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e We need to understand and control the microturbulence expected to
cause anomalous transport in tokamak burning plasmas

e Our research compares nonlinear GS2 simulations of microturbu-
lence fluxes with measurements in:

1. Two Advanced Tokamak plasmas
2. 0ne DT ELMy plasma
e The simulated microturbulent fluxes are:

1. Suppressed within ~ half radius
2. Different for D and T
3. Impurity fluxes small in AT plasmas, inward in the DT ELMy plasma




Plasmas studied and questions asked

e JET and DIII-D AT plasmas with ITB’s and high bootstrap fractions
1. What causes accumulation of high Z impurities within ITB?
2. Is large externally-driven flow shear (vg.g) required?

e JET DT ELMy plasma with record Wpr

1. Is the transport of D and T similar?
2. Do impurities accumulate?
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Nonlinear microturbulence simulations with the GS2 code

Start with the Vlasov equation (Maxwell-Boltzmann equation) + collisions
Length scale and time scale ordering, gyro-averaging -> gyrokinetic equations

GS2 solves the gyrokinetic equations for evolution of f (X, v species)
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Up to 0.94 billion meshpoints to resolve f (X, v species)

MY
Miller equilibria for shaped flux surfaces, up to 6 species
Collisions modeled using an energy-dependent Lorentz collision operator
Electrostatic fluctuations (near future: include magnetic fluctuations & ExB shear)
K poioisa P, from O upto 0.9 -3.0
N poioigal = 24 - 48
N, = 24 - 125

GS2 scales well up to 1024 processors on IBM SP



AT plasmas: ITB (defined by large R/Lt,) ends near q,.»

Profiles of temperatures and q in a) JET and b) DIII-D plasmas
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Microturbulence in JET AT plasma with current hole

Strong suppression for large negative S

Microturbulence fluxes too large at weak and positive S
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Similar results for particle fluxes and DIII-D AT plasmas
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ELMy DT plasma from JET
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Microturbulent particle fluxes in the JET DT ELMy plasma

nonlinear part flux for 42982c31 at x=0.8, t=16.4s
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Linear growth rate reduced if impurity density less hollow

Sensitivity of linear growth rate on carbon density gradient
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Profiles of heat fluxes in JET DT ELMy plasma

Neoclassical fluxes much lower than measured (as expected in moderate density JET ELMy)

Microturbulent-driven heat fluxes either too high or too low
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Results

® Hypersensitive dependence on impurity density profile

® Microturbulence in AT plasmas suppressed when § is sufficiently negative and
a x |V 3| sufficiently large, even with large R/ L,

® Microturbulence suppressed in DT ELMy plasma within &~ half-radius, large and
driven by impurity carbon mixing at larger radii

® Need to invoke externally-driven g, g and/or EM (3 suppression further out

@ Ignoring externally-driven g, g and 3 stabilization, GS2 predicts heat and parti-
cle fluxes high by factors of 5-1000

® In AT plasmas impurity fluxes are outward, suggesting that impurity accumulation
inside ITB’s due to neoclassical, not microturbulence effects

® In ELMy plasmas impurity fluxes can be inward
@ differing heat and particle fluxes for D and T

® Bursts of energy and particle fluxes in AT plasmas lasting 50-100 microsec



Movies of ¢(z,y,0 = 0;t) and 2-point correlations
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