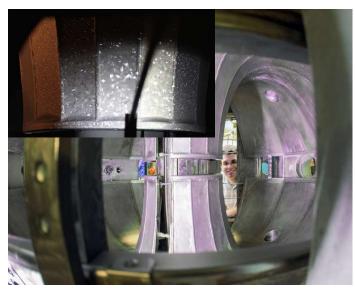
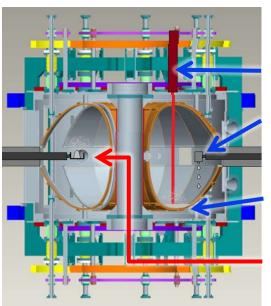


Extending the low-recycling regime to higher performance discharges and liquid lithium walls in LTX-β

J. Anderson, R. Bell, T. Biewer, W. Capecchi, D. Donovan, D. Elliott, C. Hansen, P. Hughes, R. Kaita, B. Koel, S. Kubota, B. LeBlanc, A. LeViness, A. Maan, R. Majeski, E. Ostrowski, F. Scotti, V. Soukhanovskii, N. Yoneda, L. Zakharov, X. Zhang

A fundamentally different approach to fusion

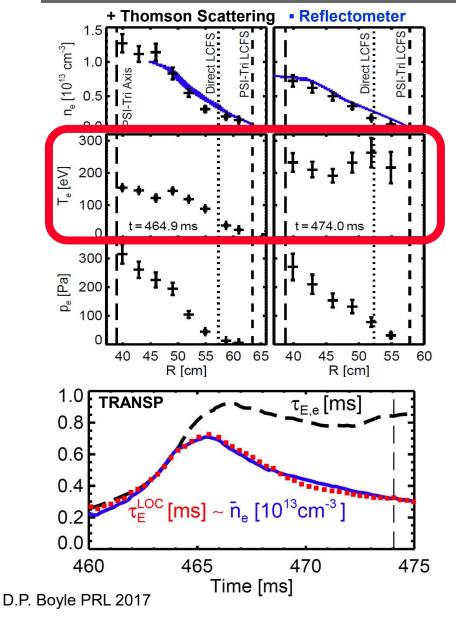

- LTX-B
- Li a possible solution to the biggest problems in fusion
- LTX uniquely explored <u>low-recycling</u> and <u>liquid walls</u>
 - With solid lithium, flat T_e profile and hot edge first observed
 - Good performance with full liquid Li wall first demonstrated
- Upgrades enable LTX-β to extend, study new regimes
 - Notables: Achieved main operations goals, initial physics goals
 - » Improved Li, Higher $\boldsymbol{B_T}$ and $\boldsymbol{I_p}$, NBI commissioned
 - » Low-recycling flat $T_{\mathbf{e}}$ for longer duration & with liquid Li
 - » Record I_p , T_e , p, τ_E ; τ_E exceeds Linear Ohmic scaling
 - Now: further improve, explore low-recycling & liquid lithium
 - » Improved diagnostics, modeling: Understand unique physics
 - » High B_T , I_p , n_e will enable NBI core heating and fueling


Li predicted, demonstrated to improve fusion

- Low Recycling due to chemical bonding of H/D/T
 - Improves density control
 - Improved energy confinement in TFTR, NSTX, CDX-U, more
 - Reduces edge thermal losses, gradients, turbulence
- Reduce impurities
 - Li relatively benign: Low-Z and low first ionization potential
 - Sputtering decreases for higher edge $T_i > 200 \text{ eV}$
 - Getters, buries, dissolves other impurities
- Liquid metals could solve many wall issues
 - Can't break/crack, erosion not an issue, so can be thinner
 - Substrate only has to handle heat & neutrons, not plasma
 - Can flow or evaporate to handle heat, remove tritium
- All of these explored, demonstrated on LTX(-β)

LTX first & only tokamak with full liquid walls

- Lithium on stainless steel shell surrounds plasma
 - Covers ~80% of plasma
 - Can be entirely Li coated
 - 1.5 mm SS liner + 1 cm Cu
 - Heat to 270 350 °C
 » Li liquefies at ~180 °C
 - 4 quadrants w/ toroidal and poloidal breaks
- Solid coatings sustained good performance for days, weeks, or months
 - Depends on vacuum & Li conditioning technique



