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The FM-CW (frequency-modulated continuous-wave) reflectometer on the LTX (Lithium Tokamak eXperi-
ment) and the method for determining electron density profiles is described. The diagnostic uses a frequency
range of 13.1−33.5 GHz, for covering a density range of 0.21−1.4× 1013 cm−3 (in O-mode polarization) with
a time resolution down to 8 µs. The design of the diagnostic incorporates the concept of an “optimized”
source frequency sweep, which minimizes the large variation in the intermediate frequency signal due to a
long dispersive transmission line. The quality of the raw data is dictated by the tuning characteristics of the
microwave sources, as well as the group delay ripple in the transmission lines, which can generate higher-order
nonlinearities in the frequency sweep. Both effects are evaluated for our diagnostic and best practices are
presented for minimizing “artifacts” generated in the signals. The quality of the reconstructed profiles is also
improved using two additional data analysis methods. First, the reflectometer data is processed as a radar
image, where clutter due to echos from the wall and backscattering from density fluctuations can be easily
identified and removed. Second, a weighed least-squares lamination algorithm POLAN (POLynomial ANaly-
sis) is used to reconstruct the electron density profile. Examples of density profiles in LTX are presented, along
with comparisons to measurements from the Thomson scattering and the λ=2 mm interferometer diagnostics.

I. INTRODUCTION

Reflectometry and scattering diagnostics using mi-
crowave and millimeter-wave frequencies, can provide a
powerful set of tools for measuring electron density pro-
files and fluctuations in fusion plasma devices.1 In par-
ticular, frequency-modulated continuous-wave (FM-CW)
reflectometry is a well-established method for measuring
electron density profiles with high spatial and temporal
resolution.2 FM-CW and pulsed radar reflectometry have
a long history in ionospheric sounding measurements.3

For laboratory plasmas,4 the frequency of a broadband
microwave or millimeter-wave source is swept as a func-
tion of time, and the round-trip propagation delay from
the plasma edge to the cutoff density is inverted to obtain
the electron density profile. The basic principles of the
technique are encompassed in the following equation for
the roundtrip time-of-flight (TOF) of an electromagnetic
wave at frequency f :5

τp(f) =
2

c

∫ Rc(f)

Ra

µg(f, r)dr, (1)

where Ra is the radius of the plasma edge, Rc(f) is the
radius of the wave cutoff, and the group index of refrac-
tion µg(f, r) has the general form

µg(f, r) = µ(f, r) + f
∂µ(f, r)

∂f
. (2)

Here the index of refraction µ(f, r) for perpendicular
propagation (k⊥B0) has the following dependence on the
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wave polarization for electron waves:6

µ2(f, r) =


1−

f2pe(r)

f2
O-mode

1−
f2pe(r)(f

2 − f2pe(r))
f2(f2 − f2ce(r)− f2pe(r))

X-mode,

(3)

where the plasma frequency fpe(r) =
√
e2ne(r)/meπ and

electron cyclotron frequency fce(r) = eB0(r)/2πmec are
dependent on the radial profile of the electron density
ne(r) and the magnetic field B0(r). For FM-CW sources,
the TOF is proportional to the beat or intermediate fre-
quency (fIF) generated by the mixing of waves traveling
along the probe (with plasma) and reference (without
plasma) paths. Typically τp(f) and B0(r) are known,
while ne(r) is the quantity to be determined.

Several issues must be considered for the accurate re-
construction of electron density profiles. The frequency
sweep should be faster than the motion of the density pro-
files (and fluctuations) that are to be measured.7 In the
case of broadband frequency sources such as HTOs (hy-
perabrupt veractor-tuned oscillators) used in this work,
the source frequency is controlled by a tuning voltage sig-
nal from a waveform generator. For higher sweep rates,
“artifacts” in the intermediate frequency signal may be
generated due to higher-order nonlinearities in the source
frequency sweep.8 Strong reflections from false targets
(backscattering due to fluctuations away from the cut-
off layer) can degrade the quality of the reconstructed
density profile, and these should be removed from the
raw data. Finally, regularization is required in the inver-
sion process to generate useful density profiles from noisy
τp(f) data. A common method is to smooth τp(f) by us-
ing a moving average filter and/or averaging data from
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FIG. 1. Simplified diagram of the microwave circuit. The transmission line from the shield box to the machine consists of
coaxial cable and the vacuum interface shown in Fig. 2.

multiple sweeps, however the time and spatial resolutions
of the measurement are degraded.

The main goal of this paper is to describe the hardware
capabilities and initial results of the FM-CW reflectome-
ter fabricated for generating time- and space-resolved
electron density profiles for the Lithium Tokamak eXper-
iment (LTX).9 LTX is a low-aspect ratio spherical torus
designed with a major radius R0=40 cm, minor radius
a=26 cm, and plasma elongation κ=1.5. The toroidal
field on-axis is B0=1.7 kG, while peak plasma currents
have reached Ip=75 kA. Durations of the current flat-
top have exceeded 25 ms with a reduced maximum cur-
rent of Ip=30 kA. Line-averaged densities up to 2× 1013

cm−3 and central electron temperatures up to 200 eV
have been measured. The vacuum vessel contains a close
fitting shell (1.5 mm of stainless steel explosively bonded
to 1 cm of copper) on which lithium coatings are evap-
orated. Heating the shell allows LTX to operate with
liquid lithium wall coatings. The LTX reflectometer uti-
lizes microwave hardware from the NSTX core FM-CW
reflectometer.10 The hardware components are described
in Sec. II, while the initial measurement results are pre-
sented in Sec. V. Future upgrades to the system are dis-
cussed in Sec. VI.

