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Plasma-facing components (PFCs) for reactors
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Only candidate solid material considered

viable for reactor PFCs is tungsten 800';'
— Tungsten is high-Z/low sputtering 600
— Tungsten has good thermal conductivity

But:
— Ductile to brittle transition: 200 — 500 °C
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— Subject to radiation-induced embrittlement 0 0.5 1
above just a few DPA (Displacements Per Atom)
» Note: lattice displacement energy for tungsten 80 eV
» 1 DPA ~ 10%° n/m2, for neutron energies > 100 keV
» Require 10’s of DPA lifetime for reactor PFCs
— Tungsten also subject to surface damage under He fluence
— Sputtering threshold for D on W limits edge temperature to <200 eV



Five Evils of Radiation Damage (in Metals)
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* Phase instabilities from radiation-induced
precipitation (0.3-0.6 T,,, >10 dpa)

* High temperature He embrittlement
(>0.5T,;,>10 dpa)

e Volumetric swelling from void formation
(0.3-0.6 Ty;,>10 dpa)

* Irradiation creep (<0.45 T,,,>10 dpa)

Lance Snead, ORNL




Cooling solid PFCs is a challenge
Type | ELMs on ITER

Richard Pitts
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Disruptions on ITER

Richard Pitts
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Cooling tungsten PFCs in a reactor is demanding
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+ Lead candidate for divertor, PFC cooling is high pressure helium
+ High pressure helium jet cooling suggested for the divertor

— No water cooling (like ITER)

— Complex structure, helium pressures ~ 10 MPa, flow rate to remove
the alpha power >200-300 m3/sec (at 10 MPa, for AT = 800C)
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Liquid metal walls offer another PFC solution

Flowing liquid metal PFC is continuously
renewed

— Eroded material is replaced

Neutron damage limited to supporting
substrate

Plasma-material interaction (PMI) limited to
the liquid metal: sputtering + evaporation

— No helium blisters
— No surface modification

PMI issues and neutron damage issues are
separable with liquid metal systems

— Significant simplification for materials
development

T 4
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Tungsten surface after long-
term plasma exposure

NAGDIS-II: pure He plasma
N. Ohno et al., TEM -
Kyushu Univ.



General properties of liquid metals

+ Lithium LT }ﬁ
— Z=3, atomic weight =6.9
— Melting point = 180.5 °C, boiling point = 1342 °C
— Liquid density = 0.5 g/cm-3, sp. heat capacity = 3.58 J/g °C
— Thermal conductivity: 84.8 W/m°C, electrical res. =93 nQ m
— Vapor pressure = 107 Torr at 400 °C
¢ Tin
— Z=50, atomic weight=118.7 (Mo: Z=42, at. wt. = 96)
— Melting point = 232 °C, boiling point = 2602 °C
— Liquid density = 7.0 g/cm-3, sp. heat capacity = 0.23 J/g °C
— Thermal conductivity: 66.8 W/m°C, electrical res. = 115 nQ m
— Vapor pressure = 107 Torr at 1000 °C
¢ Gallium
— Z=31, atomic weight =69.7
— Melting point = 29.8 °C, boiling point = 2204 °C
— Liquid density=6.1g/cm3, sp. heat capacity = 0.37 J/g °C
— Thermal conductivity: 40.6 W/m°C, electrical res. = 140 nQ m
— Vapor pressure = 107 Torr at 900 °C



Temperature limits for liquid metal PFCs
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¢ Limit set by evaporation rate, influx to the plasma
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¢ Lithium/tin-lithium/tin system provides a wide range of operating temperature



Heat removal with liquid metals

LTH

+ Flowing liquid metal systems have high heat removal capabilities

— Lithium example: alpha power could be removed from a 2 GW
(fusion) reactor with a flow rate of 1 m3/sec, for AT = 200C)

» Viscosity of lithium is ~half that of water
+ Liquid lithium can also disperse
highly localized heat loads
by evaporation and/or radiation
— Basis for CPS (Capillary Porous 170
System) used in FTU
— Radiative divertor or limiter 10’
» Disperse heat load to walls
» Cool with helium
» Alternative: cool with NaK
o KTM approach
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Liquid metals and the plasma boundary

LTH

¢ Low recycling wall < hot edge in a magnetically confined plasma
— Power flux is carried by particles at the edge