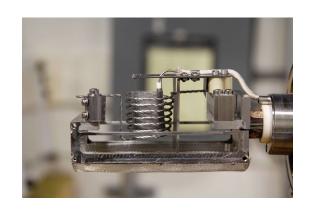
Electron Gun Crucible Filler

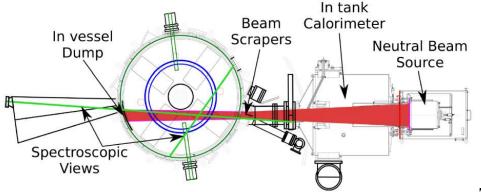
Lithium Pool

Helium or Upward Evaporator

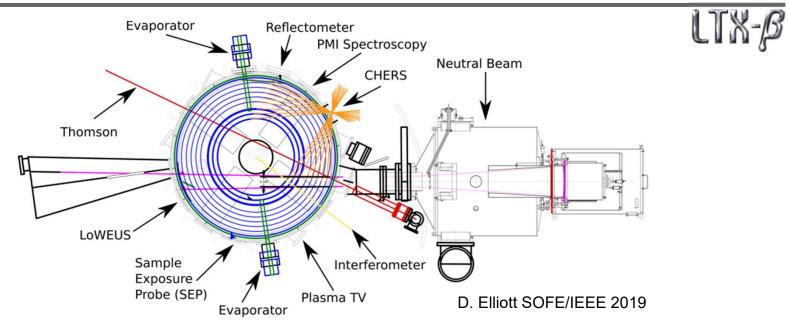
Flat T_{e} , hot edge w/ low recycling & high au_{E}

- Even with low recycling, gas puffing cools edge
- T_e profiles flatten w/ hot edge after fueling ends
 - » Long standing prediction
 - Krashnenikov PoP 2003
 - Zakharov FED 2004
- During fueling, follows Linear Ohmic Confinement scaling $\tau_{LOC} \sim n_e \alpha R^2 \sqrt{q}$
- As edge temperature increases and T_e flattens,
 τ_E ~ flat even as n_e drops

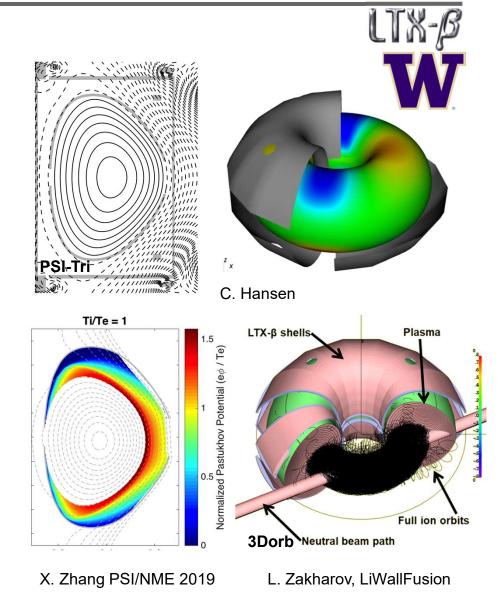

LTX-β upgrades extend, better study new regimes

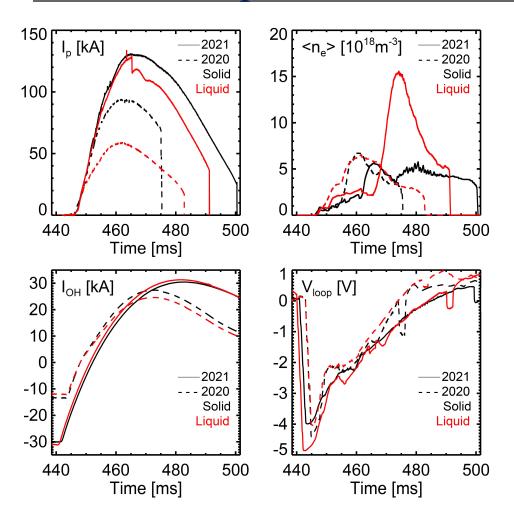

- Improved Lithium and wall conditioning
 - ☐ More control over solid/liquid Li and low-recycling
- ☐ Higher magnetic fields and plasma current
 - ☐ Higher performance, more relevant to large machines
- ☐ Neutral Beam Injection
 - ☐ Core fueling for steadier density without cold edge gas
 - ☐ Auxiliary heating for high performance, relevance
 - ☐ Fast ion confinement requires higher field, current
- \square Enhanced diagnostics \rightarrow deeper, finer studies
- Broad modeling effort for unique LTX-β physics