A second goal of this paper is to introduce techniques
that are used to address some of the issues (raised ear-
lier in this section) that limit FM-CW reflectometer per-
formance. A critical component of all FM-CW systems
is the source frequency sweep, which directly influences
the quality of the measured data. In Sec. III, we intro-
duce the “optimized” source frequency sweep (defined
in Sec. III.C), which minimizes variations in fIF due to

higher-order nonlinearities in the frequency sweep. In
Sec. IV, two method for vastly improving the quality of
the reconstructed density profiles are introduced. First,
the radar image of the raw data is used to eliminate
reflections from false targets. Second, this data is in-
verted using a weighted least-squares lamination algo-
rithm POLAN (POLynomial ANalysis), which is partic-
ularly robust against noisy data.

II. DIAGNOSTIC DESCRIPTION

A. Microwave Hardware and Data Acquisition

The microwave hardware described here was previously
used on NSTX, with several modifications made for LTX.
A schematic of the microwave circuit is shown in Fig. 1.
The launch and receive antennas are separate (bistatic)
and two frequency bands 13.1−20.5 GHz (Ku-band) and
19.5−33.5 GHz (K-band) are used to cover the density
range of 0.22−1.4 × 1013 cm−3 in O-mode. The fre-
quency sources are hyperabruct varactor-tuned oscilla-
tors (HTOs) which are swept using Agilent 33220A arbi-
trary waveform generators (AWGs). The full frequency
band can be swept in 3–4 µs (sweep time interval). Fig-
ure 1 reveals that for each frequency band there are two
sub-circuits: one mixer (output IF1) has a reference path
that contains the plasma, while the other mixer (output
IF2) has a reference path that consists of a fixed length
of coaxial cable. The signal IF2 is used to determine
the level of timing jitter between the arbitrary waveform
generator and the digitizer (see below).
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FIG. 2. Reflectometer vacuum interface on LTX. (a) shows a side view of the jacking stage and bellows with the antennas fully
inserted, (b) shows the rotatary joints attached to the waveguide ends, and (c) shows the orientation of the antenna arrays.

The data acquisition consists of a GaGe Razor Com-
puScope 1222, which has 128 MSa of storage and can dig-
itize dual channels at 200 MSa/s (100 MSa/s sampling
rate is used here). Triggers are generated by a National
Instruments PCI-6602 counter/timer cards. Each trig-
ger to the AWG initiates a frequency up-sweep, while a
delayed trigger to the digitizer in burst mode starts the
data acquisition. With a sweep interval of ∼3.7 µs (and
a similar record length), this sequence can be repeated
every 8 µs and is limited by the dead time of the digi-
tizer. The timing jitter between the AWG and digitizer
is typcially ±13 ns, which introduces negligible errors for
density profile measurements. LabVIEW software is used
to control both the data acquisition and the triggering
hardware, as well as to communicate with the AWGs.

B. Vacuum Vessel Interface

The LTX plasma is enclosed by four quadrants of a
close fitting shell, and the plasma is accessed between
the poloidal gap at the outboard midplane between up-
per and lower sections. The antennas are inserted as close
to the plasma as possible for two reasons: 1) to provide
a better edge constraint for the density profile inversion,
and 2) to avoid reflections from the outer surface of the
shell. The reflectometer antennas utilize an 8 inch di-
ameter port at the LTX midplane (see Fig. 2(a)). Four

antennas are mounted at the end of 20.5 inch lengths
of circular waveguides (inner diameters of 0.677 inch for
Ku-band, 0.375 inch for K-band) which are attached to
a rotatable flange. The jacking stage and bellows con-
struction allows the horns to be retracted beyond a gate
valve. When fully inserted, the horns are positioned to
within 0.5 inch of the outer edge of the shell.

A pair of bistatic antenna arrays are used for launching
and receiving the electromagnetic waves. The end flange
on which the waveguides are mounted is rotatable, and
Fig. 2(b) shows the orientation of the antennas as they
are currently installed. The vertical orientation of the an-
tenna arrays assures that both reflectometer systems will
view similar density profiles, since toroidal asymmetries
in the plasma shape are assumed to be much smaller than
poloidal or vertical asymmetries. The spot size (FWHM)
of the beam in vacuum at mid-radius (R = 52.5 cm or
14.3 cm from the antennas) in the E- and H-planes is 4.6
and 5.7 cm for the Ku-band (at 16.8 GHz), and 3.3 and
4.1 cm for the K-band (at 26 GHz).

A mechanical rotary joint, along with the combination
of a circular-to-rectangular waveguide transition and a
coaxial-to-rectangular adapter, determines the polariza-
tion of the launched and received waves (Fig. 2(c)). The
waveguide components are attached to the microwave
shield box by 60 inches of coaxial cable. The group delay
due to these cables are offset by a similar length of coaxial
delay line along the reference path inside the shield box.
The circular waveguide introduces signficant dispersion



4

of the waves along the probe path, which is compensated
by tailoring the source frequency sweep (Sec. III).

III. SOURCE FREQUENCY SWEEP

Aside from the microwave hardware itself, the source
frequency sweep is the most critical component of the
FM-CW diagostic. Section III.A outlines the connection
between the signals and the quantity of interest τp(f).
The optimized frequency sweep is dependent group delay
characteristics of the reflectometer system, hence these
are described in Sec. III.B. The optimized frequency
sweep itself is defined in Sec. III.C, while the conse-
quences of higher-order nonlinearities in f(t), due in part
to group delay ripple, are described in Sec. III.D.

