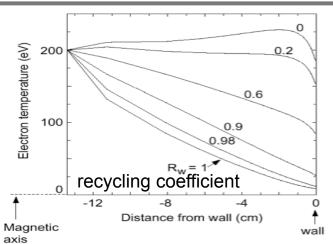
The effect of lithium conditioning approaches for plasma-facing surfaces on the edge and core temperature and density profiles

R. Majeski, D. P. Boyle, R. E. Bell, P. E. Hughes, R. Kaita, T. Kozub, E. Merino

- X. Zhang, J. Armelli, F. Rabanales, PPPL
- T. Biewer, J. M. Canik, D. B. Elliott, M. Reinke, ORNL
- S. Kubota, W. A. Peebles, UCLA
- C. Hansen, T. Jarboe, *University of Washington*
- J. K. Anderson, J. Goetz, C. Forest, *University of Wisconsin*
- L. Buzi, B. E. Koel, *Princeton U.*
- P. Beiersdorfer, M. J. May, T. Rognlien, V. Soukhanovskii, F. Scotti, LLNL
- D. Donovan, A. Maan, U. Tennesse
- K. Tritz, Johns Hopkins University
- L. Zakharov, *LiFusion*

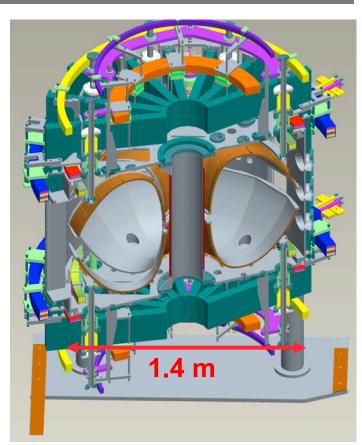
- Introduction
 - LTX and LTX-β
- Progress in the elimination of core plasma temperature gradients - solid lithium walls
- Core impurity levels during tokamak operation with full solid or liquid lithium walls
- Implications of a low collisionality scrape-off layer
- Initial assessment of confinement with $\nabla T = 0$
- Summary



- ◆ Introduction LTX-B
 - LTX and LTX-β
- Progress in the elimination of core plasma temperature gradients - solid lithium walls
- Core impurity levels during tokamak operation with full solid or liquid lithium walls
- Implications of a low collisionality scrape-off layer
- Initial assessment of confinement with $\nabla T = 0$
- Summary

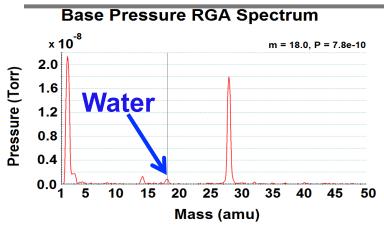
Nonrecycling walls simplify the tokamak

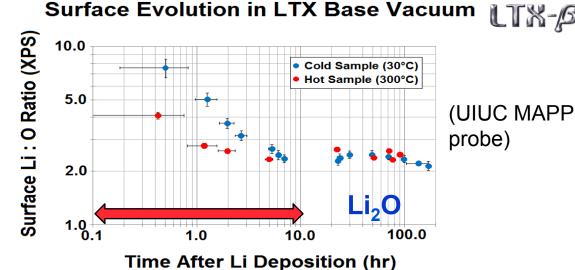
- Robustly flat ion, electron temperature profiles predicted
- No ∇T driven effects
 - No ion heat conduction losses
 - » Approaches thermal equilibrium in a confined plasma
 - No drive for the ITG, ETG
 - Bootstrap current driven only by ∇n
 - Particles transport heat. $\tau_E = \tau_p$


- Effect of recycling on edge temperature predicted by UEDGE modeling
 - > LLNL will study LTX-β SOL
- Edge power deposition profile strongly broadened
 - Hotter ions broader orbits
 - E×B convection, drifts ⇒ more broadening

LTX and LTX-β

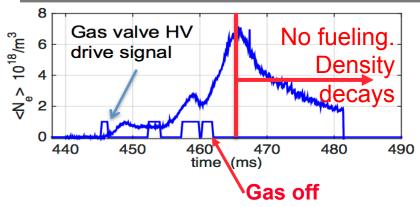
	LTX	LTX-β
А	1.6	1.6
R_0	40 cm	40 cm
а	26 cm	26 cm
B _T	<1.7 kG	<3.4 kG
I _p	<100 kA	<200 kA
P _{aux}	0	700 kW
Pulse length	<50 msec	<100 msec