Main operations goals achieved, still improving


- ☑ Lithium/Wall conditioning
 - ☑ Control solid/liquid Li
- ☑ Higher fields, currents
 - ☑ Performance, relevance
- **☑** Neutral Beam Injection
 - ☐ Core fueling, heating
 - ☐ Fast ions need high current
 - ☐ Initially, poor confinement
 - \square Upcoming: High I_p + NBI

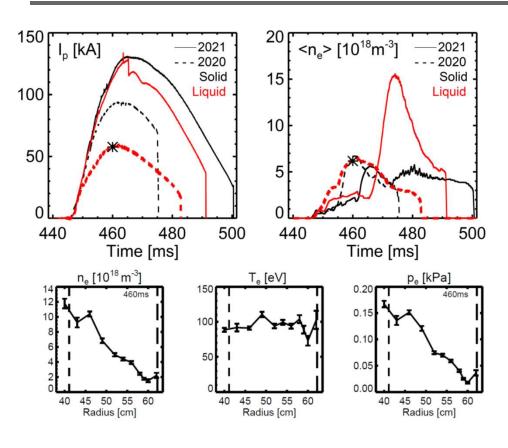
Parameters		LTX	LTX-β
Major Radius	R_o	34 – 40 cm	
Minor Radius	а	20 – 26 cm	
Vacuum Pumping		6 m ³ /s	12 m ³ /s
Heat/Evap/Cool time for Li evap		200/10/ 100 min	10/10/10 min
Toroidal Field	$\boldsymbol{B_T}$	0.18 T	0.3 T
Ohmic Flux Swing	$\Delta \Phi$	75 mV⋅s	100 mV⋅s
Plasma Current	I_p	85 kA	135 kA
Beam Power	P_{NBI}	0	700 kW
Beam Duration	t_{NBI}	0	5-6 ms


Enhanced diagnostics \rightarrow deeper, finer studies


- Thomson scattering: Reduced background + stray light
 - 11 views, 40-62 cm, Single 6-10J pulse requires repeated shots
- Magnetics, Langmuir probes, filterscopes, interferometer
- AXUV Lyman-α array for recycling measurements
- ORNL/PPPL: CHERS, multiple visible spectrometers
- LLNL: Filtered fast cameras, XUV/UV spectrometers

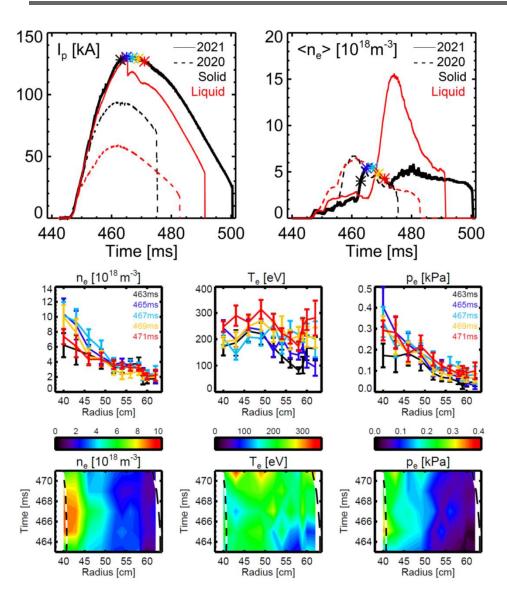
Broad modeling effort for unique LTX-β physics

- PSI-Tri equilibrium reconstructions
 - PSI-Tet eddy currents
- TRANSP integrated analysis
 - NCLASS, NUBEAM
- Fast ions
 - POET, CONBEAM
 - LiWallFusion: 3Dorb
- SOL ion mirror trap
- DEGAS2 neutral recycling