A. Connection Between Reflectometer Signals and τp(f)

Using standard mixer terminology, the intermediate
frequency (IF) signal at the mixer output results from
the combination of electromagnetic waves traveling along
the reference or local oscillator (LO) path, and the probe
or radio frequency (RF) path. The time delay τLO along
the a length of transmission line `LO,coax is assumed to be
non-dispersive (coaxial), while the RF path is composed
of both dispersive (waveguide) and non-dispersive (coax-
ial and vacuum) sections. We refer to the path length in
the respective sections as `wg, `RF,coax and `vac, and the
corresponding group velocities as vg,wg(f), vg,coax and c
(speed of light in vacuum).

For an electromagnetic wave with frequency f , the dif-
ference in time delay along the probe path is expressed
as

τRF(f) = τwg(f) + τcoax + τvac︸ ︷︷ ︸
≡ τRF,edge(f)

+τp(f) (4)

τRF,edge(f) =
`wg

vg,wg(f)
+
`RF,coax

vg,coax
+
`vac
c
. (5)

For a time-dependent frequency sweep f(t), the fre-
quency of the mixer IF signal is related to τp(f) by the
equation

τp(f(t)) ' 1

γ(t)
[fIF(t)− fIF,edge(t)] ,︸ ︷︷ ︸

≡ ∆fIF(t)

(6)

where

fIF(t) = f(t− τLO))− f(t− τRF(f(t))) (7)

fIF,edge(t) = f(t− τLO))− f(t− τRF,edge(f(t))) (8)

represent the time-dependent instantaneous frequencies
of IF signals with a plasma target, and a mirror target
placed at the plasma edge, respectively. The relations

FIG. 3. Plot of the curves f(t)=fsrc(t), fLO(t), fRF,edge(t)
and fRF(t). Also shown graphically are the quantities τRF,
τRF,edge, τLO and τp for a given f , and fIF, fIF,edge, and ∆fIF
for a given t.

between these quantitiess are shown graphically in Fig.
3.

The source frequency f(t) and sweep rate γ(t) are de-
fined by

f(t) = fstart +

∫ t

0

γ(t′)dt′, γ(t) ≡ df(t)

dt
. (9)

The approximation in Eq. 6 holds provided that the fol-
lowing condition applies:∣∣∣∣γ(t)

[
∂τwg(f(t))

∂f
+
∂τplasma(f(t))

∂f

]∣∣∣∣� 1, (10)

where γ(t) is an externally adjustable parameter and
(∂τplasma/∂f <)∂τwg/∂f is an intrinsic property of the
system. Equation 10 is important for ultrafast sweeps11

where the value of γ(t) becomes large.

B. Group Delay Characterics of the System

Both the static f–Vt characterization of the source, as
well as the phase (or equivalently group) delay characteri-
zation of the reflectometer system, were performed simul-
taneously by stepping the tuning voltage (1 mV steps),
and recording both the source frequency (EIP 548A Mi-
crowave Frequency Counter) and the output from the
mixer IF port. A flat metal plate placed at `ref/2 = 20
cm from the antennas was used as the reference target.
The phase of the IF signal φIF,ref is related to the time
delay difference between the RF and LO paths:

τIF,ref(f) = τRF,ref(f)− τLO

=
`wg

vg,wg(f)
+
`RF,coax − `LO,coax

vg,coax
+
`ref
c

(11)
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FIG. 4. Top row shows the IF signal for (a) the Ku-band and
(b) the K-band systems. Bottom row shows the time delay
difference between LO and RF paths from a reference target,
τIF,ref(f), for (c) the Ku-band and (d) the K-band systems.
Overlayed in red are the best fits to Eq. 11.

through the relation

1

2π

dφIF,ref(f)

df
= τIF,ref(f). (12)

The nominal group velocity of the coaxial cable is 0.84c,
while that for the circular waveguide section can be ap-
proximated by12

vg,wg(f)

c
=

√
1−

(
kc
k0

)2

, (13)

where k0 = ω/c is the vacuum wavenumber and kc =
1.841/a is the cutoff wavenumber of the waveguide. Here
a is the waveguide radius (a = 0.860 cm for Ku-band,
0.476 cm for K-band) and the TE11 mode is assumed.

Figures 4(a) and 4(b) show the Ku-band and K-band
IF signals, respectively, due to reflection from the refer-
ence target. Figures 4(c) and 4(d) show the time delay
difference τIF,ref as a function of frequency, as well as
the best fit curve to the data using Eq. 11. This anal-
ysis yields values of `wg = 159.3 cm and 154.4 cm, and
`RF,coax − `LO,coax = 102.6 cm and −85.8 cm, respec-
tively, for the Ku- and K-bands. The above information
is used in Sec. III.C to generate the tuning voltage wave-
forms for the frequency sweeps. In addition, the results
in Figs. 4(c) and 4(d) show that γ(t)∂τwg/∂f < 0.011 for
the Ku- and K-bands, respectively, which indicates that
Eq. 10 is satisfied and that Eq. 6 is still a valid estimate
for τp(f).

FIG. 5. (a) The K-band delay times τIF,ref (red), τIF,edge

(blue) and τIF,plasma (black). (b) The corresponding IF curves
fIF,ref (red), fIF,edge (blue) and fIF,plasma (black) for linear
and optimized sweeps. (c) The optimized frequency sweep
rate γ(t). (d) The recovered τplasma(f) (red) curve overlayed
atop the input τplasma(f) (black) curve, for the optimized fre-
quency sweep and using the approximation in Eq. 6. Here we
used `vac = 0 and `ref/2 = 20 cm.

C. Optimized Source Frequency Sweep

In most broadband FM-CW sytems, the tuning volt-
age waveform is predistorted in an attempt to generate
a frequency sweep that is linear in time (γ = constant).
In this case, any variation in fIF(t) is due only to the
dispersive portion of the transmission line and the path
through the plasma.

