. Note that there is a strong correlat ion of 
the line average density with the injected, beam power. This will make it 

difficult to disentangle dependencies on density and power. (In addition there 
is a correlation with Ip in this data, which we will not discuss here.) 

20 
o 1 < n < 2 10 19 /m 3 

e

X 2 < ne< 3
 
~ 3 < n < 4 x
e xo 4 < n < 51.5 e X 4 

.0.
X a ..... 

.c 1.0 X a 

>0.. X 

0 
0 

O. 5 

o 2 3 

Pabs 

Figure 1. Toroidal rotation speed VS. absorbed beam power from POX. 

Data from PLT suggested that vep was proportional to Pabs and nearly 

independent of ne. LOOking at the saturation of rotation speed with 
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increasing Pabs in this figure certainly suggests that the POX data is qu ite 
different. But how do we prove this statistically? If we model vq> 0< PabsO< 
nea regression analysis gives individual 90% confidence ranges for 0< and 8 
of 0.23 < 0< < 1.04, and -1.28 < a< 0, so this would seem to indicate that 
Pabs'ne

O cannot be excluded. However we really need to study the joint 
confidence range of 0< and ~ together, since there is significant correlation of 
Pabs and ne in the'data set. 

Graduate statistics texts (Ref. 15) give a simple formu la defining the
 
joint confidence region by:
 

(B-~)'X'X(B-~) 
~ FO<,p,n-p [eq. 33] 

pMSE 

In this formula B stands for a vector of possible regression coefficients, 
with ~ the best fit. and X'X is a pxp matrix constructed from the data set. 
p-l is the number of independent variables, and n is the number of 
measurements. MSE is the mean square error in the dependent variable, 
eva luated from the qua Ii ty of the fit to the data. F is the standard F 
distribution statistic, with 100(1-0<) the percentage confidence desired. The 
textbooks I have consulted tend to use this formula for p=2, but do not find it 
useful for larger values of p, because the hyper-ellipsoid it describes is hard 
to compute and visualize. Monte Carlo techniques can easily be applied to 
calculating the shape of this hyper-ellipsoid, however. Consider the 
hypercube defined by, say, 3 times the individual confidence regions of the 
various fit parameters. If by Monte Carlo we choose random points in this 
region, and evaluate inequal ity 33, we can rapidly develop a group of 1000 (or 
10,000) points within the h~lper-ell ipsoid. These points can be projected 
onto any plane of our choosing, in order to look for the effects of correlation 
of pairs of independent variables, for any value of p. (It is more difficult 
with this tectmique to see the effects of correlations which involve more 
than 2 variables, such as o<V 1 + 8V2'~ V3.) Figure 2 shows the 90.% joint 
confidence region for the POX rotation data, as ,well as the individual 
confidence regions. Clearly the choice 0< = I, ~ = 0 is exluded by the joint 
confidence region. On the other hand, whi Ie the choice 0< = 1, ~ = -1 is 
inclUded in the 90% confidence region, this figure makes clear that the choice 
ex =0.5, ~ =0, for example, which gives quite a clifferent sense of the 
physics, is about equally well supported by this particular data. 

Figures of this sort are easy to make, both in terms of programm ing 
effort and in terms of computer run time. After the 1000 (or 10,000) points 
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Figure 2. 90% individual confidence regions for (X (fit coefficient for Pabs) 
and ~ (fit coefficient for ne), their overlap region, and 90% joint confidence 

region for 0< and ~, displayed via Monte Carlo, using 1000 points. 

defining the hyper-ellipsoid are stored in memory, they can easily be plotted 

or examined in any way desired. Interestingly, all the data necessary to 
communicate the dimensions of this hyper-ellipsoid are contained in the pxp 

matrix X'X, S, and the values of MSE' p, and n. Plasma physics research 

frequently comes up against correlated independent variables, so that 

examination of joint confidence regions could be helpful to us, and perhaps 

even the communication of X'X along with the individual confidence regions 

wou Id be usefu I. 
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