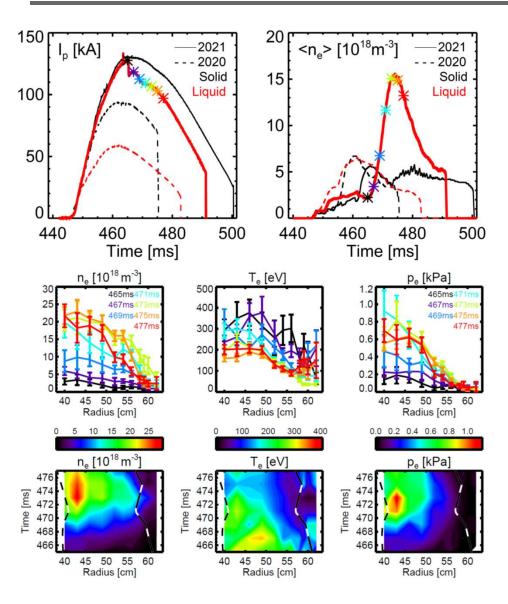


Record I_p achieved with solid and liquid Li

- Higher I_p enabled by upgraded OH bank
- Breakdown, ramp up greatly improved with
 ~200 °C shell in 2021
 - Still slightly lower I_p
 - Increased gas puff for high n, p though it further decreased I_p
- Should be enough to confine ~half fast ions
 - Ohmic plasmas shown
 - NBI experiments, analysis upcoming


Flat T_e profiles achieved with liquid Li walls

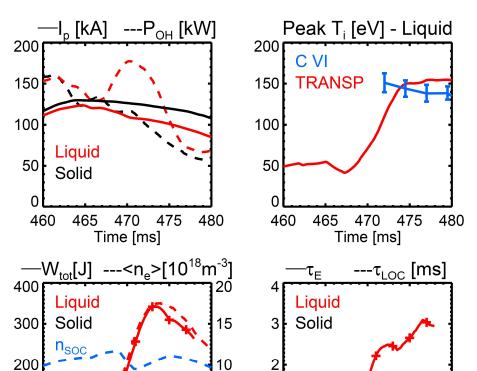
LIX-B


- ~60 kA discharges before OH upgrade
- Li on ~200 °C shell
- Flat T_e profiles with liquid Li walls were not demonstrated previously in LTX

Flat T_e profiles for several $au_{ m E}$ with solid walls

- Edge cools during gas puff, but later recovers
- Low-recycling regime extended to higher I_p , B_T , longer duration
 - Only reported for one time point on LTX

Record T_e ~400 eV, p_e ~1 kPa values achieved


- Still slightly lower I_p
 - More gas early, delay gas puff after peak I_p
 - Increased gas puff for high n, p though it further decreased I_p
- Gas puff too large to recover ~flat T_e by end of TS data

Confinement exceeds Linear Ohmic scaling

470 475

Time [ms]

LTX-B

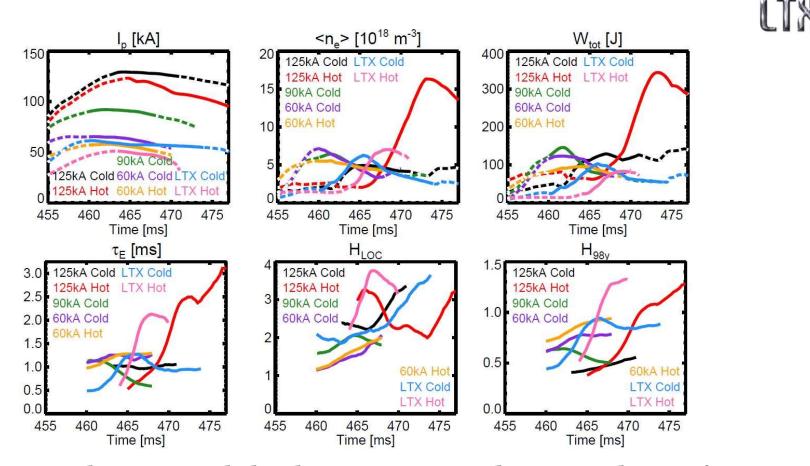
100

460

465

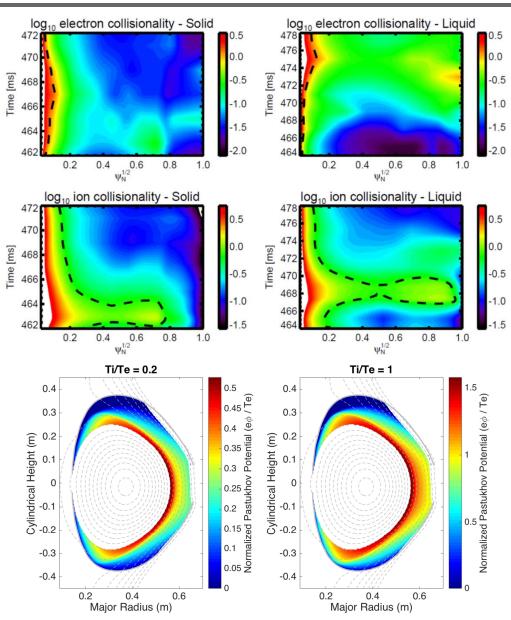
470 475

Time [ms]