The effect of a linear source frequency sweep on the
IF signals is modeled for the K-band system using the
experimental fit of τIF,ref to Eq. 11 (see Fig. 5(a)). Also
shown are the time delays

τIF,edge(f) = τRF,edge(f)− τLO (14)

τIF(f) = τRF(f)− τLO, (15)

with `vac = 0 and `ref/2 = 20 cm. Here τp(f) was cal-
culated for a parabolic density profile with peak density
ne0 = 1.5 × 1013 cm−3 and minor radius ra = 25 cm.
Figure 5(b) shows the corresponding values of fIF,ref(t),
fIF,edge(t) and fIF(t), where the variation due to the
transmission line dispersion is several times the size of
the contribution from the plasma path. Signal process-
ing (e.g. a moving window FFT) will better extract τp(f)
from the IF signal if systematic variations in fIF(t) and
fIF,ref(t) due to the diagnostic hardware can be mini-
mized.

This goal is achieved by creating an “optimized” source
frequency sweep, which is defined by the following con-
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FIG. 6. (a) Tuning voltage sweeps for the Ku-band (red)
and the K-band (blue) systems using the iterative method,
and (b) the corresponding optimized source frequency sweeps,
overlayed on top of the analytic expressions (black) for f(t)
calculated from Eqs. 18 and 19.

dition:

fIF,ref(t) = constant ≡ C. (16)

The tuning voltage waveform Vt(t), corresponding to the
optimized sweep, is obtained through iterative correction
to Vt using the IF signal phase (see Appendix A). The
optimized frequency sweep eliminates the effect of sys-
tematic dispersion on fIF,ref(t), as is shown in Fig. 5(b).
We note that γ(t) is no longer constant in time, as is
shown in Fig. 5(c), and the equations for τp(f) (Eq. 6),
as well as fIF,edge(t):

fIF,edge(t) = fIF,ref(t)−
`ref − `vac

c
γ(t), (17)

must use this time-dependent form of γ(t). Figure 5(d)
shows that the values of τp(f) from Eq. 6 are a good
match to the original input values calculated for the
model.

Figure 6(a) shows the tuning voltage sweeps for the
Ku- and K-bands determined using the iterative method,
while Fig. 6(b) shows the corresponding optimized fre-
quency sweeps. As a verification of the iterative method,
an anlaytic expression for f(t) can be derived (see Ap-
pendix B, Eq. B15) using the form of τIF,ref(f) in Eq. 11,
and the equations

t(f) =
1

C

∫ f

fstart

τIF,ref(f
′)df ′ (18)

C =
1

T

∫ fend

fstart

τIF,ref(f
′)df ′, (19)

where T is the time duration of the sweep and fstart, fend
are the lower and upper limits of the frequency. The ex-
pression in Eq. B15 we will designate as the ideal opti-
mized source frequency sweep fideal(t); these curves are
also shown in Fig. 6(b).

D. Deviations of f(t) from fideal(t)

In Sec. III.C, the tuning voltage, and consequently the
frequency sweep, was iteratively modified to linearize

FIG. 7. (a) Variation of df/dVt and δτIF,ref(t) during the
frequency sweep, where the constant and linear trends have
been removed. Red indicates Ku-band, while blue indicates
K-band. (b) δτIF,ref(t) or time dependence of deviation from
the ideal group delay curve (Eq. 11 or the red curves in Figs.
4(c) and 4(d)). (c) and (d) show calculations based on the
data shown in Fig. 7(b). (c) Corresponding deviation of the
source frequency δf(t) due to δτIF,ref(t). (d) Variation of the
IF signal frequency as the reference target is moved from its
original position by ∆`: from top to bottom, ∆`=40, 20, 0,
−20 cm.

φIF,ref(t) (or to set fIF,ref(t) = constant). The tuning
voltage waveform is distorted to 1) counteract the non-
linear f(Vt) relation (see Fig. 7(a)), and 2) compensate
for the group delay characteristics of the system. If the
group delay is represented by Eq. 11, then iterative opti-
mization of the frequency sweep will attempt to generate
the smooth waveform given by Eq. B15 or fideal(t). With
real world electronics fideal(t) cannot be completely elim-
inated. This effect has been discussed in detail in Ref.
7, where it was shown that a pattern in df/dVt can ap-
pear as an artifact in the IF signal, which will grow with
distance from the reference target position. The size of
the artifacts can be reduced through various means, e.g.,
increasing the bandwidth of the Vt amplifier and using a
waveform generator with a higher resolution.

On the other hand, if group delay ripples δτIF,ref(t) are
present in the system, then the optimization procedure
will imprint an error δf(t) onto f(t). Figure 7(b) shows
the ripple on τIF,ref(f), defined as the difference between
the experimental data and the best fit to Eq. 11, both
shown in Figs. 4(c) and 4(d). This data can be used to
estimate the error δf(t) due to δτIF,ref(f), as is shown in
Fig. 7(c), while Fig. 7(d) plots the resulting fIF,ref(t) for
various target distances. We note that sharper changes
in δf(t) genearate larger variations in fIF,ref(t), and that
these artifacts grow as the distance from the reference
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target position is increased.
Appendix C explains how a perturbation δf(t) can

generate systematic errors (or artifacts) in ∆fIF(t). If
δf(t) is expressed in terms of a Fourier sine series with
coefficients bn, then the deviation in ∆fIF(t) due to δf(t)
can be written

∆f̃IF(t) ' −
∞∑

n=1

2bn sin

{
nπ

T

∆τIF(t)

2

}
cos
{nπ
T
t
}
,

(20)
where

∆τIF(t) = τRF(fRF(t))− τRF,ref(fRF,ref(t)) (21)

fRF(t) = f(t− τRF(fRF(t))) (22)

fRF,ref(t) = f(t− τRF,ref(fRF,ref(t))). (23)

Equation 20 shows that amplitude of the error term is
dependent nonlinearly on both n and ∆τIF(t).