— Poor fueling efficiency (~5-10%) for recycled particles guarantees
high particle density at the wall (for a high recycling wall)

— For low recycling, only edge particles are those lost from the core

+ Hydrogen is highly soluble in lithium = Low recycling wall

= High recycling = low power/particle (low edge temperature)

=~ Low recycling = high power/particle (high edge temperature)
+ Solubility of hydrogen in liquid tin is appreciable for fusion applications
— ~29/100 cm3 tin at 600 C
— Clean liquid tin may also modestly reduce recycling
» No tests of tin as a PFC as yet



Recycling mechanisms: direct reflection

¢ Direct reflection: scattering due to hard-sphere collisions between the incident ion '\L‘T:ﬁi
and the wall. Irreducible minimum recycling coefficient.

— Function of the reduced energy e:

32.5m,E

(my, +my)Z,Z,(ZP + Z;°)"?

— Where (1) denotes the incident ion and (2) the target, E is the incident ion energy
— R, (—) = probability of particle reflection, Rg (= = =) = energy of the reflected particle
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D=L1: ¢=4.80E
D=C: e=224E
D=Ti: =048 E
D=Mo: ¢=0.21 E
D=Sn: ¢=0.17E
D=W: ¢=0.10E

For edge temperatures of a few tens
of eV, only lithium allows low recycling

> ~20% at 20 eV

Titanium gettered surfaces have
reflection coefficient ~ 80% at 20 eV



Recycling via direct reflection from lithium

D on 100nm of Li

Energy,Angle 0 30
10 0.1568 0.1966

20 0.1613 0.2019

50 0.153 0.1826

100 0.1387 0.17

200 0.0939 0.1411

300 0.0746 0.114

500 0.0509 0.0817

1000 0.0221 0.0401

¢ Lithium has the lowest
probability of direct
reflection of any
candidate PFC material

+ For an average incident
angle of 45°, the
reflection coefficient at
low energy is ~20%
(edge T,~30 eV)

¢ Drops to <10% for edge
T, ~300 eV
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Absdide Sputierng Yield of Li (stome/fion)

Lithium sputtering

and core accumulation

.

4
Q

10°

— a3 FFH——F—F—F ¥4
-1 TrtTrrTrrrre—Tr—Tr+TtrTrTrTTs

! - - - - T T e S S - ‘ » _ - 0-!
e BEY sarrrarrprcndl Nodl e
8  BAX Duta (JP Al rd DN R i il

v VFTR-30 (rough sufece) |
A TRIMSP (smooth surfaon) ™™
. 1

‘ , 2 f L 1} g 1

- . VU UED SN WS - - USRS + .“)s.,-,¢ -
; T 1At t T
} i e » P - e
r-- - — - ——-fr--o—cl-w‘oo<-—---—-—|—-— 7--:-----170{
RRSER lover oS Al B8 W R I [ RN e "o Bw) Wt S AN
T j"‘,?"‘ t : A “?":

J 4 4 4 -4 00’

4 ! | | J

| Py 4 ! ! =

| | |
! |
41 : 2.4 111
W w
Incident Particle Energy (eV)

LTH
+ Lisputtering yield for D on Li at 45°

(Allain and Ruzic, Nucl. Fusion 42(2002)
202).

¢ At 700 eV the yield is 9%
¢ Most sputtered lithium is redeposited
— lonized in the sheath

¢ 60% lithium sputtered as an ion ~60%,
incident ion energy ~0.5 - 1 keV

¢ Lower-Z impurities are not accumulated in
the plasma core

¢ Resulting core impurity concentration in tokamaks:

— Low in diverted machines

» NSTX: Core lithium concentration <0.1% (compared to carbon: 10%)

— Low in limiter machines with

» TFTR supershots: T4y

very hot edge plasmas
> 1 keV

> Core lithium concentration < 0.5%



Secondary electron effects

¢ “Recycling” is typically thought of as an ion process

RE]

¢ Electrons are also “recycled” via secondary electron emission
— Secondaries cool the edge plasma.