480

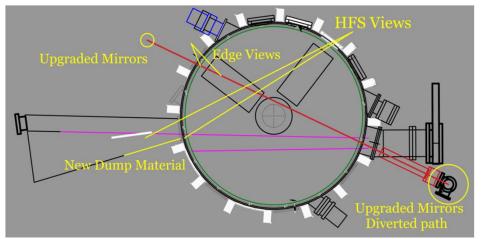
460

465

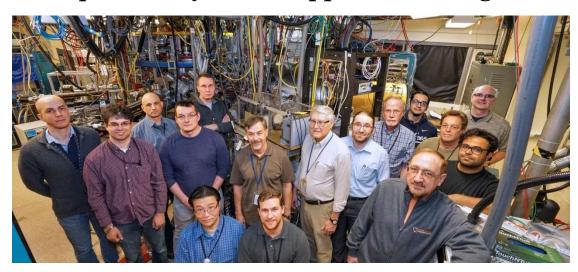

- TRANSP analysis
 - TS, PSI-Tri, I_p , V_{loop} , n_eL
 - Neoclassical T_i matches C VI
- W_{tot} , $\tau_{\rm E}$ increase ~ n_e
 - Linear Ohmic Confinement
 (LOC) or neoAlcator scaling
 - $\tau_{LOC} \sim n_e a R^2 \sqrt{q}$
- $au_{
 m E}$ does **not** decrease w/ $oldsymbol{n_e}$
 - Similar effect seen in LTX
 - $oldsymbol{n_e}$ above Saturated Ohmic Confinement critical $oldsymbol{n_{SOC}}$
 - No clear saturation

Starting to compare $\tau_{\rm E}$ to LTX, initial LTX- β

- Higher $au_{
 m E}$ with high $extbf{I_p} + extbf{n_e}$ Liquid Li, similar H factors
- H factors increasing w/ time, need more late TS data
- Future experiments will also look at NBI heating


Collisionless mirror trapping in edge and SOL

- Large fraction of trapped ions may complicate SOL model for profiles and flux to wall
 - DEGAS2 needs
 SOL model for
 recycling estimate
- Simple analytic model suggests ion trapping leads to Pastukhov potential


New capabilities ready to explore new regimes

- Optimize discharges for physics studies
 - Further improve breakdown, ramp up, position & shaping
 - » Stronger OH coil leads, clamping for higher I_{OH}
 - » ECRH startup, Improved PSI-Tri tools for coil programming
 - Steadier, longer, higher $\boldsymbol{I_p}$ and $\boldsymbol{n_e}$
 - Optimize plasma and beam for NBI heating and fueling
 - Recycling studies: "old Li" baseline, SGI/NBI fueling
- Soon: Add polychromators for Thomson Scattering
 - Core views inboard of axis to constrain equilibria
 - Higher etendue, sensitivity for single shot profiles
 - Plans for more views in hot, low density edge/SOL

LTX-β explores low-recycling & liquid walls

- Achieved main operations goals, initial physics goals
 - Improved Li, Higher $\boldsymbol{B_T}$ and $\boldsymbol{I_p}$, NBI commissioned
 - Low-recycling flat $T_{\mathbf{e}}$ for longer duration & with liquid Li
 - Record I_p , T_e , p, au_E ; au_E exceeds Linear Ohmic scaling
- New capabilities ready to extend, explore new regimes
 - Low-recycling liquid lithium walls are a fundamentally different, potentially better, approach to magnetic fusion

Additional improvements envisioned

- Possible operational and diagnostic upgrades
 - Between-shots lithium evaporation
 - PCS PF coils: position & shaping, OH, fueling, NBI
 - New coils separatrix? Negative triangularity?
 - Extend NBI pulse from $5 \rightarrow 10-30$ ms
 - ECH/EBW heat pulse
 - AXUV Radiated power / Lyman-α arrays
 - Reflectometer, RFEA, improve Langmuir probes
- Study, understand unique physics
 - Core, edge, and SOL; plasma, impurities, and fast ions
 - Plasma, beam, neutral, and surface interactions
 - » Solid/liquid Li: Recycling, impurities, sputtering
 - Transport, scalings, fluctuations and instabilities