Due to the complex form of Eq. 20, correcting the IF
signal post acquisition is extremely difficult, hence the
following best practice is used for minimizing errors due
to δf(t): the reference target should be placed at a dis-
tance that generates a time delay that is equivalent to
some median or average time delay from the plasma. For
the case shown in Fig. 5(d), a TOF of 1.33 ns is equiva-
lent to a reference distance of ∼20 cm from the plasma
edge Ra (or antenna edge Rant); this is also the location
of our reference target in the previous sections.

IV. PROFILE RECONSTRUCTION

The reconstruction of the electron density profile is
performed in two steps: 1) processing of the IF sig-
nal to generate τp(f), and 2) inverting this data to
generate range information h(f), or its inverse function
f(h)=fpe(h), and equivalently ne(h) in the case of O-
mode polarization. Here h is the true distance from the
plasma edge (as opposed to the virtual distance h′ = cτp).
Step 1) is facilitated by creating a radar image from the
IF signals, and this process is outlined in Sec. IV.A. Step
2) utilizes the POLAN algorithm to perform least-squares
fitting of true and virtual distance data to a model for
the local variation of h(fpe). This procedure is outlined
in Sec. IV.B.

A. Signal and Image Processing

Using the time series of the IF signal from each sweep,
radar images of the two frequency bands are generated
on a common grid with vertical and horizontal axes given
by ne[i] and h′[j] = cτ [j], respectively. Here i and j are
the pixel indices, and for O-mode constant pixel dimen-
sions (∆ne, ∆h′ = c∆τp constant) can be achieved so
that both axes are properly scaled. The radar image is a
spectrogram of the IF signal using the short-time Fourier

FIG. 8. (a) Raw radar image and (b) clean radar image after
clutter has been removed.

transform, where the i-th section of the signal or bin is lo-
calized around f(t) = fpe(ne[i]). Typically 50% overlap
and a Hanning window are used.

The condition that the pixel dimensions are con-
stant imposes signal processing conditions which are out-
lined in Appendix D. For this paper we used values of
c∆τp=0.75 cm and either ∆ne=1×1011 or 2×1011 cm−3.
Separate radar images for both freqency bands are gener-
ated on identical grids, with the origin of the horizontal
axis coinciding with the edge of the antennas. These
images are merged to form a single radar image with a
vertical axis ranging from 0 to 1.5× 1013 cm−3.

Figure 8(a) shows an example of the raw radar image
with pixel dimensions 201× 76 (width×height). For bet-
ter resolution, each row of pixels has been normalized by
its peak value. In addition to the main reflection from
the cutoff density, the radar image often contains clutter
due to backscattering from fluctuations away from the
cutoff density, as well as echos from multiple reflections
between the cutoff layer and the shell. Figure 8(b) shows
the same radar image after the clutter has been removed.
The main advantage of generating radar images is that
the quality of the data can be easily evaluated. Each im-
age is stored as an 8-bit PNG file, which can be easily
viewed by any graphical viewer application, or bundled
as a movie. Another advantage is that the images can
be easily cleaned or decluttered, either manually or au-
tomatically, using common image manipulation software
such as Photoshop, GIMP, ImageMagick, etc.

Finally, each row of pixels provides an estimate of
τp(f [i]) through weighted averaging using the image in-
tensity. Here the horizontal pixel resolution ∆h′ is
smaller than the radar range resolution,14,15 hence the
weighted variance is used as an estimate of the uncer-
tainty in the virtual height measurement ±δh′(f).

B. Density Profile Inversion Using POLAN

In order to obtain the true or real distance h(f) to
the cutoff position, τp(f) must be inverted in accordance
with Eqs. 1-3. The POLAN13 algorithm combines sev-
eral attractive features: 1) the flexibility of using either
the O- or X-mode dispersion relation, or both simulta-
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neously when data from both polarizations is available,
and 2) regularization in the form of least squares fitting of
the experimental data to a polynomial model, using both
the true distances h(f) and the reduced virtual distances
h′′(f).

POLAN uses a lamination method to solve the forward
problem for the virtual distance:

h′(f) =

∫ h(f)

0

µg(f, r) dr. (24)

A polynomial model of order nt for the true distance
hm(f) around an anchor point fa:

hm(f)− ha =

nt∑
j=1

qj(f − fa)j (25)

generates the following estimate for the reduced virtual
distance h′′m(f, fa) for f > fa:

h′′m(f, fa)− ha

=

∫ h(f)

h(fa)

µg(f, h)dh =

∫ f

fa

µg(f, f ′)
dh(f ′)

df ′
df ′

=

nt∑
j=1

qjj

∫ f

fa

µg(f, f ′)(f ′ − fa)j−1df ′ (26)

For a set of real and virtual (i.e. inverted and experi-
mental) data points around fa, Eqs. 25 and 26 can be
solved using weighted linear least squares to estimate
the model coefficients qj , j=1, . . . , nt. Equation 25 is
then used to generate the next real height data point
fb above fa, which then becomes the new anchor point
for the next iteration. We note that the remaining data
points (h′′m(f, fa) for f > fb) must also be adjusted to
obtain a new set of reduced virtual distances, with fb as
the anchor point:

h′′m(f, fb) = h′′m(f, fa) + [h(fb)− h(fa)]

−
∫ h(fb)

h(fa)

µg(f, h)dh

= h′′m(f, fa) + [h(fb)− h(fa)]