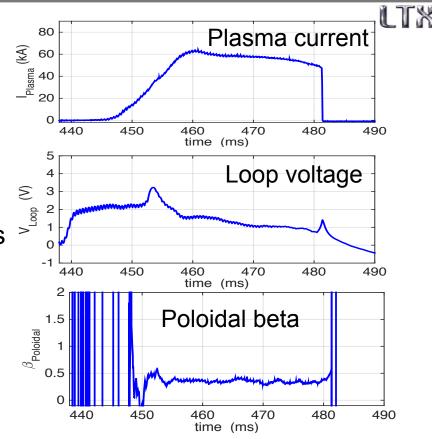

- High field-side limited by a conformal, high-Z wall
 - Not diverted
- Operated in hydrogen (gas puffing)
 - LTX: Fueled from the high field side midplane
 - LTX. I deled from the high field side inaplane


LTX-β: 35A neutral beam fueling, improved HFS puffing, topside SGI

Very low partial pressure of water achieved in LTX

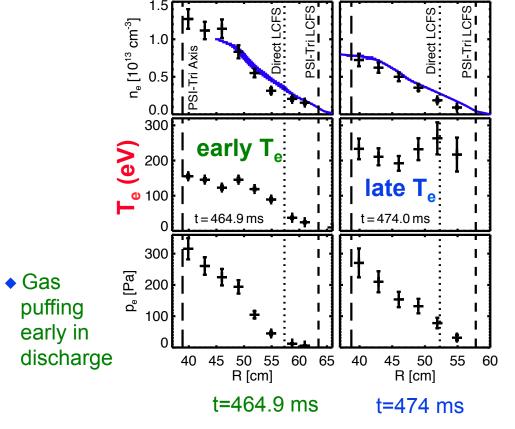
clean, metallic lithium PFCs


- Background water 5-9 × 10⁻¹⁰ Torr in LTX
- Pumping speed doubled on LTX-β to 7,800 L/s
- Bakeout system upgraded

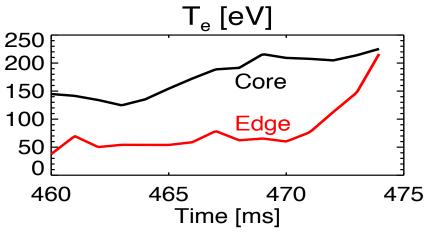

- X-ray Photoelectron Spectroscopy (XPS)
- Oxygen only impurity on lithium coating
- Li:O ratio initially high; asymptotes to 2:1 (Li₂O)
- Expanded surface analysis on LTX-β –
 Princeton U. collaboration, U. Tennessee

- Introduction
 - LTX and LTX-β
- Progress in the elimination of core plasma temperature gradients - solid lithium walls
- Core impurity levels during tokamak operation with full solid or liquid lithium walls
- Implications of a low collisionality scrape-off layer
- Initial assessment of confinement with $\nabla T = 0$
- Summary

Transient experiments eliminate edge neutral cooling

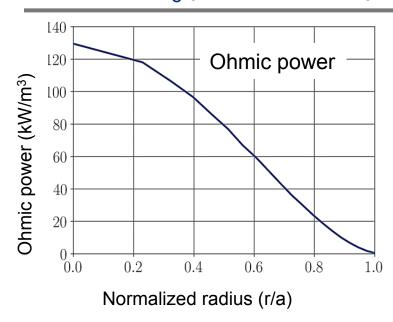


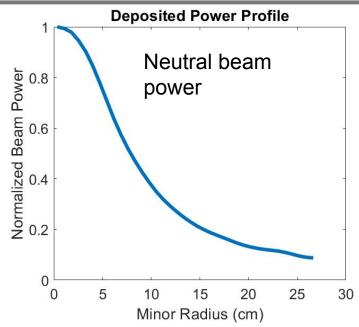
- Centerstack gas terminates at 462 ms
 ~3-4 ms to clear gas from nozzle
- Monitor T_e evolution
- Thomson scattering time is stepped through the discharge
 - Dataset of 55 identical discharges
 - Average ~ 5 discharges/time



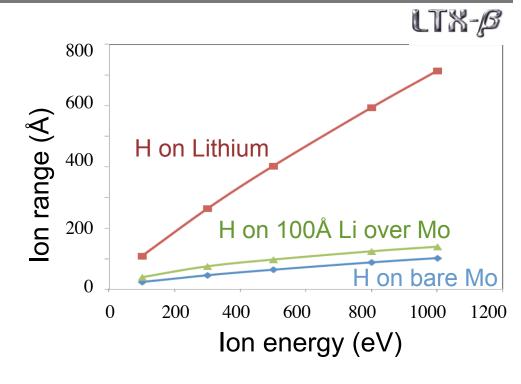
Control of recycling provides control over the **temperature** profile