¢ Lithium has the lowest
secondary electron
emission coefficient of
any metal
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Implementation of LM PFCs

LTH

Reactor implementation requires flow

— Replace, redistribute eroded liquid metal

— Remove impurities, hydrogenics (for lithium)
— Remove heat (for self-cooled designs)
Flowing systems provide clean LM surface

— Flowing systems, especially fast flowing LM PFCs require large
inventories of liquid metal

— Fast flow requires axisymmetry to inhibit Hartmann layer
formation, reduce MHD drag

Near term tests do not require flow for erosion replacement

— Heat removal requirements are relaxed

But static liquid metals accumulate surface impurities

— Time scale 10s — 100 seconds in typical fusion experiment

Near-term challenge is to provide surfaces typical of flowing
systems with a simple static or stirred liquid metal system



LTX —full hot metallic wall with

solid or liquid lithium coatings

Heat shielded centerstack |}
. g L™
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LTX diagnostics and fueling systems
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EUV spectrometer (LLNL) CHERSs (ORNL) L‘u‘}kﬁ
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Initial experiments with lithium walls employ
evaporated coatings

+ Yttria crucible and tantalum crucible heater

— 98 grams lithium evaporated in current campaign (2 evaporators)
+ No significant issues with yttria crucibles after 600C operation
+ Helium fill pressure of 5 mtorr yielded coatings with good uniformity



Solid lithium coatings have a strong effect on the discharge
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T, [eV]

Initial Thomson scattering profile, CHERs results were
obtained for electron, impurity ion (lithium) temperatures

LTH
Thomson T, profile is flat out to last Initial results indicate impurity

measurement point at r/a ~0.8 (lithium) T, is higher than expected for
a low density Ohmic discharge

(results from ORNL CHERSs system)
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¢ Measurements in low current (~50 kA) increased pulse length discharges
¢ Te~3-4msec (upto~1.3 x ITER98P)
— CDX-U confinement 2-3 x ITER ELMy H-mode



Wall pumping effective with cold lithium coatings
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» Cold walls with solid lithium coatings perform as expected in LTX



Hot walls: first issue with 5 m? heated in-vacuum PFC:
maintaining good vacuum conditions

Torr 300 °C (2010 experiments)
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¢ RGA mass spectrum during initial
hot wall (300 °C) experiments
— Significant water, nitrogen,
hydrocarbon lines

! H, peak from lithium
; capture of background
| water
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& Impurity sources now sequestered
(presumably in the lithium)
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Second issue: surface impurity accumulation, plasma
uptake with liquefied thin films
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¢ Thomson scattering comparisons not available



Oxygen, carbon, lithium, hydrogen influxes all
iIncrease when lithium coatings liquefied
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+ Liquefaction of the thin lithium wall coating appears to make
pumped impurities available for sputtering for T = T, (180 °C)



Liquid lithium PFCs must be mixed

LTH

Cold lithium coatings improve performance

Hot walls (>180 °C ~ T,.;) produce impurity-dominated
discharges

Surface sequestration of impurities in molten films (few tens of
microns at present) dominates

— Relevant to thin melt layers on solid PFCs as well

A deeper pool of stirred lithium is necessary, to prevent plasma
contamination by surface accumulation of impurities

— CDX-U: 2-3 mm in tray

— Capillary porous systems: thin wet layer backed by a
reservoir sufficient

LTX will employ liquid lithium reservoirs a few mm deep in the
lower shell quadrants
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Reservoirs in lower shells will provide a stirred
pool of liquid lithium
. v

Inboard\i@ub; N . Compact 1.6 kW e- vaﬁ
molybdenum beam for stirring LM
limiter. Lithium:
wicks betwee

moly plates to t\ﬂe‘
p of the limiter

¢ E-beam stirring of liquid lithium in CDX-U
> JxB stirring has also been suggested




Summary - liquid metal PFCs

Tungsten PFCs impose strong constraints on fusion systems 'L_'J‘ fﬁ
— Fusion (neutron) power density cannot be too high
— Eliminates compact reactors (except aneutronic systems)
Development of LM PFCs is still in early stages
— Only lithium has been tested at all
— Very limited testing of liquid lithium PFCs
Hot wall operation imposes stringent vacuum requirements
Simplest approach to LM PFCs (molten lithium films) too sensitive
to impurities
— Fully flowing systems require significant development

» Initial development requires toroidal test stands, but no
plasmas

— Stirring a liquid lithium system is acceptable for near-term
devices

At present, LTX is the only device testing LM PFCs in the U.S.
— Chinese program is far more aggressive
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