−
nt∑
j=1

qjj

∫ fb

fa

µg(f, f ′)(f ′ − fa)j−1df ′. (27)

For the analyses shown in this paper, a value of nt=3
and four virtual points are used in addition to a single
real point, with weights inversely proportional to both
δh′(f) and |f − fa|. Two edge points, i.e. h(f [0]=0) and
h(f [1]), are specified and serve as starting points for the
density profile reconstruction. The antenna position is
used for Ra(=Rant, hence h(f [0])=0), while h(f [1]) is
linearly interpolated from the origin to the virtual height
of the first data point. Errors due to different initial-
ization methods for O-mode profile reconstruction have
been examined in detail elsewhere.16,17 We note that with

FIG. 9. (a) and (b) show the reflectometer raw signals, while
(c) shows the line density. Also shown are line densities calcu-
lated using the LFS reflectometer profiles and LRDFIT equi-
libria used to map the HFS. Red squares show the case where
missing portion of the density profile in the region near Rm

are interpolated, while blue squares show the case where the
density is assumed to be flat. (d) shows the evolution of the
plasma current.

POLAN, a very simple edge model (specification of two
points in our case) will still generate a smooth profile
that is consistent with the available data. At the upper
limit of the profile, real points are substituted for vir-
tual points so that the total number of data points used
in the least squares fitting is kept constant at five. The
value of Rant is referenced from the surface of the center-
stack, using the TOF of reflections during vacuum shots.
Examples of reconstructed density profiles are shown in
Figs. 11 and 12.

V. FM-CW MEASUREMENTS ON LTX

A. Raw Signals

The measurements presented here were made for dis-
charges on LTX with BT = 1.6 kG and IP = 60 kA. Ex-
amples of the raw signals and the line density evolution
are shown in Fig. 9. The electron cyclotron frequency
at the edge is ∼3 GHz, hence the advantages of using
X-mode polarization are limited. For this work, O-mode
polarization for the launch/receive antennas was used ex-
clusively (E-plane of antennas is tilted ∼10◦ from hori-
zontal, nominal magnetic pitch angle at edge is ∼15◦).

Examples of the raw IF signals from the two bands
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FIG. 10. (a) and (b) show the Ku-band and K-band IF sig-
nals, respectively, for a single frequency sweep.

for an individual frequency sweep can be seen in Figs.
10(a) and (b). Due to the horizontal orientation of the
launch and receive antennas, both signals display a strong
reflection from the center stack above the peak cutoff
frequency. The amplitude of the IF signals can exhibit
strong variations due to deflection or scattering by fluc-
tuations.

B. Electron Density Profiles

The steep rise in the line density near the plasma cur-
rent peak is initiated by a large gas puff at 0.460 s. Sub-
sequently, the line density drops to about a third of its
peak value by ∼0.475 s, hence it is important to evaluate
the performance of the reflectometer in these two regimes
(high and low density). Examples of the reconstructed
electron density profile are shown in Figs. 11 and 12 for
the high (t=0.467 s) and low (t=0.474 s) density por-
tions of the discharge, respectively. It should be noted
that a pixel resolution of ∆ne=2×1011 cm−3 was used for
the high density case, while a higher pixel resolution of
∆ne=1×1011 cm−3 was required for the low density case,
in order to better resolve the shape of τp(f) (and ne(h)).
Figures 11(a) and 12(a) show ten individual profiles that
are sampled 8 µs apart. Profiles generated from the av-
erage of all of the radar images and the corresponding
uncertainties using ±δh′(f) are also shown.

Figures 11(b) and 12(b) compare the averaged profiles
with Thomson scattering (TS) measurements. It should
be clarified that the single-pulse TS diagnostic is used to
create ne and Te profiles for an average discharge, and
that the final density profiles were normalized using the
interferometer line dnesity. For the high density case, the
missing portion of the reflectometer data below ne=2.2×
1012 cm−3 comprises only a small fraction of the density
profile; good agreement with TS is achieved even close
to the plasma edge. For the low density case, data from
about half of the density profile is missing. Our simple
guess for the initial edge points still generates profiles
that are consistent with the TS measurements where the
data overlap.

The reflectometer results were also compared to the
interferometer measurements by generating line densities

FIG. 11. Reconstructed electron density profiles for the high
density case (t=0.467 s) (a) Ten individual profiles (red) at 8
µs intervals. Overlayed is the mean profile (black) and mea-
surement uncertainty (gray) generated from the average of the
radar images. (b) Mean reflectometer profile and uncertainty
compared to Thomson scattering (red diamonds).

FIG. 12. Reconstructed electron density profiles for the low
density case (t=0.474 s). (a) Ten individual profiles (red) at
8 µs intervals. Overlayed is the mean profile (black) and mea-
surement uncertainty (gray) generated from the average of the
radar images. (b) Mean reflectometer profile and uncertainty
compared to Thomson scattering (red diamonds).

using the reflectometer profiles and magnetic equilibrium
reconstructions. The poloidal flux function generated by
LRDFIT18 (LR circuit model with Data FITting capa-
bilities) was used to map the low-field side (LFS) density
profile to the high-field side (HFS). If the core profile
is flat or the peak density is too high, the reflectometer
profiles will not fully extend to the magnetic axis. In
these situations the missing section was either interpo-
lated or assumed to be flat. The results from both cases
are shown in Fig. 9(c) for several time slices coinciding
with the LRDFIT calculations. Values of the reflectome-
ter line density track closely with the interferometer mea-
surements prior to the line density peak. Near the peak,
values calculated from the reflectometer data begin to
show larger scatter and deviation from the interferom-
eter measurements. Here the core density rises above
the maximum cutoff density of the reflectometer, and
the start of sawtooth activity may introduce strong ra-
dial variations in the profile shape, as well in-board/out-
board asymmetry. The reflectometer calculations remain
within 15% of the interferometer line densities in the high
density phase of the discharge, while they are within 5%
during the low density phase.
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VI. FUTURE HARDWARE UPGRADES AND
ANALYSES

Measurements of fluctuations will be of key interest in
the upgraded LTX-β device, which will feature higher BT

and IP , and neutral beam heating. Enhancements to the
FM-CW reflectometer are will improve the capability of
the system to function as fluctuation diagnostic.