Very low recycling allows completely flat temperature profiles to develop


- Late in discharge:
 - > Lithium suppresses recycling
 - > No gas from puffing


- >PSI-TRI equilibrium (U. Washington).
- >New equilibrium modeling from LiFusion
- >Thomson upgrades on LTX-β

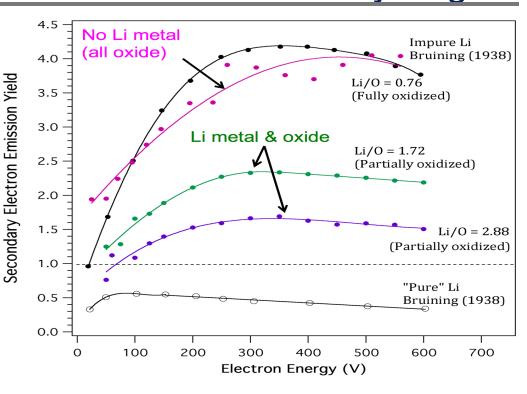
Flat T_e profile develops with peaked Ohmic power deposition


- ◆ T_e profile is much broader than Ohmic power deposition profile
- NBI in LTX-β will test T profiles with ion heating

- Neutral beam heating profile will be more peaked
 - E_{beam}>E_{critical}
 - Electron and ion heating from NBI

Recycling reduction robust with high edge T_e

- Proton will penetrate 10's to 100 monolayers deep in metallic lithium coating
 - Buried in the solid
 - Recycling less dependent on near-surface conditions
 - Differs from NSTX case
- Large hydrogen inventory can be stored in the lithium wall
- Diffusivity of hydrogen, other impurities in *liquid* lithium will modify impurity profile

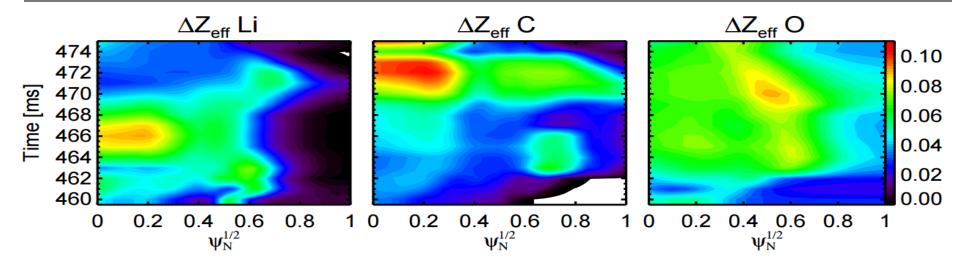

TRIM modeling by L. Buzi, Princeton U.

Surface conditions still determine electron "recycling"

- Electrons are also "recycled" via secondary electron emission
 - Secondaries cool the edge.
 Simple estimate:

$$q_{pe} = (2kT_e + e\varphi_0) \frac{0.6n_e c_s}{(1 - \gamma_e)} - e\varphi_0 \gamma_e \frac{0.6n_e c_s}{(1 - \gamma_e)}$$

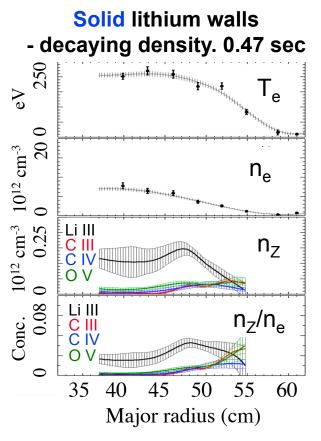
- Metallic lithium has low secondary electron emission
- SEE higher for contaminated lithium
 - LTX-β surface science will be studied by Princeton U., U. Tennessee
 - New lithium deposition systems between-shots coatings

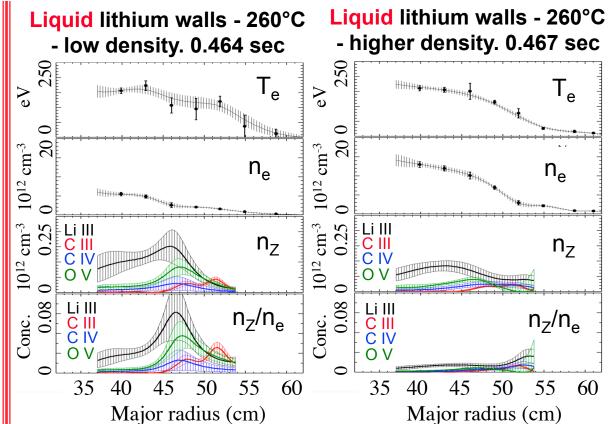


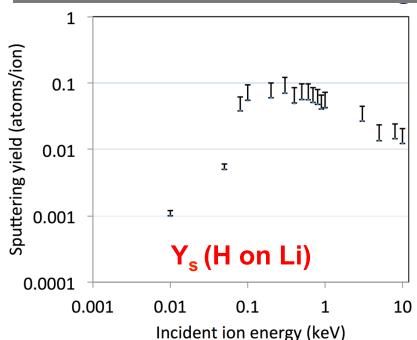
A. Capece, M. Patino, Y. Raitses, B. Koel, *Bull. Am. Phys. Soc., 2015.DPP.NO6.4*

- Introduction
 - LTX and LTX-β
- Progress in the elimination of core plasma temperature gradients - solid lithium walls
- Core impurity levels during tokamak operation with full solid or liquid lithium walls
- Implications of a low collisionality scrape-off layer
- Initial assessment of confinement with $\nabla T = 0$
- Summary

Low impurities -Lithium does not significantly dilute core plasma




- Lithium impurity <2-3%
 - Z_{effective} remains below 1.2
 - Carbon remains a contributor to Z_{effective}
- > Solid lithium PFCs

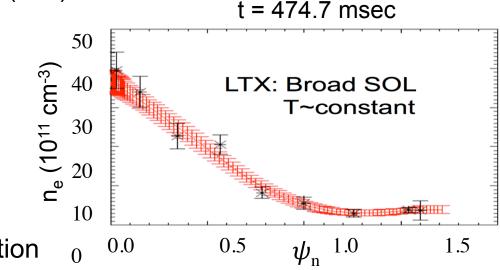


Lithium, other impurities modest with liquid walls

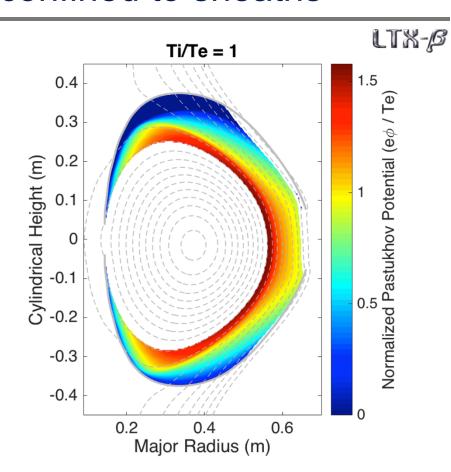
Lithium impurity influx will be further reduced at higher edge temperatures

TRIM modeling by L. Buzi, Princeton U.

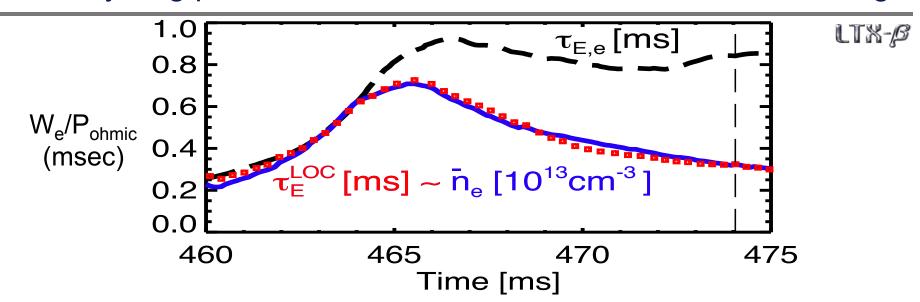
- Hot edge during low recycling operation in LTX produced incident ion energies near the peak in the sputtering yield for H on lithium
 - Very low density edge
 - Ion flux very low
- Colder edge ions during liquid lithium operation


 □ lower yield
 - Higher edge density
 - Ion flux higher

- Introduction
 - LTX and LTX-β
- Progress in the elimination of core plasma temperature gradients - solid lithium walls
- Core impurity levels during tokamak operation with full solid or liquid lithium walls
- Implications of a low collisionality scrape-off layer
- Initial assessment of confinement with $\nabla T = 0$
- Summary