A GaGe CompuScope 1242 digitizer will add four ad-
ditional data acquisition channels, which will allow sam-
pling of the two IF2 signals as well as the monitor signals
for the tuning voltages. The data acquisition can then
be run continuously instead of in burst mode (triggered),
which will decrease the time interval between sweeps to
4 µs.

A second advantage is that the additional signals can
be used to eliminate timing uncertainties between the mi-
crowave frequency sweep and the IF signals. The com-
plex amplitude of the IF signal can then be extracted at
set frequencies, similar to fixed-frequency quadrature re-
flectometer systems.19 As explained in Sec. IV, inherent
resolution limits exist for measurements of density fluctu-
ations using the profile reconstruction technique. Access
to phase and amplitude measurements will allow better
estimates of the spatial structure of low-k fluctuations.
The complex amplitude signals can also be used with
radial correlation techniques for turbulence correlation
length estimates.20

Finally, the radar image itself is a good tool for looking
at fluctuations. For low-k perturbations atop the density
profile, local variations in the density gradient will intro-
duce strong inflections in the virtual distance. For high-k
(up to 16 cm−1), reflections due to radial backscattering
will introduce peaks in the radar image at locations away
from the cutoff layer.
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Appendix A: Iterative Determinatinon of Vt(t) for the
Optimized f(t)

The reference target is a metal plate in front of a
mockup of the waveguide and antenna sections of the
vacuum interface. The waveguide to coaxial adapters
are transferred from the vacuum interface to the mockup,
while the rest of the diagnostic remains in situ. Identi-
cal data acquisition and trigger rates are used as dur-
ing experiments (10,000 records, 8 µs trigger interval,
100 MSa/s sampling rate) to account for the dynamic
response of the electronics. The f–Vt static calibration

results from Sec. III.B are used to generate the an initial
Vt waveform (e.g. a linear frequency sweep). The follow-
ing steps are then used for creating the tuning voltage
waveform for the optimized source frequency sweep:

1. Load the tuning voltage waveform Vt[j], j =
0, . . . , N −1 (N = 64 kpoints) into the AWG mem-
ory.

2. Trigger AWG and data acquisition.

3. FFT interpolate each record to 8× the original sam-
ple rate. Average multiple records to generate an
interpolated “clean” IF signal.

4. Determine the accumulated phase φIF,ref(t) of the
IF signal. Obtain the phase deviation ∆φIF,ref(t)

from a linear phase ramp φIF,ref(t):

φIF,ref(t) = φIF,ref(T )
t

T
(A1)

∆φIF,ref(t) = φIF,ref(t)− φIF,ref(t). (A2)

5. Introduce an attenuation factor A ≤ 1 to generate
a new IF signal phase φ′IF,ref(t):

φ′IF,ref(t) = φIF,ref(t) +A∆φIF,ref(t). (A3)

6. Resample the equi-spaced time axis t to a new
time axis t′ that generates a linear φ′IF,ref(t

′). The

orginal Vt array with time axis t′ is interpolated
back to an equi-spaced time axis t to create a new
tuning voltage sweep V ′t .

7. Generate a 12-bit integer signal (64 kpoint wide
array) from V ′t (t) to load to AWG memory.

These steps are repeated until |∆φIF,ref(t)|max is mini-
mized. For a value A = 0.5, this typically requires 3 to 4
iterations.

Appendix B: Analytic Expressions for the Optimized f(t)
and γ(t)

Assume that C and T are specified, and that τIF,ref(f)
are known for an array of values f with range [fstart, fend].
For a dispersionless LO path, we can write the following
relations:

tLO(f) = t(f) + τLO (B1)

tLO(f + C) = tRF,ref(f) (B2)

τIF,ref(f) = tRF,ref(f)− tLO(f). (B3)

Here tLO(f) and tRF,ref(f) indicate the time from the be-
ginning of the sweep when the wave component with fre-
quency f reaches the mixer along the LO and RF paths,
respectively, while t(f) represents the source frequency
sweep (inverse equation of f(t)).
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Equations B1–B3 can be used to write the differential
equation

dt(f)

df
' t(f + C)− t(f)

C
=
τIF,ref(f)

C
, (B4)

which yields an integral expression for t(f):

t(f) =
1

C

∫ f

fstart

τIF,ref(f
′)df ′ (B5)

C =
1

T

∫ fend

fstart

τIF,ref(f
′)df ′. (B6)

Analytic expressions for Eqs. B5 and B6 can be found by
using

τIF,ref(x) = a+ bx, (B7)

where coefficients a and b were determined in Sec. III.B
from the best fit curve to the experimental data, and
have the definitions

a =
`RF,coax − `LO,coax

vg,coax
+
`ref
c
, b =

`wg

c
. (B8)

The variable x is expressed in terms of f and the waveg-
uide cutoff frequency fc as

x2 =
c2

v2g,wg(f)
=

f2

f2 − f2c
, (B9)

from which we can write

f2 = f2c
x2

x2 − 1
,

df

dx
= − fc

(x2 − 1)3/2
. (B10)

Equation B5 can now be written

t(x) =
1

C

∫ x(f)

x(fstart)