Very low collisionality in LTX SOL

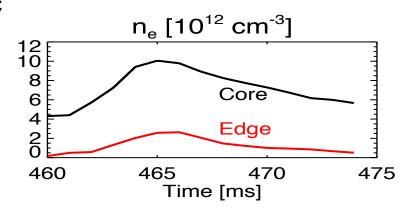
- ◆ Edge T_e ~200 eV, T_i ~40 70 eV (est.)
 - $n_e \sim 2-3 \times 10^{17} \text{ m}^{-3} \text{ (H)}$
- ◆ $L_{conn} \sim 5 10 \text{ m } (q_a \ge 5)$
- ◆ Neutral pressure < 10⁻⁵ Torr
 - $-\lambda_{CX} \sim 1-2 \text{ km}$
- τ_{ee} ~ 400 µsec, τ_{ii} ~ 1-2 msec
 - $L_{con}/C_{s} \sim 60 \, \mu sec \ll \tau_{ii}$
- ST: large trapped particle population
- Mirror ratio, LFS → HFS ~ 4
 - 80-90% SOL particles trapped


SOL electric fields not confined to sheaths

- Loss rate along SOL determined by ionion pitch angle scattering
 - SOL plasma mirror confined
- Pastukhov potential will develop [Nucl. Fusion 14 (1974)3]
 - $-\varphi_p$ ~0.6 0.8 kT_e for LTX parameters
 - SOL electric field should strongly eject sputtered impurities
 - SOL diagnostics in LTX-β will include energy analyzers, langmuir and emissive probes
 - > LLNL, LiFusion will provide modeling support for LTX-β

- Introduction
 - LTX and LTX-β
- Progress in the elimination of core plasma temperature gradients - solid lithium walls
- Core impurity levels during tokamak operation with full solid or liquid lithium walls
- Implications of a low collisionality scrape-off layer
- Initial assessment of confinement with $\nabla T = 0$
- Summary

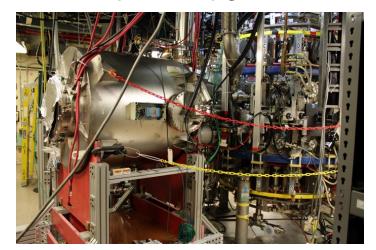
Low recycling plasma confinement exceeds neo-Alcator scaling

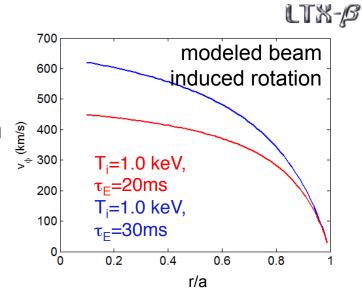


- Comparison is with neo-Alcator Linear Ohmic Confinement scaling
 - Appropriate for small tokamaks without auxiliary heating, like LTX
- Confinement time for LTX neglects ion stored energy; core T_i uncertain
- Core transport and turbulence not diagnosed in LTX
- Kinetic measurements of stored energy emphasized in LTX-β

Core particle confinement

- Core density decays with e-folding time of 15 – 20 msec
 - Edge density e-folding ~ 4.8 msec
- By comparison, τ_{i-e} ~5-10 msec
 - Core electrons, ions expected to equilibrate
- Require core ion temperature measurement, local transport for accurate confinement estimates
- ORNL has installed CHERs diagnostic on LTX-β
- UCLA will contribute core fluctuation measurements (reflectometry)





Evolution of edge and core n_e in LTX

LTX-β will combine gradient-free temperature profiles with sheared flow

- Two neutral beam injectors on loan from Tri - Alpha Technologies
 - One injector installed on LTX-β
 - 17-23 keV, 35A, hydrogen, R_{tan} = 23 cm
 - 5-8 msec pulse, upgrade to ~30 msec

- NBI support, fast ion physics: U. Wisconsin
- Momentum transport (& CHERs): ORNL

Summary

- ◆ Liquid metal PFCs require engineering, physics development LTX P
- Effects of lithium PFCs on transport, equilibrium, SOL not well understood
- ◆ Major effect on equilibrium $\nabla T = 0$ demonstrated on LTX
 - Simplifies neoclassical transport in the tokamak
 - Effect on anomalous transport TBD
 - Extensibility to auxiliary heated systems TBD
- ◆ Impurity levels benign for T < 260 °C liquid lithium</p>
- SOL changes may be as significant as the core modifications
- LTX-β will examine a much broader parameter space than was accessible in LTX