τ(x′)
df

dx′
dx′

= − 1

C

∫ x

xstart

(a+ b x′)
fc

(x′2 − 1)3/2
dx′

=
fc
C
a x′ + b√
x′2 − 1

∣∣∣∣x
xstart

,

(B11)

and similarly for Eq. B6

C =
fc
T

ax′ + b√
x′2 − 1

∣∣∣∣xend

xstart

. (B12)

In terms of f these equations have the following form:

t(f) =
1

C

[
af ′ + b

√
f ′2 − f2c

]∣∣∣f
fstart

(B13)

C =
1

T

[
af ′ + b

√
f ′2 − f2c

]∣∣∣fend

fstart
. (B14)

Equation B13 can also rewritten as a function f(t) to give
an analytic expression for the optimized source frequency
sweep:

f(t) =
1

(a2 − b2)

[
a (D + Ct)

−b
√

(b2 − a2)f2c + (D + Ct)2
]

(B15)

and

γ(t) =
C

(a2 − b2)

[
a− b(D + Ct)√

(b2 − a2)f2c + (D + Ct)2

]
,

(B16)
where

D ≡ afstart + b
√
f2start − f2c . (B17)

Appendix C: FM-CW Radar with Oscillating δf(t)

Let us write the source frequency as

f(t) = fideal(t) + δf(t), (C1)

where fideal(t) is the ideal portion of the optimized fre-
quency sweep (cf. Eq. B15) and δf(t) represents a small
oscillating component such as ripple. If δf(t) is expressed
in terms of the Fourier sine series

δf(t) =

∞∑
n=1

bn sin

(
nπt

T

)
(C2)

with coefficients

bn =
2

T

∫ T

0

δf(t) sin

(
nπt

T

)
dt, (C3)

then the frequency of the IF signals can be written

fIF,ref(t) = fideal(t
′)− fideal(t′ − τ ′IF,ref(t))

+

∞∑
n=1

2bn sin

{
nπ

T

τ ′IF,ref(t)

2

}
cos

{
nπ

T

[
t′ −

τ ′IF,ref(t)

2

]}
(C4)

fIF(t) = fideal(t
′)− fideal(t′ − τ ′IF(t))

+

∞∑
n=1

2bn sin

{
nπ

T

τ ′IF(t)

2

}
cos

{
nπ

T

[
t′ − τ ′IF(t)

2

]}
,

(C5)

where t′ = t− τLO(fLO(t)) and

τ ′IF,ref(t) = τRF,ref(fRF,ref(t))− τLO(fLO(t)) (C6)

τ ′IF(t) = τRF(fRF(t))− τLO(fLO(t)). (C7)

We also have the following definitions:

fLO(t) = f(t′) (C8)

fRF,ref(t) = f(t′ − τ ′IF,ref(t)) (C9)

fRF(t) = f(t′ − τ ′IF(t)). (C10)
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With Eqs. C4 and C5, ∆fIF (cf. Eq. 6) has the form

∆fIF(t) = fideal(t
′′)− fideal(t′′ −∆τIF(t))

−
∞∑

n=1

2bn sin

{
nπ

T

∆τIF(t)

2

}
cos

{
nπ

T

[
t′′ − ∆τIF(t)

2

]}
,

(C11)

with t′′ = t− τ ′RF,ref(t) and

∆τIF(t) = τRF(fRF(t))− τRF,ref(fRF,ref(t)). (C12)

The final term in Eq. C11 represents deviations in
∆fIF(t) due to δf(t), which has a maximum value for
a given n:

2bn sin

{
nπ

T

∆τIF(t)

2

}
' bnnπ

∆τIF(t)

T
, (C13)

where the last approximation can be made for ∆τIF(t)�
T . Equation C13 reveals that the deviation for a given n
is proportional to ∆τIF(t), and that higher-order (larger
n) contributions to δf(t) will have a larger effect. In
addition, we see that Eq. C13 is inversely proportional
to T , hence errors to ∆fIF(t) will be larger for faster
sweeps.

Appendix D: Conditions for Radar Image with Constant
Pixel Resolution

The spectrogram of the signal ∆fIF(t) can be plotted
as an image with f(t) (or ne(f(t))) and τp (or h′ = cτp)
as the axes. The size of each data bin influences the pixel
resolution along the two axes. The relationship between
the signal processing parameters and the pixel resolution
of the radar image (∆ne, c∆τp) are derived here for the
case of O-mode polarization.

If we define for the i-th bin:

∆f [i] ≡ f [i+ 1]− f [i], ∆ne[i] ≡ ne[i+ 1]−ne[i], (D1)

where we have the relation

f2 =
e2

πme
ne =

e2n0
πme

ne
n0

or ne =
n0
f20
f2, (D2)

the pixel resolution for the cutoff density can be ex-
pressed as

∆ne[i] =
n0
f20

(
f2[i+ 1]− f2[i]

)
≈ n0
f20

2f [i]∆f [i], (D3)

where the last approximation holds for f [i] � ∆f [i].
Here f20 = e2n0/πme is the square of the cutoff frequency

for density n0. Since the frequency resolution of the i-th
bin is fs/Nbin[i], where fs is the digitizer sampling rate,
we can express the pixel resolution of the time-of-flight
as

∆τp[i] =
fs

Nbin[i]γ[i]
. (D4)

Here let us set ∆ne[i] = ∆ne as a constant, and choose
Nbin[i] as an independent parameter (adjusted by zero-
padding) that keeps ∆τp[i] = ∆τp constant. Then from
Eq. D4 we can obtain the formula for Nbin[i]:

Nbin[i] =
fs

∆τpγ[i]
. (D5)
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